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LEP Operation and Performance

Outline:

1) Brief History
2) Injection & TMCI
3) Beam-beam tune shift & Luminosity performance
4) Optimisation
5) Equipment
6) Operations, controls and instrumentation
6) Polarization
6) Other issues
7) Conclusion

Mike Lamont, CERN

Will try and concentrate 
on physics & lessons that 

might be relevant to 
future machines.
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1989 First operation

1989-1995 The Z-years
(precision studies)

1996-1999 The W-years
(precision studies)

2000 The Higgs-year
(almost a discovery?)

Nov 2000 Start of dismantling

LEP - The Largest Particle Accelerator to Date…
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History

4 on 4102/901999

4 on 460/601990
4 on 490/90 tested60/601991

4 on 4/ PretzelPretzel commissioned90/901992
Pretzel90/601993
Pretzel90/601994

Bunch trainsTests at 65-68 GeV90/601995
4 on 4108/90 tested90/601996
4 on 4108/90 & 102/90 tests 90/601997

4 on 4Higgs discovery mode102/902000

4 on 4102/901998

4 on 4Commissioning60/601989

BUNCH SCHEMECOMMENTOPTICSYEAR
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1989 - commissioning 

• 14th July: first beam
• 23rd July: circulating beam
• 4th August: 45 GeV
• 13th August: colliding beams

These people are to blame for what followed
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1990 – operational teething troubles
• Luminosity: 2 - 3 1030 cm-2 s-1

• Beam current around 3 mA 
• Pretzel test
• Lots of waist scans
• BIG beam sizes…

8.6 pb-1

Conclusion from Chamonix 91

• a 70/76 team has been set up

• a dispersion team has been set up

• a dynamic aperture team has been set up

• a closed obit team has been set up

• an intensity limitation team has been set up

• a longitudinal oscillation team has been set up 

• a crash pretzel team has been set up 

• a beam-beam team already exists!



10/25/2001 Cornell October 2001 7

1999 - cruising

BORING!

253 pb-1
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Performance

• Two distinct regimes:
– 45.625 GeV characterised by working well into the soft beam-beam limit 

and approaching the hard limit.
– 80.5 GeV and above 

• Staged installation of RF cavities
• Maximum collision energy (c.m.) raised to 209 GeV
• Accelerator physics regime of ultra-rapid damping
• Not beam-beam limited

• 2000: Operational strategy to maximize discovery reach with operation in 
the regime of ultra-rapid damping
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Injection

• A lot of effort in to pushing the bunch current in anticipation of 
high energy,

• Efficiency always variable, synchrotron injection used
• In the end limited way below maximum by RF system (power 

levels and stability)
• Fundamental limit at LEP TMCI which was eventually reached 

despite more practical problems – coherent tune shift & 
resonances (in particular synchro-betatron)
– Increase injection energy
– Removal of copper RF cavities
– Increase of synchrotron tune
– wigglers

• Some evidence that long-range beam-beam reduced TMCI limit
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(ignore hardware, RF considerations)Transverse mode coupling instability (TMCI):

Influence from beam-beam: Lower TMCI threshold by ~ 12 %

Synchro-betatron resonances (SBR):

Longitudinal single-bunch instability: Not understood. Avoided with bunch
lengthening.

∑ ⊥
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+ 1.5 %

Raise Qs (also helps RF)Experimentally
found 1998 to be
around ~ 1 mA

Qv = n · Qs with n = 1, 2, 3
(coherent and incoherent)

Avoid
SBR

Injection limits in 1998
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(MD-results by P. Collier, G. Roy, R. Assmann and K. Cornelis, M. Lamont, M. Meddahi)

1998 standard working
point (SWP):

Qh = 0.28
Qv = 0.23
Qs = 0.132

780 µA per bunch reached 
with two beams… 

Extended up to ~ 940 µA in single electron bunch MD

(chromaticities ~ 1-2)

LEP working Points:
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Qh = 0.29
Qv = 0.30
Qs = 0.142

High Qv working
point: 

1030 µA per bunch in 
4 bunches (limited by 
TMCI).

