LEP Operation and Performance

Mike Lamont, CERN

Outline:

- 1) Brief History
- 2) Injection & TMCI
- 3) Beam-beam tune shift & Luminosity performance
- 4) Optimisation
- 5) Equipment
- 6) Operations, controls and instrumentation
- 6) Polarization
- 6) Other issues
- 7) Conclusion

Will try and concentrate on physics & lessons that might be relevant to future machines. **LEP - The Largest Particle Accelerator to Date...**

1989-1995 The Z-years (precision studies)

1996-1999 The W-years (precision studies)

2000The Higgs-year
(almost a discovery?)

Nov 2000 Start of dismantling

1989-2000

History

YEAR	OPTICS	COMMENT	BUNCH SCHEME
1989	60/60	Commissioning	4 on 4
1990	60/60		4 on 4
1991	60/60	90/90 tested	4 on 4
1992	90/90	Pretzel commissioned	4 on 4/ Pretzel
1993	90/60		Pretzel
1994	90/60		Pretzel
1995	90/60	Tests at 65-68 GeV	Bunch trains
1996	90/60	108/90 tested	4 on 4
1997	90/60	108/90 & 102/90 tests	4 on 4
1998	102/90		4 on 4
1999	102/90		4 on 4
2000	102/90	Higgs discovery mode	4 on 4

1989 - commissioning

- 14th July: first beam
- 23rd July: circulating beam
- 4th August: 45 GeV
- 13th August: colliding beams

These people are to blame for what followed

1990 – operational teething troubles

Luminosity: 2 - 3 10³⁰ cm⁻² s⁻¹ Beam current around 3 mA Pretzel test Lots of waist scans BIG beam sizes...

8.6 pb⁻¹

Conclusion from Chamonix 91

- a 70/76 team has been set up
- a dispersion team has been set up
- a dynamic aperture team has been set up
- a closed obit team has been set up
- an intensity limitation team has been set up
- a longitudinal oscillation team has been set up
- a crash pretzel team has been set up
- a beam-beam team already exists!

10/25/2001

1999 - cruising

Overall performance

Performance

- Two distinct regimes:
 - 45.625 GeV characterised by working well into the soft beam-beam limit and approaching the hard limit.
 - 80.5 GeV and above
 - Staged installation of RF cavities
 - Maximum collision energy (c.m.) raised to 209 GeV
 - Accelerator physics regime of ultra-rapid damping
 - Not beam-beam limited
- 2000: Operational strategy to maximize discovery reach with operation in the regime of ultra-rapid damping

Injection

- A lot of effort in to pushing the bunch current in anticipation of high energy,
- Efficiency always variable, synchrotron injection used
- In the end limited way below maximum by RF system (power levels and stability)
- Fundamental limit at LEP TMCI which was eventually reached despite more practical problems coherent tune shift & resonances (in particular synchro-betatron)
 - Increase injection energy
 - Removal of copper RF cavities
 - Increase of synchrotron tune
 - wigglers
- Some evidence that long-range beam-beam reduced TMCI limit

Injection limits in 1998

Transverse mode coupling instability (TMCI):

(ignore hardware, RF consideration

Raise Q_s (also helps RF)

Experimentally found 1998 to be around ~ 1 mA

$$f_{h} = \frac{2\pi E f_{rev} Q_s}{e \sum \beta k_{\perp}(\sigma_s)} + 1.5 \%$$

Influence from beam-beam:

Lower TMCI threshold by $\sim 12 \%$

►

Synchro-betatron resonances (SBR):

$$Q_v = n \cdot Q_s$$
 with $n = 1, 2, 3$

(coherent and incoherent)

Longitudinal single-bunch instability:

Not understood. Avoided with bunch lengthening.

Avoi

SBR

LEP working Points:

(MD-results by P. Collier, G. Roy, R. Assmann and K. Cornelis, M. Lamont, M. Meddahi)

Bunch current [µA]

Extended up to ~ 940 μ A in single electron bunch MD

New working point (Cornelis, Lamont, Meddahi):

 $Q_s > 0.144$ inconclusive. $Q_s = 0.16$, 0.166, 0.174 with 850 µA per bunch. (low injection efficiency 20%, injection would require re-optimisation).

Overview of Luminosity and Energy Performance

Why was high energy so good for LEP?

