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ABSTRACT

We report the results of a study of charmless semileptonic B-meson decays made

with a sample of 9.7 million BB̄ events collected with the CLEO II and II.V detectors.

An excess of 1901± 122± 256 leptons in the momentum interval 2.2− 2.6 GeV/c is

attributed to B → Xu`ν. To interpret this result, we use CLEO data on B → Xsγ

and theoretical analyses based on Heavy Quark Theory to determine the fraction of

B → Xu`ν decays in our measured momentum interval. Combining these results with

theoretical expressions for the B → Xu`ν decay rate leads to a measurement of the

CKM parameter |Vub| of (4.08± 0.34± 0.44± 0.24± 0.16)× 10−3, where the first two

errors are experimental and the last two are from theory.
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CHAPTER 1

Introduction

Our understanding of the structure and behavior of matter has seen tremendous

change in the last century. Around one hundred years ago, physicists demonstrated

that ordinary matter is made of atoms. Each atom consists of an electrically charged

nucleus surrounded by oppositely charged electrons. With the discovery of the electri-

cally neutral neutron in 1932, it became apparent that the nucleus is really a bundle

of neutrons and charged protons.

In the 1930’s, physicists studying particles produced by cosmic-ray interactions

in the upper atmosphere discovered particles not found in ordinary matter. The

development of accelerators led to the discovery of many more particles in subsequent

decades. These particles included the lepton (the electron and its close relatives),

and the hadrons (protons, neutrons, pi mesons and many more). Physicists naturally

wondered whether they were seeing matter’s most fundamental components.

A model emerged in the 1960’s in which most of the observed particles were con-

structed from more fundamental objects known as quarks. Experimental evidence for

quarks became persuasive in the 1970’s, and the “Standard Model” has incorporated

the quarks and leptons in a framework that successfully describes many phenomena.

It has been subjected to intense experimental testing ever since.

1
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The interactions studied in this thesis involve the unstable hadrons called mesons.

Mesons are combinations of one quark and one antiquark, bound together by the

strong force (the same force which binds nuclei together). Mesons can decay via

processes known as flavor-changing weak decays. In such decays, one quark within

the meson can decay into a lighter quark, leaving a different quark-antiquark pair and

additional particles formed from the energy released in the decay. The rate at which

a particular meson, the B meson, decays in this fashion can be related to some of the

Standard Model’s fundamental parameters.

The heavy quarks in B mesons are known as bottom quarks. They can decay

directly into two types of lighter quarks, the relatively heavy charm quark, and the

much lighter up quark. B meson decays in which the bottom quark goes to an up

quark are quite rare. While they have been observed, there is a great need for more

precise measurements of their characteristics. The subject of this thesis is a new study

of these bottom-quark decays that has been made with the CLEO II experiment.

1.1 The Standard Model

In the Standard Model1 all matter is constructed from a set of fundamental particles.

All but one of these particles can be classified into three groups: quarks, leptons,

and mediators. The remaining particle, the Higgs boson, plays a special role in the

model. Forces in the physical world are modeled as the exchange of mediators between

1The introduction to the Standard Model presented here is necessarily incomplete.
Many excellent introductory texts on the subject are available, including those listed
in Refs. [1] and [2].
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members of the quark and lepton families.

Like the quarks, the leptons come in six varieties, three of which have electric

charge. The lightest charged lepton is the familiar electron. It is denoted by the

symbol e− or simply e. Like all other charged fundamental particles, electrons have

antiparticles that have the same mass but opposite charge. These are known as

positrons and have the symbol e+ or ē. Unless stated otherwise, particles and their

antiparticles will be indicated by the same symbol in the remainder of this thesis.

Electrons and positrons will therefore both be represented by the symbol e.

Table 1.1 lists all six leptons, along with their charges and masses [3]. The muon

(µ) and the tau (τ) are more massive versions of the electron. They are unstable

particles and are therefore not normally found in ordinary matter. Each charged

lepton has an associated neutrino, labeled νe, νµ and ντ . Neutrinos are electrically

neutral particles, and the Standard Model treats them as having no mass. There is

growing evidence that they are massive particles, but direct measurements thus far

have only been able to place upper limits on the values of their masses. All of the

leptons have intrinsic angular momenta of 1
2
h̄, and are therefore fermions.

Quarks come in six “flavors”: up, down, charm, strange, top, and bottom. They

are all fermions. Some of their properties are listed in Table 1.2. Quarks are never

observed on their own but come in two types of bundles: quark-antiquark pairs

(mesons), and triplets of quarks or anti-quarks (baryons), which together constitute

the hadrons. (The top quark seems to be too short-lived to form such combinations

before decaying.) The complicated strong interactions that take place inside hadrons

make it difficult to define and measure the quarks’ masses, especially those of the
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Table 1.1: The six types of leptons. Their charges are listed in units of the

magnitude of the electron charge (e = 1.602× 10−19 Coulombs). Their masses

are in units of MeV/c2 (931 MeV/c2 = 1 atomic mass unit).

Lepton Symbol Charge Mass

Q/|e| MeV/c2

Electron e− -1 0.511

Muon µ− -1 105.7

Tau τ− -1 1777

Electon Neutrino νe 0 < 3× 10−6

Muon Neutrino νµ 0 < 0.19

Tau Neutrino ντ 0 < 18.2
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Table 1.2: The six types of quarks. The masses listed are approximate.

Quark Symbol Charge Mass

Q/|e| MeV/c2

Down d -1/3 3

Up u +2/3 6

Strange s -1/3 120

Charm c +2/3 1,250

Bottom b -1/3 4,800

Top t +2/3 174,000

lighter quarks. Despite its very short lifetime, and the difficulty of producing and

studying it, the very large mass of the top quark is known with the smallest fractional

uncertainty of all the quarks’ masses.