Qs > 0.144 inconclusive. Qs = 0.16, 0.166, 0.174 with 850 µA per bunch.
(low injection efficiency 20%, injection would require re-optimisation).

(single beam, separators off)

(lowered chromaticities by 0.5)

New working point (Cornelis, Lamont, Meddahi):



10/25/2001 Cornell October 2001 13

2000
1999

1998

Overview of Luminosity and Energy Performance
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With the strong transverse damping (60 turns at 104 GeV)… 

… second beam-beam limit (tails, resonances) is overcome
… beam-beam limit is pushed upwards
… we then profit from smaller IP spot size and higher currents
… 1/3 resonance can be jumped
… beams can be ramped in collision with collimator closed

… but also…

… no radiative spin polarization above 61 GeV (energy calibration)

Unique experience with ultra-strong damping at LEP

Why was high energy so good for LEP?
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Vert. beam-beam parameter: *
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31 /y Eξ ∝ naively

Beam-beam 
limited

Energy ξy (max) Damping
[GeV] per IP [turns]

45.6 0.045 721
65.0 0.050 249
91.5 0.055 89
94.5 0.075 81
98.0 0.083 73
101 0.073 66
102-104 0.055 63

Beam-beam 
limit not 
reached

Observed in LEP (1994-2000):

Strong damping

Beam-beam limit
pushed upwards

Peak luminosity: 
1032 cm-2 s-1

σxσy from 45.6 GeV to 98 GeV:   

Reduced by factor ~ 1.6   (factor ~2 in σy)
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Beam behavior at high energy:

Larger emittances / energy spread (ε ~ E2, σE/E ~ E)
• Less luminosity
• Higher backgrounds

Solenoid coupling is weaker (θ ~ 1/E with B=const)
• Residual coupling contributes less to vertical emittance

Strong transverse damping (τ ~ 1/E3, 60 turns at 104 GeV)
• Second beam-beam limit (tails, resonances) is overcome
• Higher beam-beam tune shifts with higher beam-beam limit
• 1/3 resonance can be jumped
• Beams can be ramped in collision

Luminosity Performance at High Energy
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Horizontal beam size: / rms
xx x x x xJ D Eβ εσ β∝ ⋅= ⋅

Compensate increase with energy (smaller luminosity, larger background):

1) High Qx optics with smaller Dx
rms (D. Brandt et al, PAC99)

2) Smaller βx
* (2.0 m - 1.5 m - 1.25 m)

3) Increase damping 
partition number 
Jx via RF frequency
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101 GeV
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Jx = function (URF)

For highest energy reach: Reduce Jx.
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Scaling empirically fitted by Keil, Talman, Peggs, …

Several points in a given machine, similar configuration for LEP.

Independent cross-check of previous results, however: 

• Beam-beam limit reached at  45.6 GeV
• Beam-beam limit not reached

Can we infer the beam-beam limit at high energy?

Look at functional dependence of beam-beam
parameter on bunch current… 

What Is the Energy Dependence of the Beam-beam Limit?
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98 GeV
Simple model used to fit unperturbed
emittance and beam-beam limit:

Two fit parameters A and B:
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Dependence of vertical beam-beam tune param.
on bunch current I (in the regime of strong
synchrotron radiation, K. Cornelis): ( )2

1
y i

A B i
ξ = ⋅

+ ⋅

Two fit parameters A and B:

Knowing all other parameters, A is just given
by the unperturbed vertical emittance. Without
a beam-beam limit:
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B gives the asymptotic beam-beam limit of the 
vertical beam-beam parameter:

• Beta beat due to beam-beam not included
• Tune dependent resonances are not included
• Beam-beam tune shift might see other limits 

Model of Beam-beam Parameter Versus Bunch Current:
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Unperturbed vertical emittance εy = 108 pm
Beam-beam limit ξy = 0.115
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Example from 98 GeV:
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Clear beam-beam blowup of 50-100%!
(consistently observed from x-ray synchrotron radiation and luminosity)

Emittance blow-up for fill in 1998:
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Unperturbed vertical emittance εy = 82 pm
Beam-beam limit ξy = 0.111
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Example From 101 GeV
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Energy Damping decrement δ BB-limit

45.6 GeV 3.5e-4 0.045

101 GeV 3.8e-3 0.115

Scaling:

VLLC33 (δ = 0.01):

0.4
yξ δ∞ ∝

0.17yξ
∞ ≈ Total tune shift still

smaller than in LEP
(4 IP’s)

Exponent 0.40 instead of 0.27!