With the strong transverse damping (60 turns at 104 GeV)...

- ... second beam-beam limit (tails, resonances) is overcome
- ... beam-beam limit is pushed upwards
- ... we then profit from smaller IP spot size and higher currents
- \dots 1/3 resonance can be jumped
- ... beams can be ramped in collision with collimator closed

... but also...

... no radiative spin polarization above 61 GeV (energy calibration)

Unique experience with ultra-strong damping at LEP

Vert. beam-beam parameter:

Observed in LEP (1994-2000):

Energy [GeV]	ξ _y (max) per IP	Damping [turns]		$\xi_y \propto 1/E^3$ naively
45.6	0.045	721	Beam-beam	Strong damping
65.0	0.050	249	limited	
91.5	0.055	89	Dogue hogue	
94.5	0.075	81	limit not	
98.0	0.083	73	umu noi	Ream-beam limit
101	0.073	66	reachea	much ed umuende
102-104	0.055	63		pushed upwards

 $\sigma_x \sigma_y$ from 45.6 GeV to 98 GeV: **Reduced by factor ~ 1.6** (factor ~2 in σ_y) Peak luminosity: 10³² cm⁻² s⁻¹

 $\boldsymbol{\xi}_{y} = \frac{r_{e} \cdot m_{e} \cdot \boldsymbol{\beta}_{y}^{*} \cdot i_{b}}{2\pi e \cdot f_{rev} \cdot E \cdot \boldsymbol{\sigma}_{x} \cdot \boldsymbol{\sigma}_{y}} \propto \frac{L}{i_{b}}$

Luminosity Performance at High Energy

Beam behavior at high energy:

Larger emittances / energy spread ($\varepsilon \sim E^2$, $\sigma_F/E \sim E$)

- Less luminosity
- Higher backgrounds

Solenoid coupling is weaker $(\theta \sim 1/E \text{ with } B=\text{const})$

 $(\tau \sim 1/E^3, 60 \text{ turns at } 104 \text{ GeV})$

• Residual coupling contributes less to vertical emittance

Strong transverse damping

- Second beam-beam limit (tails, resonances) is overcome
- Higher beam-beam tune shifts with higher beam-beam limit
- 1/3 resonance can be jumped
- Beams can be ramped in collision

Horizontal beam size:

$$\sigma_x = \sqrt{\beta_x \varepsilon_x} \propto \sqrt{\beta_x / J_x} \cdot D_x^{rms} \cdot E$$

Compensate increase with energy (smaller luminosity, larger background):

- 1) High Q_x optics with smaller D_x^{rms} (D. Brandt et al, PAC99)
- 2) **Smaller** β_x^* (2.0 m 1.5 m 1.25 m)

For highest energy reach: *Reduce* J_x .

10/25/2001

What Is the Energy Dependence of the Beam-beam Limit?

Scaling empirically fitted by Keil, Talman, Peggs, ...

Several points in a given machine, similar configuration for LEP.

Independent cross-check of previous results, however:

- Beam-beam limit reached at 45.6 GeV
- Beam-beam limit not reached

Can we infer the beam-beam limit at high energy?

Look at functional dependence of beam-beam parameter on bunch current...

Vertical Beam-beam Blow-up

Simple model used to fit unperturbed mittance and beam-beam limit:

$$\xi_{y} = \sqrt{\frac{1}{\boldsymbol{A} + \left(\boldsymbol{B} \cdot \boldsymbol{i}_{b}\right)^{2}}} \cdot \boldsymbol{i}_{b}$$

Two fit parameters A and B:

$$A = \left(\frac{2\pi e f \gamma}{r_e}\right)^2 \cdot \frac{\beta_x^*}{\beta_y^*} \cdot \varepsilon_x^0 \cdot \varepsilon_y^0$$
$$B = \frac{1}{\xi_y(i_b \to \infty)}$$

$$\xi_y (asymp) = 0.115$$

 $\varepsilon_y (no BB) = 0.1 nm$

Model of Beam-beam Parameter Versus Bunch Current:

Dependence of vertical beam-beam tune param. on bunch current I (in the regime of strong synchrotron radiation, K. Cornelis):

$$\boldsymbol{A} = \left(\frac{2\pi \, e \, f \, \gamma}{r_e}\right)^2 \cdot \frac{\boldsymbol{\beta}_x^*}{\boldsymbol{\beta}_y^*} \cdot \boldsymbol{\varepsilon}_x^0 \cdot \boldsymbol{\varepsilon}_y^0$$

