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Abstract

Following the work by Hirata and Keil [1] we study the
coherent dipole beam-beam effects in asymmetric two-ring
colliders and take into consideration the synchrobetatron
beam-beam modes arising from the finite bunch length.
Their effect on the density of resonances in the tune dia-
gram is shown for the case of different ring circumferences,
resulting in reduction of the available tune space.

1 INTRODUCTION

Both analytical and numerical calculations revealed the ex-
istence of synchrobetatron modes in the spectrum of coher-
ent dipole betatron oscillations of colliding bunches. These
modes have been experimentally detected at the VEPP-2M
collider in Novosibirsk [2, 3]. The measured dependence
of the mode spectra on the beam-beam parameter ξ is in
perfect agreement with the calculations. To simplify cal-
culations, the previous theoretical study was limited to a
fully symmetrical case of two bunches with equal param-
eters (betatron and synchrotron tunes, bunch lengths and
intensities). This corresponds to the experimental condi-
tions at VEPP-2M: one electron and one positron bunch
circulating in a common magnetic system.

Recently, a number of circular collider projects have
been proposed with significant asymmetry between the
rings. In the GSI project of electron-ion collider [4] the ra-
tio of the electron and ion ring circumferences ranges from
1:6 to 1:10 at different ion beam energies. The betatron and
synchrotron tunes also differ noticeably.

A simplified treatment of coherent beam-beam motion
is available for dipole beam-beam modes, provided that the
beam-beam force is linearized, [1] and references therein.
For colliders with different circumference lengths (in fact,
the revolution frequency of one of the rings is a multiple of
another) the resonant instabilities seem to be the most im-
portant. For strong enough beam-beam parameters, multi-
ple stopbands of linear coupling resonances of the coher-
ent dipole beam-beam modes occupy a significant portion
of the tune space together with the integer and half-integer
coherent beam-beam stopbands, thus leaving not too much
space for stable operation.

In the present paper, following [1] we first perform
an eigenvalue analysis of the coherent dipole beam-beam
modes of the zero-length bunches, for the case of 6-fold
multiplicity of the revolution frequency of the electron ring
with respect to that of the ion ring, to find the stable re-
gions in the νe–νi tune space (Section 2). An enhanced

model of the coherent synchrobetatron beam-beam modes
for the case of different bunch parameters in two equal cir-
cumference rings is discussed in Section 3. Section 4 gives
the results of the complete model consideration, taking ac-
count of the synchrobetatron modes in a system with mul-
tiple beam revolution frequencies.

2 RIGID BUNCH CALCULATION

Since we use the linearized beam-beam approximation, it
is convenient to use the matrix eigenvalue analysis to study
the system stability. In this section we shall consider the
bunches to be thin rigid discs, each described by the nor-
malized betatron coordinate and the respective momentum.
The system of one electron and six ion bunches is char-
acterized with the 14-vector of coordinates and momenta
where the first two elements correspond to the electrons
while the rest present the ion bunches in their sequence
along the ring azimuth. The 14 × 14 matrix representing
transformation of the vector over one turn in the electron
ring is

Mβ =




Me 0 . . . 0

0 Mi/6

...
...

. . . 0
0 . . . 0 Mi/6


 ,

where Me and Mi/6 are the usual 2 × 2 betatron matrices
with the betatron phase advances 2πνe and 2πνi/6 respec-
tively. Indices e and i label betatron tunes of the electron
and ion rings.

The beam-beam interaction between the electron bunch
and ion bunch No. 1 is expressed using the kick matrix

Me,1 =




1 0 0 0 . . . 0

−2πξi 1 2πξi 0
...

0 0 1 0
2πξe 0 −2πξe 1

0
...

...
. . . 0

0 . . . . . . 0 1




,

here ξe and ξi are the beam-beam parameters of the electron
and ion beams. The coherent beam-beam kick is 2πξ since
the beams have Gaussian distribution in the transverse di-
rection.

After the second turn the electron bunch collides with
ion bunch No. 2. This interaction is represented by matrix



Me,2. Next follows another turn and so on. The complete
period is given with the matrix Mei which is the product of
6 betatron transformations Mβ with consecutive collisions.

Mei = Me,6 · Mβ . . .Me,1 · Mβ .