(0.056 for VLLC34 with δ = 6e-4)

Predictions
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From model get the luminosity incl BB:

In the BB limit:

For a given BB limit, the increase of luminosity
with current is proportional to the energy γ
(el.-magn. field of beam scales as 1/γ)
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Use model to predict luminosity:



10/25/2001 Cornell October 2001 27

Compare BB fit to luminosity data: 98 GeV

• Very well described
• Simple “squared scaling” not adequate
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What happens for emittance (unperturbed) improvement:
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Optimisation

• Horizontal beam size given by synchrotron radiation and optics
• Working point – beam-beam 
• Vertical emittance

– Coupling, global & local
– Residual dispersion  - golden orbits and dispersion free steering

• Vertical beam size at interaction point:
– β*

X and β *
y

– Dispersion at IP

Thereafter: 
Reproducibility
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Vertical emittance:
1999/2000:  βy

* = 5 cm ( )2rms
y xyC D KEε ε∝ ⋅ ⋅ + ⋅ +K

E∝ (solenoids)

• Initial tuning of coupling, chromaticity, orbit, dispersion, …
• Vertical orbit to get smallest RMS dispersion
• Coupling to get smallest global coupling
• Local dispersion, coupling, β-function at IP

“Golden orbit” strategy for optimization: 
Trial and error! Complement with: 

Dispersion-free steering (DFS): 1) Measure orbit and dispersion
2) Calculate correctors to minimize both

Peak luminosity}
}

Note: Global correction generally also improves local dispersion/coupling!

Luminosity balance
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Measured single beam performance of DFS in LEP:

(same algorithm as implemented for the SLC linac)
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Damping partition number Jx used to reduce horizontal beam size σx:

Good for luminosity and backgrounds in experiments… 

Jx controlled with RF frequency fRF.

∆fRF = 0 Hz Jx = 1.00
∆fRF = 100 Hz Jx = 1.55 ∆Emax = - 0.7 GeV

Pay with reduction of maximum beam energy.

In 2000: Keep RF frequency shift small (~ -50 to +20 Hz).

(ii) Choice of RF frequency:

/ rms
xx x x x xJ D Eβ εσ β∝ ⋅= ⋅ Increase with

beam energy.
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(E.g. H. Burckhardt, R.Kleiss. 
Beam Lifetimes in LEP. EPAC94)
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Different regimes:

1) Without collision:
Lifetime τ0 due to particles lost in Compton scattering
on thermal photons, beam-gas scattering.
We assume 32 hours.

2) In collision:
Lifetime due to particles lost in radiative Bhabha scatt.
or beam-beam bremsstrahlung.

LEP lifetime without surprises:
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Formulas in convenient units 
for LEP2 parameters 
(94.5 GeV):
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No effect from tails, resonances, … 

Lifetime at High Energy Used As Fastest Luminosity Signal:
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Operations

• Standard techniques:
– Measure & correct beta*
– Beta beating, coupling…
– Essential, of course, good diagnostics, established measurement 

techniques: Q-loop, Fast displays of lifetimes, beam sizes, Orbit 
feedback, Bunch current equalisation

• First years:
– Lack of basic high-level control facilities
– Poor data management
– Interfaces to crucial beam instrumentation missing in control room
– Poor and unreliable, incoherent data acquisition systems
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time

Year Recover
[min]

Filling
[min]

Ramp /
Squeeze
[min]

Adjust
[min]

Total
[min]

# fills

1998 23.9 45.0 22.3 19.1 110.3 436
1999 22.2 30.9 23.9 15.5 92.5 653
2000 12.9 23.5 12.7 15.9 65.0 344
Diffe-
rence -9.3 -7.4 -11.2 +0.4 -27.5

Average turn-around time improved by ~ 28 minutes!