There are four forces in the physical world: gravity, electromagnetism, the weak

force, and the strong force. Gravity is the weakest of these. It does not influence

the subatomic particles discussed in this thesis, and is not included in the Standard

Model. The forces are modeled as the exchange of different types of particles known

as gauge bosons. There are five such particles in the Standard Model, and all have

integer spins. Some of their properties are listed in Table 1.3.

The electromagnetic force is responsible for binding electrons and nuclei into

atoms. It involves the exchange of massless photons between electrically charged

particles. This sector of the Standard Model, known as Quantum Electrodynamics
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Table 1.3: The gauge bosons. The masses of the W and Z bosons have been

determined experimentally.

Force Boson Symbol Charge Mass

Q/|e| MeV/c2

Electromagnetic Photon γ 0 0

Weak W Bosons W± ±1 80.42

Weak Z Boson Z0 0 91.19

Strong Gluon g 0 0

(QED), has been well tested by high-precision experiments.

The weak interaction was first observed in nuclear decay. It involves all of the

quarks and leptons, including the neutrinos. It has three mediators: the W+, W−

and Z0. All are massive, and this means that the weak interaction has the shortest

range of all interactions. Interactions mediated by the charged W bosons necessarily

involve changes in particles’ identities. These can lead to spontaneous decays like the

process µ− → e−ν̄eνµ. Such processes are known as “charged-current” interactions.

The strong force involves the exchange of gluons between particles possessing

“color charge.” Color charge has nothing to do with usual property of color, but

rather is analogous to electric charge. It is only carried by quarks and gluons. Since

they have no color charge, the leptons are unaffected by the strong force. Quarks can

have one of three colors, arbitrarily denoted red (r), green (g) or blue (b). Antiquarks

carry anticolor charges: r̄, ḡ or b̄. Quantum chromodynamics (QCD), the theory of
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the strong force, requires that the combinations of quarks and gluons found in nature

have no net color charge. This is known as “color confinement,” and explains why

quarks are found only in mesons and baryons. In a meson, the quark’s color cancels

the antiquark’s anticolor. In a baryon, the three quarks (or antiquarks) include one

of each color (or anticolor), again giving a combination of that is “color neutral.”

Another important feature of QCD is “asymptotic freedom.” The coupling, or

strength of the interaction, decreases as the momentum transferred increases. At

infinite momentum transfer the interaction vanishes. This allows perturbative calcu-

lations for processes involving large momentum transfers. Unfortunately, the growth

of the strength of the coupling at lower momenta makes QCD-based calculations

difficult for many processes.

Evidence for all of the quarks, leptons, and mediators has been observed experi-

mentally. A remaining particle, the Higgs boson, has yet to be discovered. It is widely

believed to exist and major experimental efforts are underway to observe it. It is of

central importance to the mechanism that gives quarks, leptons, and the W and Z

bosons mass in the Standard Model.

This thesis describes measurements of B-meson decays. The specific B mesons

studied consist of a heavy b quark paired with a light u or d quark: B− = bū,

B+ = b̄u, B̄0 = bd̄, and B0 = b̄d. While the decays of interest are primarily charged-

current weak processes, it is necessary to deal with low-energy (nonperturbative)

strong-interaction effects to interpret the measurements.
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Figure 1.1: A weak vertex involving leptons.

1.2 Weak Interactions

1.2.1 Charged-Current Interactions

The Feynman diagram for the W -mediated decay of an unstable lepton is shown in

Fig. 1.1. Here an electron, muon, or tau is converted to its associated neutrino and

a W− is produced. Note that these couplings group the leptons into “generations.”

That is, only leptons and their associated neutrinos couple to charged W s. For

example, a vertex coupling an electron and a tau neutrino to a W− is not allowed

in the Standard Model. This is often represented schematically with the following

notation: 


e

νe


 ,




µ

νµ


 ,




τ

ντ


 . (1.1)

Similarly, quarks also couple to W bosons. One such coupling is represented in

Fig. 1.2. Here a u quark is converted to a d quark, giving off a W+ in the process.

Charged quark currents differ from those for leptons in that the W s couple to mixtures
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Figure 1.2: A weak vertex involving quarks.

of the quark mass eigenstates. The convention for introducing this into the Standard

Model is to rotate the down-type quarks into a new basis using a 3× 3 matrix:




d′

s′

b′




=




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb







d

s

b




. (1.2)

The matrix in Eq. 1.2 is known as the Cabbibo-Kobayashi-Maskawa (CKM) ma-

trix [4]. The elements of the CKM matrix are among the Standard Model’s funda-

mental input parameters. Current experimental limits on their magnitudes are as

follows [3]:




0.9742− 0.9757 0.219− 0.226 0.002− 0.005

0.219− 0.225 0.9734− 0.9749 0.037− 0.043

0.004− 0.014 0.035− 0.043 0.9990− 0.9993




. (1.3)

W s couple to the rotated quark states in a manner exactly analogous to the lepton
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pairs in Eq. 1.1: 


u

d′


 ,




c

s′


 ,




t

b′


 . (1.4)

This means that, unlike the leptons, the physical quarks are not strictly grouped

into generations2. Weak interactions favor certain transitions over others, however,

and this fact is reflected in the relative sizes of the magnitudes of the elements in

the CKM matrix. The diagonal elements all have magnitudes near one, and these

correspond to the favored transitions between the quark pairs: u to d, c to s, and t

to b. Off-diagonal elements are smaller and correspond to suppressed transitions.

B mesons decay via charged-current weak interactions. They are especially inter-

esting because energy conservation forbids the CKM-favored b → t transition, leaving

the b with a “choice” of decaying by b → c or b → u. These decays therefore probe the

off-diagonal elements Vcb and Vub. The analysis described here is aimed at observing

b → u transitions and improving the measurement of the magnitude of smallest CKM

element, Vub.