With the beam-beam parameters of intentionally exag-
gerated value, ξi = 0.1, ξe = 0.03, and variation of the ion
bunch population of 20 percent, we plot the sum of abso-
lute values of the coherent dipole beam-beam mode incre-
ments as a function of the tunes in Fig. 1. The large values
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Figure 1: Sum of the dipole beam-beam modes increments
as a function of the tunes: abscissa is the electron ring tune
νe (mod 1/2), ordinate is the ion ring tune ν i (mod 1).
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Figure 2: Same as in the previous figure, in the form of
the contour plot, showing the stable regions in between the
resonance stopbands.

of the increments in the half-integer, integer and coupling
stopbands imply that these resonance should be carefully
avoided in operation. The small increments of the 1/12,
5/12 and other n/12 resonances, which are due to unequal
population in the ion bunches leave some hope that these

can be stabilized for instance by the Landau damping re-
sulting from the beam-beam tune-spreads and the Laslett
tune-spread, even if the working point hits these lines.

Fig. 2 shows the contour plot of the stopbands resulting
from the linear coherent dipole beam-beam resonances in
the same conditions as in Fig. 1. One can draw a prelimi-
nary conclusion that the multiplicity 6 (and even somewhat
higher) is not preclusive for the stable beam-beam opera-
tion.

3 SYNCHROBETATRON MODES

Now we come back to equal revolution frequencies. For a
finite-length bunch collisions the frequency spectrum anal-
ysis of the coherent beam-beam modes with the account of
the bunch deformation over the interaction length is done
using the circulant matrix formalism [5]. Assuming the dis-
ruption parameter 4πξσs/β∗ value (or, in other words, the
beam-beam “wake” variation over the bunch length σ s) to
be small, we apply the hollow beam model, when all par-
ticles in the bunch have equal synchrotron oscillation am-
plitudes and are evenly spread over the synchrotron phase.
Following [3] the bunch is divided into N mesh elements,
each characterized by its transverse dipole moment and its
synchrotron phase. The dipole moment of the ith mesh,
i = 1 . . .N , is proportional to the transverse displacement
xi of the centroid of the particles populating this mesh,
times the portion Nb/N of the bunch intensity, Nb, per
mesh. The betatron motion will be described in terms of the
normalized betatron variables, xi and pi, where pi is the re-
spective momentum. Thus 2N variables will be needed to
characterize synchrobetatron motion in each bunch. They
form a 2N -vector, where xi and pi are listed in the order
corresponding to the mesh number, according to its syn-
chrotron phase.

The synchrobetatron oscillations of N elements forming
a bunch are represented by the 2N × 2N matrix M , which
maps the above vector over the collider arc,

Msb = C ⊗ B ,

where ⊗ denotes the outer product, B is the usual 2 × 2
betatron oscillation matrix, and C is the N × N circulant
matrix. Since it represents the synchrotron oscillations, its
elements depend on the synchrotron tune νs.

The basic advantage of the circulant matrix is that it
transforms dipole moments inside the mesh elements and
leaves their longitudinal positions unchanged. This facili-
tates coding of the interaction between the particles.

Free synchrobetatron oscillations of the system of two
noninteracting bunches is described by the 4N×4N matrix

M2 =
(

Msb1 0
0 Msb2

)
.

The betatron and synchrotron oscillation parameters in ma-
trices Msb1 and Msb2 are arbitrary.



The beam-beam interaction is expressed via the system
of thin lens and drift matrices which represent relative lon-
gitudinal positions of the elements. Collision of the parti-
cles No. i in one bunch and No. j in the other changes their
momenta according to the formula

∆pi = −2πξ2(xi − xj) ,
∆pj = −2πξ1(xj − xi) ,

where ξ1 and ξ2 are the beam-beam parameters of the two
bunches. Multiplication of the consecutive kick matrices
followed by free drifts gives the complete 4N × 4N beam-
beam matrix.

It was shown that no transverse mode coupling occurs in
the beam-beam system with fully symmetrical bunches [5,
2]. Here we present the results of coherent synchrobetatron
beam-beam mode spectra calculation within the framework
of the above described asymmetrical model for N = 5.
Figure 3 shows the dependence of the mode tunes on ξ for
the case of equal betatron tunes and bunch intensities, while
the synchrotron tunes differ.
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Figure 3: Synchrobetatron mode tunes vs. ξ. νβ,1 = 0.11,
νβ,2 = 0.11, νs,1 = 0.01, νs,2 = 0.002, σ1 = σ2 = β∗.