Typical 2000 turn-around: ~ 45 minutes

Less
current

Twice the
ramp 
speed

BFSFaster
degauss,
optimize
procedure

Optimization of Turn-around

Reproducibility
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Hardware
• Specialised groups: power converters, RF, beam 

instrumentation, kickers, separators, vacuum, dedicated 
expertise (electronics, controls, hardware)

• Over designed? Possibly but  all hardware managed to withstand 
the extremely hard push to high energy

• Good availability with experience
• Access system – always a problem

- Hardware performance
Vacuum system
Magnets
Power supplies
Instrumentation etc

- Effects from LHC civil engineering
No limiting effect on LEP operation (some realignment)

… excellent without major worries.



10/25/2001 Cornell October 2001 39

Improvements:

• Progressive
installation of
additional 
RF cavities 

• Increase accele-
rating gradient

Beam energy follows available RF voltage… 
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- Background in the experiments:

RF frequency shift reduced for
optimization of energy reach

Larger horizontal beam size
Potentially larger backgrounds

Higher beam
energy

New optics in P4 and P8
to help reducing background

Steady state conditions: Very good. Required continuous follow-up on
collimators, orbit, tunes, … Qh > 0.33 required

Occasional spikes: RF trips with negative RF frequency shift
Related current loss

6) Other issues:
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LEP 2000 preparation: 105 GeV (optics, power supplies, etc checked)

Gain from 1999 physics to 2000:    

5b) Energy increase of LEP from 1999 to 2000:

RF system

Operational
procedures

Reduced luminosity production, potentially higher backgrounds

8 additional Cu RF units + 0.14 GeV
Higher RF gradient + 0.96 GeV
Less RF margin + 1.50 GeV
Reduced RF frequency + 0.70 GeV
Bending length + 0.20 GeV
Total + 3.50 GeV

Maximum energy: 101.0 GeV ⇒ 104.4 GeV

Improvements:



10/25/2001 Cornell October 2001 42

LEP operated in “discovery mode”:

Beam energy increased by 3.4 GeV
• Increase of RF voltage (3650 MV), excellent stability
• Change of operational strategy (ramp during physics fill, …)
• Reduced shift of RF frequency
• Increase of average bending radius

Push beam energy on cost of luminosity
• Reduce beam current (5 mA instead of 6.2 mA)
• Run with small Jx, large horizontal beam size
• Mini-ramp to quantum lifetime limit

(zero margin in RF voltage)
• Lose all fills with RF trips

Luminosity production rate lower than 1999 but still excellent (as in 1998)
Luminosity improvement in 1999 with better tuning: + 20 %
Price to pay for energy increase in 2000: - 20 %

2000 was the second 
productive LEP year

2000: conclusions
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Unique at LEP:

Large range of energies 22 GeV to 104.5 GeV
Polarization studied from 41 GeV to 98.5 GeV

Explore spin dynamics 
in unique regime

Bench marking 
of theoretical 
predictions

Sharp drop-off!
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Precise determination of the LEP beam energy      (10-5 relative accuracy, ~ 1 MeV)
Precise measurement of the Z mass and width
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Use of Polarization at LEP:
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Theory by Derbenev, Kontratenko, Skrinsky (With LEP Parameters):

Synchrotron tune γν

Resonance strength 2102 1094.1 ν⋅×≈ −
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τp/τd = (ν/88)4

τp/τd = (ν/95)2

First order theory: Includes spin resonances with kx, ky, ks=1

Nkkkkkkk syxssyyxxdepol ∈⋅±⋅±⋅±= ,,,νννν

Machine tunes

Synchrotron sidebands
determine polarization
degree in LEP

Simulation confirms 1/E4

dependence of polarization!

Energy Dependence of Polarization:
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Linear

Higher order

Measurements• With 90/60, 60/60 and 102/45 optics.

• Goal for energy calibration: > 5%

• Polarization not always fully
optimized.