1.2.2 CP Violation

One can imagine viewing a given physical process in a mirror. The operation of

replacing a process with its mirror image is known as “parity” (P). It was long assumed

that parity is a symmetry operation. That is, if a process is allowed, then its “mirror

2Actually, recent observations involving atmospheric and solar neutrinos strongly
suggest that oscillations between the different types of neutrinos occur [5, 6]. The
details are still being sorted out, but these results suggest that the Standard Model
needs modification.
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image” is also allowed. However, it was discovered in 1956 [7] that this operation is

not a symmetry of the weak interaction. This can be seen in the decay

π+ → µ+νµ. (1.5)

In this decay, the muon neutrino is always produced with its intrinsic angular momen-

tum (spin) directed against its direction of motion (that is, it is always “left-handed”).

The mirror image of this process, in which the neutrino’s spin is aligned with its mo-

mentum, is never observed, therefore this weak interaction is parity non-conserving.

Another operation that can be applied to physical interactions is charge conjuga-

tion (C), which transforms particles into their antiparticles. Weak interactions also

violate C. For example, the charge conjugate of decay (1.5) would be

π− → µ−ν̄µ, (1.6)

where the ν̄µ is left-handed. Since only right-handed antineutrinos seem to exist in

nature, this weak interaction is charge conjugation non-conserving.

Note that if we perform the combined operation CP on the reaction π+ → µ+νµ,

the result is π− → µ−ν̄µ, with a right-handed antineutrino. This process is allowed,

so the decay is CP conserving.

In 1964 CP violation was observed in certain decays of neutral kaons [8]. Later, it

was observed that CP violation could be included in the Standard Model by adding

a third generation of quarks. This was, in fact, the motivation for introducing the 3

× 3 CKM matrix, in which elements are allowed to be complex [4]. This mechanism

also predicts observable CP violation in the neutral B system, and this effect has

recently been measured experimentally [9, 10].
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In general, all nine elements of the CKM matrix in Eq. 1.2 can be complex numbers

which, if they were all independent, would require 18 parameters to specify. In the

Standard Model the matrix is constrained to be unitary (V †V = 1), so that there

are only 9 independent parameters. Five of these can be removed by redefining

the complex phases of the the quark fields that accompany the matrix in the weak-

interaction Lagrangian. This leaves four independent parameters in the CKM matrix,

only one of which is a complex phase. This is reflected in the popular Wolfenstein

parameterization [11]:

V =




1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1




+O(λ4). (1.7)

Here A, λ, ρ, and η are the matrix’s four independent parameters. A and the quantity

ρ2 + η2 are of order unity, while λ ' 0.22. Terms of order λ4 ≈ 10−3 and smaller

are excluded from this form. To this level of approximation, only the far off-diagonal

terms are complex. This means that for this Standard Model description of a CP-

violating weak interaction to work, the CKM matrix element Vub must be nonzero.

Applying the unitarity condition to the first and third columns in Eq. 1.2 gives

the relation

VudVub
∗ + VcdVcb

∗ + VtdVtb
∗ = 0. (1.8)

Given that Vud ' Vtb ' 1 and Vcd < 0, this can be recast as

Vub
∗

|VcdV ∗
cb|

+
Vtd

|VcdV ∗
cb|

= 1, (1.9)



13

V*
ub

cd cbVV

η

Vtd

cd cbVV

(0,1)(0,0)

(ρ,  )

γ

α

β

Figure 1.3: The triangle representing the unitarity condition applied to the

first and third columns of the CKM matrix.

which relation can be represented graphically as a triangle in the complex plane

(Fig. 1.3).

The unitarity of the CKM matrix leads to a total of six conditions like Eq. 1.8.

This one is particularly interesting, however, because each of the three terms on the

left-hand side are of similar size (O(λ3)). The triangle in Fig. 1.3 therefore has sides

of similar length. Experiments can place constraints on these lengths, as well as on

the triangle’s three angles α, β and γ. Independent measurements of these quantities

will allow us to check whether or not Eq. 1.8 holds and the CKM matrix is unitary.

Two important quantities in this test are accessible through the study of semilep-

tonic decays of B mesons: the magnitudes of Vcb and Vub. Since the element Vcd is

well known, a measurement of Vub, coupled with a value for Vcb, constrains the upper
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left-hand side of the unitarity triangle.

1.3 Semileptonic Decays of B Mesons

Semileptonic B decays are those in which the products include both a bottomless

meson Xq and a lepton-neutrino pair:

B → Xq`ν`. (1.10)

Here q labels the flavor of the b’s daughter quark (either c or u). In general, the lepton

` can be an e, µ or τ . Since we limit ourselves in this thesis to the study of semileptonic

B decays to electrons and muons only, hereafter the symbol ` indicates either an e

or a µ, but not a τ . Furthermore, the subscript labeling the neutrino’s flavor will be

dropped, and its appropriate identity will be assumed. A tree-level Feynman diagram

for semileptonic B decay is shown in Fig. 1.4. The presence of a leptonic current in the

decay simplifies theoretical treatment relative to purely hadronic decays and makes

the semileptonic decays particularly useful in determining |Vcb| and |Vub|.
The goal of the analysis described here is to observe a sample of leptons from

semileptonic B decays in which the b quark is transformed into a u quark. The

identity and specific properties of the hadronic final state Xu are not sought, so the

momentum spectrum of the observed leptons is said to be “inclusive.” This observed

spectrum can be related to the total decay rate for B → Xu`ν, which in turn can be

related to |Vub|.
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Figure 1.4: A tree-level Feynman diagram of semileptonic B decay. The B me-

son’s valence-quark lines are shown. The accompanying quark qsp in the meson

decay does not participate in the b decay and is referred to as a “spectator,”

as is described in the text.
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1.3.1 The Free-Quark Calculation of the Semileptonic Decay Rate

The decays represented in Fig. 1.4 result from W -mediated interactions between quark

currents and lepton currents. Since the energies released in such decays are small

compared to the W mass, their amplitudes take the form [12]:

M = −i
GF√

2
VqbL

µHµ, (1.11)

where GF is the Fermi constant and Vqb is an element of the CKM matrix. Generally

speaking, the currents Lµ and Hµ are each formed from the sum of two terms which

are transformed differently by the parity operator. The leptonic current is written in

terms of Dirac spinors u` and vν and gamma matrices γµ, as follows:

Lµ = ū`γ
µ(1− γ5)vν . (1.12)

The hadronic current is written as

Hµ = 〈Xq|q̄γµ(1− γ5)b|B〉. (1.13)

In general, it is difficult to evaluate this current since nonperturbative strong inter-

actions are involved.