Knowing all other parameters, A is just given by the unperturbed vertical emittance. Without a beam-beam limit:

$$\xi_{y} = \sqrt{\frac{1}{A}} \cdot i$$

$$\xi_{y} = \sqrt{\frac{1}{A + \left(B \cdot i\right)^{2}}} \cdot i$$

$$B = \frac{1}{\xi_{y}(i \to \infty)}$$

B gives the asymptotic beam-beam limit of the vertical beam-beam parameter:

- Beta beat due to beam-beam not included
- Tune dependent resonances are not included
- Beam-beam tune shift might see other limits

Example from 98 GeV:

Emittance blow-up for fill in 1998:

Clear beam-beam blowup of 50-100%! *(consistently observed from x-ray synchrotron radiation and luminosity)*

Example From 101 GeV

Similar Asymptotic Limits Suggested

Bunch current mA

Predictions

Energy	Damping decrement δ	BB-limit
45.6 GeV	3.5e-4	0.045
101 GeV	3.8e-3	0.115

Scaling:

$$\xi_y^\infty \propto \delta^{0.4}$$

Exponent 0.40 instead of 0.27!

VLLC33 ($\delta = 0.01$): ξ^{∞}

$$\xi_y^{\infty} \approx 0.17$$

Total tune shift still smaller than in LEP (4 IP's)

(0.056 for VLLC34 with
$$\delta = 6e-4$$
)
Cornell October 2001

10/25/2001

Use model to predict luminosity:

From model get the luminosity incl BB:

$$\boldsymbol{L} = \left(\frac{n_b \,\gamma}{2 \, e \, r_e \, \beta_y^*}\right) \cdot \frac{\boldsymbol{i}_b^2}{\sqrt{\boldsymbol{A} + \left(\boldsymbol{B} \cdot \boldsymbol{i}_b\right)^2}}$$

In the BB limit:

$$\boldsymbol{L} = \left(\frac{n_b \,\gamma}{2 \, e \, r_e \, \beta_y^*}\right) \cdot \boldsymbol{\xi}_y^{\infty} \cdot \boldsymbol{i}_b$$

For a given BB limit, the increase of luminosity with current is proportional to the energy γ (el.-magn. field of beam scales as $1/\gamma$)

Compare BB fit to luminosity data:

98 GeV

- Very well described
- Simple "squared scaling" not adequate

Cornell October 2001

27

What happens for emittance (unperturbed) improvement:

LEP luminosity limit due to beam-beam: 2.0 10³² cm⁻² s⁻¹ (expected at maximum possible current)

Optimisation

- Horizontal beam size given by synchrotron radiation and optics
- Working point beam-beam
- Vertical emittance
 - Coupling, global & local
 - Residual dispersion golden orbits and dispersion free steering
- Vertical beam size at interaction point:
 - $\ \beta^*_{\ X} \ \text{and} \ \beta \ ^*_{\ y}$
 - Dispersion at IP

Vertical emittance: 1999/2000: $\beta_v^* = 5 \text{ cm}$

$$\varepsilon_y \propto \left(C \cdot D_y^{rms} \cdot E\right)^2 + K \cdot \varepsilon_x + \dots$$

 $\propto E$ (solenoids

- Initial tuning of coupling, chromaticity, orbit, dispersion, ...
- Vertical orbit to get smallest RMS dispersion
- **Coupling** to get smallest global coupling
- Local dispersion, coupling, β-function at IP

Peak luminosity

Luminosity balance

"Golden orbit" strategy for optimization: Trial and error! Complement with:

Dispersion-free steering (DFS):1) Measure orbit and dispersion2) Calculate correctors to minimize both

Note: Global correction generally also improves local dispersion/coupling!

Ieasured single beam performance of DFS in LEP:

(same algorithm as implemented for the SLC linac)

Vertical optimization

(simulated)

(ii) Choice of RF frequency:

Damping partition number J_x used to reduce horizontal beam size σ_x :

$$\sigma_x = \sqrt{\beta_x \varepsilon_x} \propto \sqrt{\beta_x / J_x} \cdot D_x^{rms} \cdot E$$

Increase with beam energy.