In Figs. 4 and 5 the spectra with equal synchrotron tunes
and different betatron tunes are plotted. In Fig. 4 the be-
tatron tune split is small relative to the synchrotron tune,
and the lower order modes overlap; in Fig. 5 they are fully
decoupled.

Figure 6 gives the mode spectra with equal intensities,
synchrotron and betatron tunes, and the bunch length of
one bunch two times less then the others.

These calculations do not display any fundamental dif-
ference as compared to the symmetrical case. The modes
do not intersect, their repulsion is due to coupling of the
synchrobetatron modes via the collective beam-beam re-
sponse. There is no coherent instability in the whole range
of ξ when the tune of neither mode reaches 0, 0.5 or a sum
resonance.
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Figure 4: Synchrobetatron mode tunes vs. ξ. νβ,1 = 0.11,
νβ,2 = 0.135, νs,1 = 0.01, νs,2 = 0.01, σ1 = σ2 = β∗.
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Figure 5: Synchrobetatron mode tunes vs. ξ. νβ,1 = 0.11,
νβ,2 = 0.19, νs,1 = 0.01, νs,2 = 0.01, σ1 = σ2 = β∗.

4 COMPLETE MODEL

To describe the beam-beam interaction of the beams with
different parameters and revolution frequencies we use the
model which is the combination of the approaches pre-
sented in Sections 2,3. For the ring circumference ratio
1:6 and maximum considered synchrotron wavenumber of
±2, the system state is characterized by the 70-vector of
the mesh coordinates and momenta. The first 10 elements
of this vector describe the 5 particles of the electron bunch,
then follow 5 particles of the first ion bunch and so further.
The synchrobetatron transformation of the vector over one
revolution in the electron ring is done with the matrix sim-
ilar to Mβ where instead of the 2× 2 betatron matrices the
10 × 10 synchrobetatron ones are substituted.

The beam-beam interaction is coded as described in Sec-
tions 2,3, taking into consideration the correct interaction
sequence and the longitudinal positions of the particles
with respect to the bunch center.

In Figs. 7,8 the mode tunes and increments are plotted
vs. the beam-beam parameter ξ with realistic parameters
of the electron and ion bunches. The betatron tune in the
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Figure 6: Synchrobetatron mode tunes vs. ξ. νβ,1 = 0.11,
νβ,2 = 0.11, νs,1 = 0.01, νs,2 = 0.01, σs1 = 2σs2 = β∗.

electron ring is 0.1, which gives the phase advance over 6
revolutions of 2π · 0.6. Hence, the 0-mode corresponding
to electrons shows in the spectrum as the aliased mode at
0.5− (0.6− 0.5) = 0.4. When this mode couples with the
ion 0-mode the instability occurs due to synchrobetatron
sum resonance.
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Figure 7: Synchrobetatron mode tunes vs. ξ in asymmetric
collider. Circumference ration 1:6, νβ,e = 0.1, νβ,i = 0.2,
νs,e = 0.01, νs,i = 0.001, σs = 0.7 β∗.

In Figure 9 the stability diagram is plotted in the νe, νi

coordinates for fixed ξ value and with synchrotron tunes of
the electron and ion beams equal to those in Figs. 7,8. No
significant reduction of the stable tune space is seen due to
the synchrobetatron resonances.

The same calculation with the intentionally large syn-
chrotron tunes of 0.05 shows a large number of synchrotron
sideband resonances in the stability diagram (Fig. 10).
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Figure 8: Synchrobetatron mode increments per turn vs.
ξ in asymmetric collider. Parameters are the same as in
Fig. 7.
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Figure 9: Stability tune diagram. ξ = 0.01, νs,e = 0.01,
νs,i = 0.001, σs = β∗.

Figure 10: Stability tune diagram. ξ = 0.02, νs,e = 0.05,
νs,i = 0.05, σs = 0.7 β∗.



5 CONCLUSION

In circular colliders with unequal (but multiple) revolu-
tion periods the dipole beam-beam resonances form a grid
in the tune space and can cause a problem in optimiz-
ing the collision working point. If the multiplicity is too
high (≥ 10), the beam-beam footprint will be limited by
the lines of these resonances unless the dipole beam-beam
modes are damped by a transverse feedback. The latter can
not completely cure the synchrobetatron sidebands of these
resonances arising from the finite length of the colliding
bunches, however in current projects for electron-ion col-
liders the sidebands do not cause a strong reduction of the
tune space.
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