One can more readily calculate the semileptonic decay rate at the quark level

(b → q`ν), neglecting the fact that the quark current is involved in strong interactions

within the initial- and final-state mesons. In this case Hµ takes a form identical to

Lµ in Eq. 1.12. In this approach, the other quark in the meson (qsp) is referred to as

a “spectator,” because it does not participate in the decay process. Its presence has

to be accounted for with subsequent corrections.
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The free-quark decay is very similar to muon decay (µ → eνµνe). This process

is one of the cleanest of all weak interactions, both experimentally and theoretically.

Its total rate, neglecting the mass of the electron and all radiative corrections, is [1]

Γµ =
G2

F m5
µ

192π3
, (1.14)

where mµ is the mass of the muon.

Semileptonic b-quark decays differ from muon decays in two important respects:

CKM matrix elements are involved and it is not always reasonable to neglect the

mass of the final-state quark. Since quarks are always found bound in hadrons, their

masses are ill-defined quantities. Even so, it is generally accepted that the b quark

mass is around 4.7 GeV/c2, while the c and u quarks have masses near 1.7 and 0.003

GeV/c2, respectively. One can therefore neglect the final quark’s mass for b → u

transitions, while such a simplification is not possible for b → c decays. Note that in

either case the final-state leptons, ` (e or µ) and ν, have negligible masses.

The total free-quark decay rate for b → q`ν is

Γb =
G2

F m5
b

192π3
|Vqb|2Φ(mq/mb), (1.15)

where Φ, the phase-space integral, is ∼1 for u quarks and ∼0.5 for c quarks. The

ratio of the total rates for the two processes is then

Γb→u

Γb→c

≈ 2× |Vub|2
|Vcb|2 ∼ 1%, (1.16)

where I have used |Vub|/|Vcb| = 0.09 [3]. So, if one wishes to isolate b → u`ν decays,

one has to somehow separate them from b → c`ν decays, which occur 100 times more

frequently.
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The lepton momentum spectrum for free-quark decay is given by the differential

decay rate:

dΓq

dx
=

G2
F m5

b

192π3
|Vqb|2φ(x, y), (1.17)

where x is the scaled lepton momentum 2E`/mb and y is the ratio of the daughter

and b-quark masses mq/mb. The function φ includes both phase-space and weak-

interaction information. It is given by [13]

φ(x, y) = 2x2 (1− y2 − x)2

(1− x)3
[(1− x)(3− 2x) + y2(3− x)]. (1.18)

For b → u transitions we can take y = 0, giving

φ(x, 0) = 2x2(3− 2x). (1.19)

This results in a spectrum which is maximum at x = 1, the kinematic limit for leptons

in this decay. The free-quark spectra are shown in Fig. 1.5 for both b → u and b → c

transitions. Note that the b → u spectrum peaks at high momentum while the b → c

spectrum both peaks at a lower momentum and has a lower kinematic limit. This

suggests that a viable method for isolating b → u decays is to look for leptons having

sufficiently high momenta so that there is little background from b → c transitions.

This approach led to the discovery of a nonzero |Vub| [14, 15]. Later, this technique

provided a value of |Vub| that had a large theoretical uncertainty due to a heavy

reliance on theoretical models [16]. This thesis presents an updated measurement of

the inclusive lepton spectrum in the end-point region and an improved extraction of

|Vub|.
To determine |Vub| from an observation of the stiffest part of the lepton spectrum,

one first needs to know the spectral shape dΓ
dx

in order to derive the total rate from the
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Figure 1.5: The free-quark and ACCMM spectator-model lepton spectra for

semileptonic decays in the B rest frame. Both (a) b → u`ν and (b) b → c`ν are

shown. The free-quark predictions are shown as solid lines, while the ACCMM

predictions are shown as dashed lines.
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observed fraction of the spectrum (fu). A theoretical calculation of the the total rate

Γ is then needed to extract |Vub|. The calculations leading to Eq. 1.15 and Eq. 1.17

are naive in that they ignore the effects of the strong interaction inside the B meson.

These interactions significantly alter the expressions for the desired quantities and

therefore must be addressed. We turn now to a discussion of several strategies for

including strong-interaction effects in the theoretical treatment of semileptonic B

decay. These can be divided into two broad categories depending upon how they

treat the hadronic final states. Inclusive approaches sum over all possible final-state

hadronic systems, while exclusive approaches attempt to deal with each in turn, and

then sum over each individual component to form inclusive spectra.

1.3.2 Inclusive Approaches to dΓ
dx

All inclusive treatments of dΓ
dx

build upon the simple spectator model. Throughout

the decay, the b and u quarks are engaged in complicated strong interactions with

the spectator quark and the surrounding sea of gluons and virtual quarks. Directly

calculating all of the effects of these interactions with QCD is beyond the current

state of the art. Theorists must instead resort to the use of simplified models and/or

relationships between semileptonic and other types of B decay.

A part of the QCD corrections to the free-quark spectrum is directly calculable:

the effect of (relatively) hard gluon emission. Lowest-order Feynman diagrams for

these corrections are shown in Fig. 1.6. Because the strong coupling αs decreases

with increasing energy scale, these corrections can be calculated using a perturbative

expansion. To first order, the result is a correction to the free-quark spectrum of
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Figure 1.6: Spectator diagrams showing two types of gluon emission.

Eq. 1.17, here labeled as dΓ0

dx
, of the form

dΓ

dx
=

dΓ0

dx
[1− 2αs

3π
G(x, y)]. (1.20)

G(x, y) has been computed analytically [17, 18] and results in a reduction of the rate

at the kinematic limit for b → u`ν lepton momenta to zero.