Good for luminosity and backgrounds in experiments...

 J_x controlled with RF frequency f_{RF} .

 $\Delta f_{RF} = 0 \text{ Hz}$ $J_x = 1.00$ $\Delta f_{RF} = 100 \text{ Hz}$ $J_x = 1.55$ $\Delta E_{max} = -0.7 \text{ GeV}$

Pay with reduction of maximum beam energy.

In 2000: Keep RF frequency shift small (\sim -50 to +20 Hz).

LEP lifetime without surprises:

10/25/2001

Lifetime at High Energy Used As Fastest Luminosity Signal:

Operations

- Standard techniques:
 - Measure & correct beta*
 - Beta beating, coupling...
 - Essential, of course, good diagnostics, established measurement techniques: Q-loop, Fast displays of lifetimes, beam sizes, Orbit feedback, Bunch current equalisation
- First years:
 - Lack of basic high-level control facilities
 - Poor data management
 - Interfaces to crucial beam instrumentation missing in control room
 - Poor and unreliable, incoherent data acquisition systems

Optimization of Turn-around

Year	Recover [min]	Filling [min]	Ramp / Squeeze [min]	Adjust [min]	Total [min]	# fills
1998	23.9	45.0	22.3	19.1	110.3	436
1999	22.2	30.9	23.9	15.5	92.5	653
2000	12.9	23.5	12.7	15.9	65.0	344
Diffe- rence	-9.3	-7.4	-11.2	+0.4	-27.5	

Average turn-around time improved by ~ 28 minutes!

Typical 2000 turn-around: ~ 45 minutes

10/25/2001

Hardware

- Specialised groups: power converters, RF, beam instrumentation, kickers, separators, vacuum, dedicated expertise (electronics, controls, hardware)
- Over designed? Possibly but all hardware managed to withstand the extremely hard push to high energy
- Good availability with experience
- Access system always a problem

- Hardware performance

Vacuum system Magnets Power supplies Instrumentation etc

... excellent without major worries

Effects from LHC civil engineering No limiting effect on LEP operation (some realignment)

RF voltage (design and actual):

Improvements:

 Progressive installation of additional RF cavities

• Increase accelerating gradient

Beam energy follows available RF voltage...

6) Other issues:

- Background in the experiments:

Steady state conditions:

Occasional spikes:

Very good. Required continuous follow-up collimators, orbit, tunes, ... $Q_h > 0.33$ required

RF trips with negative RF frequency shift Related current loss

5b) Energy increase of LEP from 1999 to 2000:

- LEP 2000 preparation: **105 GeV** (optics, power supplies, etc checked)
- Gain from 1999 physics to 2000:

Maximum energy: 101.0 GeV \Rightarrow 104.4 GeV

Improvements:

Total	+ 3.50 GeV	
Bending length	+ 0.20 GeV	procedures
Reduced RF frequency	+ 0.70 GeV	procedures
Less RF margin	+ 1.50 GeV	Operationa
Higher RF gradient	+ 0.96 GeV	RF system
8 additional Cu RF units	+ 0.14 GeV	

Reduced luminosity production, potentially higher backgrounds

2000: conclusions

LEP operated in "discovery mode":

Beam energy increased by 3.4 GeV

- Increase of RF voltage (3650 MV), excellent stability
- Change of operational strategy (ramp during physics fill, ...)
- Reduced shift of RF frequency
- Increase of average bending radius

Push beam energy on cost of luminosity

- Reduce beam current (5 mA instead of 6.2 mA)
- Run with small J_x , large horizontal beam size
- Mini-ramp to quantum lifetime limit (zero margin in RF voltage)

2000 was the second productive LEP year

• Lose all fills with RF trips

Luminosity production rate lower than 1999 but still excellent (as in 199

Luminosity improvement in 1999 with better tuning: + 20 % Price to pay for energy increase in 2000: - 20 %

10/25/2001

Transverse spin-polarization in LEP

Unique at LEP:

Large range of energies Polarization studied from

Cornell October 2001

Use of Polarization at LEP:

Precise determination of the LEP beam energy Precise measurement of the Z mass and width

(10⁻⁵ relative accuracy, ~ 1 MeV)

Small changes of energy accurately measured (energy change from 1mm circumference change)

heory by Derbenev, Kontratenko, Skrinsky (With LEP Parameters):

Energy Dependence of Polarization:

Simulation confirms 1/E⁴ dependence of polarization!