1998: Polarization and energy calibration
has been extended to 60.6 GeV 
(P = 7% measured)!

Drop in polarization degree consistent with higher-order theory…

Polarization Measurements in LEP:
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Wigglers increase spin tune spread and thus allow “simulating” energy increase...

Higher-Order Theory also Confirmed with Wigglers:
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With: 2
6

GeV44065.0
1076.6 








⋅⋅= − E

νσ
• LEP enters uncorrelated regime with high 

energy and small Qs!

• If spin resonance passing is uncorrelated
it is completely uncorrelated for LEP!

• We can stay in the correlated regime by
increasing the value of Qs!

Evaluate Correlation Criteria for LEP:
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Resonance strength 2102 1094.1 ν⋅×≈ −
kw

Theory by Derbenev, Kontratenko, Skrinsky (with LEP

parameters):
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Expected polarization: Very low, but possible increase at high energies?

New polarization optics (101.5/45 degrees) for measurements at low AND high energy

60.6 GeV 4 % (7% with 60/60 optics)
70.0 GeV < 1%
92.3 GeV < 1%
98.5 GeV < 1%

No indication  of measurable polarization at highest LEP energies!
(first measurements in regime of uncorrelated crossings of spin resonances)

Search for Polarization at Highest LEP Energies:
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Harmonic Spin Matching

Transverse spin polarization in
high energy regime measured.
(way above previously assessed regime)

Sharp drop after LEP1 in agreement
with theory/simulations.

Transverse spin polarization crucial
for precision measurements of the
W and Z properties (energy calibration)

First measurement in regime of 
uncorrelated spin resonance crossing.
No sign of transverse polarization.

New varieties of Harmonic Spin
Matching gave up to 57% polarization.

We can trust the polarization theories in 
LEP regime!

Precise predictions for future projects…

Achievements at LEP:
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Theory by Derbenev, Kontratenko, Skrinsky (With VLLC33 Parameters):

Synchrotron tune γν

Resonance strength 2102 1094.1 ν⋅×≈ −
kw

Build-up time τp: 1.9 h

Spin tune ν: 417.5

Spin tune spread σν: 0.42

Synchrotron tune: 1/7
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What does this mean for VLLC?
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Measurements

Large spin tune spread Enhancement of depolarization
(as in LEP at high energy)
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Linear / higher-order theory 
for different Qs… 

Qs = 0.2: Expect sufficient polarization up to 80-85 GeV!

Raising Qs improves
polarization for high 
energies!

Why?
Imagine Qs = 1

Qs satellites overlay
integer resonances

(ν = k + i · Qs)

High Qs for LEP
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Ultra-high
energy

Qs = 1/5
Higher-order theory

5 %

Uncorrelated passings
of spin resonances

(small Qs)

Spin tune spread
σν >> 1

(probably not true at 100 GeV)

Theory predicts: Polarization comes back at ultra-high energies!

Why? Fast increase of polarization build-up, increase in depolarization slows down!

Very uncertain regime (who knows what really happens)… 

Polarization increase at Ultra-high energies:
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Strong transverse damping: Very nice beam dynamics regime (performance)

- Less tails
- Less effects from resonances (we can jump them)
- Ramp colliding beams at high energy
- Higher beam-beam limit
Two thirds of all LEP luminosity collected in the last 3 years (out of 10.5y)

LEP data would indicate a beam-beam limit of 0.17 for VLLC33.

Optimization of vertical orbit to the limit (dispersion/coupling correction for LEP)

Need operational overhead in RF voltage (>= 6 % in LEP) - optimize # klystrons

Do not expect significant radiative spin-polarization (even linear level is very low)

Some preliminary thoughts:



10/25/2001 Cornell October 2001 59

Sociology

• Good support from equipment groups, good motivation, close 
interaction with machine in-house expertise.

• Common control room – operations as focus for machine 
physicists, equipment groups and experiments.Regular informal 
contact at all levels.

• Comprehensive annual workshops - Chamonix.
• Cross-fertilisation from other labs.
• Stimulated by close contact with experimental physicists.
• Makeup of operations. Ph.Ds on shift