The remaining corrections to the free-quark decay rate involve softer processes

and are therefore nonperturbative. They are related to the motion of the b quark

inside of the B meson, commonly referred to as “Fermi motion.” One approach to

estimating these corrections was formulated by Altarelli, Cabibbo, Corbò, Maiani,

and Martinelli [19] (ACCMM). Their model relies on a simple extension of the free-

quark picture. The spectator quark is given a definite mass msp and is assumed to be

moving with a momentum ~p in the rest frame of the B at the time of the decay. The

b quark then has a momentum of −~p and is given an effective mass W that conserves

energy and momentum:

W 2 = m2
B + m2

sp − 2mB

√
p2 + m2

sp, (1.21)

where mB is the mass of the B meson. The distribution of spectator quark momenta
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in B decays is assumed to be Gaussian in shape, of unit area, and of adjustable width

pF , according to

φ(|~p|) =
4√
πp3

F

exp

(
−|~p|

2

p2
F

)
. (1.22)

The corrected lepton-energy spectrum is then formed by convoluting φ(|~p|) and dΓq

dE`
,

the free-quark spectrum of Eq. 1.20 boosted to a quark-momentum p.

dΓB

dE`

=
∫ pmax

0
φ(|~p|)p2dp

dΓq

dE`

(W, ~p,E`). (1.23)

Here pmax, the maximum allowed value of |~p|, makes W equal to the mass of the

daughter quark.

The effects of these corrections on b → u and b → c decays can be seen in Fig. 1.5.

The end points of the lepton spectra are extended beyond those for the free-quark

model, reflecting the fact that the decaying b quark is not at rest in the B meson’s

rest frame. The free parameters of the model are αs, msp, pf , and mB. We are most

interested in the predicted shape of the spectrum, which is necessary for converting

a measured partial spectrum in the end-point region to a total semileptonic B → Xu

decay width. This depends most strongly on pf , which affects the extent to which

the spectrum reaches beyond the free-quark kinematic limit.

Although the intuitive picture used in deriving the ACCMM model’s spectra is,

even by its authors’ admission, somewhat crude, its results have been shown to co-

incide with rigorous QCD calculations done to lowest order for transitions involving

a massless daughter quark [20]. That is, the correspondence between the ACCMM

model and QCD holds for b → u`ν transitions, not for b → c`ν decays.

The QCD-based approach to dealing with the b quark’s motion inside the B meson
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involves a “heavy quark expansion” in powers of 1/mb [21]. While this approach is

more complete and complex than the ACCMM model, it cannot be directly used

to predict the shape of the spectrum near the end point due to the singular nature

of the expansion there. There is, however, a way around this problem. The heavy

quark expansion can be seen as providing a “shape function” F which describes the

distribution of b-quark momenta inside the B meson. F can be convoluted with

the free-quark spectrum in a manner analogous to the use of φ(|~p|) in the ACCMM

approach to obtain the lepton energy spectrum in the B rest frame [22, 23, 24]. A

key feature of F is that, to first order, it is universal for all B decays in which the

b quark is transformed into an essentially massless daughter quark. The same shape

function applies to b → u`ν and the radiative “penguin” process b → sγ, since mu

and ms are negligible compared to mb. The corresponding meson decay B → Xsγ

bears the same relationship to b → sγ as the semileptonic decay B → Xu`ν does to

b → u`ν.

Spectator diagrams for B → Xsγ decays are shown in Fig. 1.7. The discovery of

B → Xsγ by CLEO in 1995 [25] was a major milestone in the study of b quarks. Since

the lowest-order diagrams for the process include loops, its measured rate provides

constraints on physics beyond the Standard Model. An additional benefit of its study

is that the that the inclusive photon-energy spectrum for B → Xsγ can be used to

determine the shape function F , which can then be used to predict the form of the

lepton-energy spectrum in B → Xu`ν.

Neglecting gluon radiation, the photon energy is simply mb/2 in the rest frame

of the b quark. The effects of gluon bremsstrahlung can be calculated using a per-
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Figure 1.7: Feynman diagrams for radiative B decay to strange mesons. The

B meson’s valence-quark lines are shown.
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Figure 1.8: The photon-energy spectrum from radiative B decay. The spec-

trum for the parton-level decay b → sγ with perturbative QCD corrections is

very narrow. The broader meson-level decay spectrum includes nonperturba-

tive corrections as modeled with a shape function.

turbative expansion similar the one described for the b → u`ν spectral calculation

above [26]. The resulting spectrum, sharply peaked at mb/2 with a tail extending to

lower energies, is shown in Fig. 1.8. This parton-level spectrum is convoluted with

the shape function to obtain the photon-energy spectrum in the B rest frame. The

result is also shown in Fig. 1.8.

The CLEO experiment has recently measured the photon-energy spectrum from

B → Xsγ decays [27]. The spectrum, shown in Fig. 5.1, is sufficiently well-measured

to provide constraints on the shape function F . For the first time, CLEO can exploit

the theoretical relationship between B → Xsγ and B → Xu`ν to determine the
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fraction of the lepton-energy spectrum in the end-point region.

Formally, the shape function is parameterized in terms of the residual b-quark

momentum inside the B meson, k+. While the exact form of F (k+) cannot be de-

termined from theory, constraints on its shape are calculable [22, 23]. These are

expressed as conditions on the moments An of F (k+):

An =
∫

dk+kn
+F (k+). (1.24)

The first three moments satisfy:

• A0 = 1

• A1 = 0

• A2 = −1
3
λ1,

where λ1 is related to the kinetic energy of the b quark inside the B meson. These

constraints are sufficient to allow theorists to postulate several possible functional

forms for F (k+).