First order theory: Includes spin resonances with k_x , k_y , $k_s=1$

$$v_{depol} = k \pm k_x \cdot v_x \pm k_y \cdot v_y \pm k_s \cdot v_s , \quad k_x, k_y, k_s \in N$$

Machine tunes
Synchrotron sidebands
determine polarization
degree in LEP

Polarization Measurements in LEP:

(P = 7% measured)!

Drop in polarization degree consistent with higher-order theory...

Higher-Order Theory also Confirmed with Wigglers:

Wigglers increase spin tune spread and thus allow "simulating" energy increase...

Evaluate Correlation Criteria for LEP:

- LEP enters uncorrelated regime with high energy and small Q_s!
- If spin resonance passing is uncorrelated it is completely uncorrelated for LEP!
- We can stay in the correlated regime by increasing the value of Q_s!

With:
$$\sigma_{v} = 6.76 \cdot 10^{-6} \cdot \left(\frac{E}{0.44065 \,\text{GeV}}\right)^{2}$$

Search for Polarization at Highest LEP Energies:

Expected polarization: Very low, but possible increase at high energies?

New polarization optics (101.5/45 degrees) for measurements at low AND high energy

60.6 GeV	4 %	(7% with 60/60 optics)
70.0 GeV	< 1%	
92.3 GeV	< 1%	
98.5 GeV	< 1%	

No indication of measurable polarization at highest LEP energies!

first measurements in regime of uncorrelated crossings of spin resonances)

Achievements at LEP:

Transverse spin polarization in high energy regime measured. (way above previously assessed regime)

Sharp drop after LEP1 in agreement with theory/simulations.

Transverse spin polarization crucial for precision measurements of the W and Z properties (energy calibration)

First measurement in regime of uncorrelated spin resonance crossing. No sign of transverse polarization.

New varieties of Harmonic Spin Matching gave up to 57% polarization.

We can trust the polarization theories in LEP regime!

Precise predictions for future projects...

heory by Derbenev, Kontratenko, Skrinsky (With VLLC33 Parameters

$$= \frac{11}{18} v^2 \sum_{k,m} \frac{|w_k|^2 \langle T_m^2(\Delta/v_\gamma) \rangle}{\left[\left(k - \overline{v} - mv_\gamma \right)^2 - v_\gamma^2 \right]^2}$$

$$T_m^2 \rangle = I_m \left(\frac{\sigma_v^2}{2v_\gamma^2} \right) \cdot \exp\left(-\frac{\sigma_v^2}{2v_\gamma^2} \right)$$

Build-up time τ_p :	1.9 h
Spin tune v:	417.5
Spin tune spread σ_v :	0.42
Synchrotron tune:	1/7

What does this mean for VLLC?

(as in LEP at high energy)

High Q_s for LEP

Q_s = 0.2: Expect sufficient polarization up to 80-85 GeV!

10/25/2001

Polarization increase at Ultra-high energies:

Theory predicts:Polarization comes back at ultra-high energies!Why?Fast increase of polarization build-up, increase in depolarization slows down!Very uncertain regime (who knows what really happens)...

Some preliminary thoughts:

trong transverse damping: Very nice beam dynamics regime (performance)

- Less tails
- Less effects from resonances (we can jump them)
- Ramp colliding beams at high energy
- Higher beam-beam limit

Two thirds of all LEP luminosity collected in the last 3 years (out of 10.5y)

LEP data would indicate a beam-beam limit of 0.17 for VLLC33.

Optimization of vertical orbit to the limit (dispersion/coupling correction for LEP)

Veed operational overhead in RF voltage (>= 6 % in LEP) - optimize # klystron

Do not expect significant radiative spin-polarization (even linear level is very low

Sociology

- Good support from equipment groups, good motivation, close interaction with machine in-house expertise.
- Common control room operations as focus for machine physicists, equipment groups and experiments.Regular informal contact at all levels.
- Comprehensive annual workshops Chamonix.
- Cross-fertilisation from other labs.
- Stimulated by close contact with experimental physicists.
- Makeup of operations. Ph.Ds on shift