CLEO has fitted three of these forms, convoluted with a parton-level calculation

of the B → Xsγ photon spectrum, to its measured spectrum. The three parame-

terizations are known as the exponential [26], Gaussian [26] and Roman [20] shape

functions. Though their forms differ, they can all be expressed in terms of two pa-

rameters: the above-mentioned λ1 and Λ̄, which is related to the difference between

the mass of the B meson and the b quark [28]. Fig. 1.9 shows a comparison of the

three forms of F (k+) for the parameter values Λ̄ = 0.545 GeV and λ1 = −0.33 GeV2.
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Figure 1.9: Three forms of the shape function F (k+) computed for the pa-

rameter values Λ̄ = 0.545 GeV and λ1 = −0.33 GeV2. The exponential,

Gaussian and Roman shape functions are shown as solid, dashed and dotted

lines, respectively.

Let Pq(yq) be the photon-energy spectrum calculated in the parton model with

perturbative corrections. Here yq is the photon energy scaled to the mass of the b

quark: yq = 2Eγ/mb. P (y), where y = 2Eγ/mB, is the spectrum in the meson rest

frame. It is given by [29]

P (y)dy =
∫

dk+F (k+) [P (yq)dyq]yq=yq(k+) , (1.25)

where yq(k+) is calculated by replacing mb with the effective mass m∗
b = mb+k+. The

result is a spectrum that extends to y = 1, or Eγ = mB/2, the correct kinematic end

point in the meson rest frame. Calculated spectra for the three forms of the shape

function shown in Fig. 1.10. Other kinematic distributions, such as the daughter

hadronic mass spectrum, can be calculated with similar integrals. The meson-frame

lepton spectrum for B → Xu`ν is calculated with an expression analogous to Eq. 1.25.
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Figure 1.10: Photon spectra calculated using three forms of the shape function

F (k+) computed for the parameter values Λ̄ = 0.545 GeV and λ1 = −0.33

GeV2. Spectra calculated with the exponential, Gaussian and Roman shape

functions are shown as solid, dashed and dotted lines, respectively.

Details of CLEO’s fits to the measured B → Xsγ photon-energy spectrum, and the

resulting fu calculations, are presented in Sect. 5.2.

1.3.3 Exclusive Approaches to dΓ
dx

Another approach taken to include the strong interaction in the decay is to modify

the form of the quark current from that given in Eq. 1.13. The current is a four-

vector, and must be constructed from the four-vectors available in the decay. In

the rest-frame of the B, only the four-momenta of the final state particles and the

polarization vector of Xu, if it is a vector particle, are available. The current is thus

a sum of these four-vectors multiplied by coefficients, or “form factors,” which are

Lorentz invariant.
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For the case where the final state meson is a pseudoscalar m, the hadronic current

takes the form [30]

Hµ = 〈m|Jhad
µ |B̄〉 = f+(q2)(P + p)µ + f−(q2)(P − p)µ, (1.26)

where P and p are the four momenta of the B and m mesons, respectively. The

form factors f+ and f− depend on the squared mass of the virtual W , q2 = (P − p)2.

It turns out that the second term in Eq. 1.26 makes no contribution to the decay’s

matrix element for the case when the final-state lepton is massless [12]. Therefore, it

can be neglected when ` = e or µ, and B → m`ν decays are, to good approximation,

described by one form factor f+(q2), also known as F1(q
2). Semileptonic B decays

to vector mesons are more complicated, since the polarization vector ε of the final-

state hadron is also available for use in constructing terms in the hadronic current.

Three independent form factors A1(q
2), A2(q

2) and V (q2) are needed to describe these

decays.

To determine the B → Xu`ν decay rate, both the normalization and functional

form of the relevant form factor(s) must be determined. One approach to doing

this involves modeling the inital- and final-state mesons as pairs of quarks bound

in a potential well. Once a potential model is assumed, the meson wavefunctions

are estimated and form-factor values at a particular value of q2, either q2 = 0 or

q2 = q2
max, are computed. The variation of the form factors with q2 is computed in

a separate step. Note that this approach is limited to decays in which there is only

one final-state hadron. So-called “non-resonant” decays, in which there are multiple

hadrons in the final state, are not addressed by this method.



30

One successful exclusive model is that of Isgur and Scora and is known as ISGW2 [31].

It is an update of the model of Isgur, Scora, Grinstein and Wise (ISGW) [32]. This

model uses a Coulomb-plus-linear form for the meson potential V (r). The form fac-

tors are calculated at the point of zero-recoil, q2
max, and the extrapolation to lower q2

is assumed to take an exponential form. This approach was used to calculate form

factors for B → Xu`ν transitions to all mesons having masses less than 1.7 GeV. The

sum over all spectra from these decay resonances is felt to be complete for lepton

energies greater than about 2.4 GeV. Since the model does not include all possible

final states, it cannot be used to estimate the total rate for B → Xu`ν.

The ISGW2 model also describes semileptonic decays to charmed final states, B →
Xc`ν. For these decays, however, an approximate symmetry motivates a powerful

alternative approach. This theory, known as Heavy Quark Effective Theory (HQET)

begins with the approximation that both the parent b and daughter c quarks have

equal and infinite masses. This is known as the “heavy-quark limit.” In this limit,

the light degrees of freedom in the B- and daughter-meson systems are unaffected by

the decay of the b quark. One simplification that results from this is that all form

factors for semileptonic B decays to pseudoscalar and vector mesons are proportional

to the Isgur-Wise function ξ(w). Here w is the scalar product of the initial and final

hadrons’ four velocities v and v′, respectively:

w = v · v′. (1.27)

It is linearly related to q2 and is useful in describing the behavior of the form factors

because in HQET only the velocities are important for characterizing the hadronic
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systems. Additionally, in the heavy-quark limit, the velocities of the initial and final

mesons are the same as the velocities of the heavy quarks that they contain.

Since the Isgur-Wise function ξ(w) describes nonperturbative effects, its variation

with w is typically explored with techniques like Lattice QCD or QCD sum rules.

However, over the range of w available in B → D(∗)`ν decays, the approximate form

ξ(w) = 1− ρ2(w − 1) +O
[
(w − 1)2

]
(1.28)

is often used.

The decays B → D`ν and B → D∗`ν together dominate the B-meson semileptonic

decay rate and are our most important backgrounds. Measurements have placed

constraints on the form factors involved in these decays. For B → D`ν, the differential

decay rate is [33]

dΓB→D`ν

dw
=

G2
F |Vcb|2
48π3

(mB + mD)2(mD

√
w2 − 1)3FD(w)2. (1.29)

The form factor FD(w) is proportional to the traditional form factor F1(w). It is

taken to have the same w dependence as ξ(w):

FD(w) = FD(1)
[
1− ρ2

D(w − 1)
]
. (1.30)

In the heavy-quark limit FD(w) is ξ(w), and it becomes unity at zero-recoil (i.e.,

FD(1) = 1). The true value of FD(1) can be estimated using the framework of

HQET, although the errors are somewhat difficult to quantify. A measurement

of dΓB→D`ν/dw at CLEO has placed constraints on both the rate normalization

|Vcb|FD(1) and the form-factor slope ρ2
D [34], which influences the shape of the decay’s

lepton momentum spectra.



32

A CLEO measurement has also been used to constrain the three form factors for

the decay B → D∗`ν [35]. In this case the quantities directly measured include the

form-factor ratios R1 and R2, where

R1(w) =

[
1− q2

(mB + mD∗)2

]
V (q2)

A1(q2)
(1.31)

and

R2(w) =

[
1− q2

(mB + mD∗)2

]
A2(q

2)

A1(q2)
. (1.32)

In the heavy-quark limit, both R1 and R2 are predicted to be unity. In addition to

this, the analysis assumed a functional form for the form factor A1:

A1(q
2) =

mB + mD

2
√

mBmD

[
1− q2

(mB + m∗
D)2

]
hA1(w). (1.33)

Here hA1(w) has the same functional form as ξ(w) and they are identical in the

heavy-quark limit:

hA1(w) = hA1(w)
[
1− ρ2

A1
(w − 1)

]
. (1.34)

Constraints on R1, R2 and ρ2
A1

were obtained by measuring the differential decay

rate dΓB→D∗`ν , binned in four kinematic variables: q2, cos θl, cos θv, and χ. Here θl

is the decay angle of the lepton in the W rest frame, θv is the decay angle of the

D in the D∗ rest frame, and χ is the angle between the W and D∗ decay planes in

the B rest frame. To obtain the predicted shape of dΓB→D∗`ν , both R1 and R2 were

assumed to be constant. Fits to data then provided experimental values of R1, R2

and the form-factor slope ρ2
A1

.
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1.3.4 Calculation of Γ(B → Xu`ν)

Unlike dΓ
dx

, the total semileptonic decay rate Γ(B → Xu`ν) calculated using the heavy-

quark expansion has controllable errors. Here again short-distance physics, associated

with the b quark, is separated from the long-distance physics associated with the

light degrees of freedom. The result is a double expansion in powers of αs(mb) and

ΛQCD/mb [36, 21, 37, 38, 39]. The αs(mb) expansion comes from the application of

perturbative QCD to the short-distance part of the decay. The heavy-quark expansion

deals with the softer processes at or below ΛQCD, which is of the order of hundreds of

MeV. The long-distance corrections are written in terms of the parameters λ1 and λ2.

The first of these, λ1, is related to the b quark’s kinetic energy inside the B meson. The

parameter λ2 is related to the energy of the b quark’s hyperfine interaction with the

light degrees of freedom. The result, up to order 1/m2
b in the heavy-quark expansion,

and with the complete radiative correction of order αs [40], is

Γ(B → Xu`ν) =
G2

F |Vub|2
192π3

m5
b

[
1 +

(
25

6
− 2π2

3

)
αs(mb)

π
+

λ1 − 9λ2

2m2
b

+ ...

]
. (1.35)

Eq. 1.35 suffers from two problems: it depends upon the poorly defined quark mass

mb, and its perturbation series is badly behaved at high orders. Several approaches to

dealing with these issues exist, however. The resulting expressions for Γ(B → Xu`ν)

can be used to relate |Vub| to the total B charmless branching fraction B(B → Xu`ν).

An average of the formulations of Hoang et al. [41] and Uraltsev [42] yields

|Vub| = (3.07± 0.12)× 10−3 ×
[B(B → Xu`ν)

0.001

1.6 ps

τB

] 1
2

, (1.36)

where τB is the B lifetime.
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1.3.5 Quark-Hadron Duality

The inclusive calculations of dΓ
dE`

and Γ discussed above rely on the assumption of

quark-hadron duality. That is, they all begin with parton-level calculations and

average over the details of the recoiling hadronic system. In particular, they give

no information about the presence of resonances in the Xu system. As long as a

measurement samples a sufficiently large region of phase space, it is felt that this

technique does not introduce a significant error. Therefore duality concerns contribute

a negligible uncertainty to Eq. 1.36, since it relies on a calculation of the total decay

rate [43]. However, extraction of the total charmless semileptonic branching fraction

from a measurement of the end-point lepton momentum spectrum from B → Xu`ν

may suffer from the limitations of this approach. Inclusive calculations say nothing

about the details of decays like B → π`ν that populate the extreme end point of

the spectrum. Therefore they cannot be used with confidence to predict the fraction

of the E` spectrum that is in its very end point. It is not known how to quantify

the theoretical error associated with the duality assumption in this case, but there

is general agreement that the more of the spectrum that is sampled, the better the

measurement will be.

1.4 The Goal of this Thesis

The goal of this thesis is a determination of the magnitude of the CKM matrix element

Vub using a measurement of the lepton-energy spectrum from the process B → Xu`ν

in the region around the kinematic end point for the dominant semileptonic decay



35

B → Xc`ν. To reduce theoretical uncertainty, a great deal of effort was invested in

lowering the lower bound on the region of the spectrum sampled. For the first time, a

theoretical connection between B → Xu`ν and radiative decays B → Xsγ is used to

extract the total branching fraction B(B → Xu`ν) from the observed yield in the end-

point region. This approach makes use of CLEO’s recently-measured photon-energy

spectrum and results in smaller and better-estimated errors than those of previous

|Vub| measurements.

The data used in this measurement was collected by the CLEO-II experiment

operating at the Cornell Electron Storage Ring (CESR). The storage ring, detector

and related software are all described in Chapter 2. Chapter 3 details the analysis

procedure used to isolate leptons from B → Xu`ν from backgrounds. Chapter 4

presents measured signal and background yields. The extraction of |Vub| is described

in Chapter 5, which concludes with a discussion of the measurement’s theoretical

uncertainties and the prospects for improvement at high-luminosity B factories.



CHAPTER 2

Experimental Apparatus

Production of B mesons and detection of their decay products are technically chal-

lenging tasks. The work represented in this thesis was made possible by the efforts of

hundreds of people that collaborated in the design, construction, and operation of the

accelerator and detector apparatus at the Cornell University Laboratory of Elemen-

tary Particle Physics. This chapter provides a brief description of these remarkable

machines.

2.1 CESR - The Cornell Electron Storage Ring

CESR (pronounced Caesar) is an electron storage ring 244 meters in diameter located

12 meters below the Cornell University campus [44]. Since 1979, electron and positron

bunches have been made to collide in CESR at center-of-mass energies in the range

from 9 GeV to 12 GeV. (CESR is currently undergoing modifications to operate

efficiently at energies as low as 3 GeV.) The data used in this analysis was accumulated

from 1990 to 1999, when CESR was mainly operating at energies around 10.58 GeV.

The storage ring is itself part of the larger facility shown schematically in Fig. 2.1.

Beam production begins with a hot-cathode electron gun at the beginning of a linear

36



37

e
Transfer  Line

e +

 Transfer  Line

Linac
Converter

RF RF

CLEO

e+ 

e

Synchrotron

CESR
Storage Ring

I
I

Gun

CHESS CHESS 

1600799-005

Figure 2.1: The colliding-beam facility at Cornell.
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accelerator (LINAC). Electrons from a hot filament are first collimated and then

accelerated through a 30-meter-long vacuum pipe to energies of around 300 MeV using

a series of radio-frequency (RF) cavities. They are then injected into a synchrotron

that accelerates them to 5 GeV before they are transferred into CESR for storage.

Production of positrons requires an extra step: midway through the LINAC, a

tungsten target intercepts the 140 MeV electrons. The resulting collisions generate

showers of electrons, positrons, and X-rays. Positrons are selected, focused, and then

accelerated to energies of about 200 MeV before being injected into the synchrotron.

Inside the synchrotron, electrons or positrons travel around an evacuated ring that

mostly consists of 192 three-meter sections containing bending and focusing magnets.

At four places in the ring, particles pass through 3-meter-long linear accelerators. It

takes about one hundredth of a second, or 4,000 circulations, for particles to reach

their maximum energy in the synchroton.

Particles are next injected into the storage ring, where magnets confine the bunches

in stable orbits. Electron and positron bunches counter-circulate in CESR at the same

time and are kept apart using magnets and electrostatic separators. RF cavities are

used to restore energy lost by the particles to synchroton radiation. Bunches are

steered into one another at an interaction point (IP), where the array of detectors of

the CLEO experiment studies the products of the resulting collisions.

Improvements over the years have allowed CESR’s accelerator physicists to in-

crease the number of particles stored in the ring. Since early 1999, CESR has oper-

ated with nine bunch trains each of electrons and positrons. Each train consists of

as many as five bunches. The peak current stored in CESR during the collection of
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our data sample was around 0.5 A (∼250 mA each of electrons and positrons), with

total RF power of 0.5 MW.

The rate of collisions in CESR is described by a quantity called the luminosity. It

is defined as

L = nf
Ne+Ne−

A
. (2.1)

Here f is the frequency of revolution, n is the number of electron bunches in the

beam, Ne+ and Ne− are the numbers of positrons and electrons in each bunch, and

A is the cross-sectional area of the beams. The highest luminosity achieved during

the time period when the data used in this thesis was taken was 0.8 × 1032cm2s−1

[45]. Fig 2.2 shows the yearly-integrated luminosity generated by CESR from 1985

to mid-2001. Dips in 1995 and 1999 correspond to extended shutdowns for major

modifications to both CESR and the CLEO experiment.

The integral of L over a given time interval can be related to the total number of

times N that a particular physics process occurs:

N = σ
∫
Ldt. (2.2)

Here σ is the cross section of the process in question. Fig 2.3 shows the total cross

section for e+e− annihilation at center-of-mass energies around 10 GeV [46, 47, 48].

The enhancements evident in this plot are known as Upsilon (Υ) resonances. They

correspond to production of S-wave bb̄ bound states. At 10.58 GeV the total hadronic

cross section is about 4 nb (1b = 10−24cm2). One quarter of this is due to production

of the Υ(4S) and the rest is from “continuum” production of lighter quark pairs.

The Υ(4S) is wider than the lower energy Υ resonances because it is just above the
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Figure 2.2: Annual integrated luminosities from CESR.
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threshold for decay into a pair of B mesons, each with a mass of about 5.28 GeV/c2.

The data sample used for this thesis represents an integrated luminosity of 9.13 fb−1

at center-of-mass energies near 10.58 GeV (hereafter referred to as “on resonance”

or simply ON). This corresponds to a sample of about 9.7 million BB̄ pairs. An

additional 4.35 fb−1 was collected just below the Υ(4S). This provides a sample of

continuum events that is useful in estimating backgrounds to B physics.

2.2 The CLEO II Experiment

The CLEO collaboration has surrounded the IP at CESR with a set of instruments

which provide acceptance over nearly all 4π of the solid angle. Two different detector

configurations collected the data used in this analysis. The critical component of

each was a multiple-layer composite tracking system inside a 1.5 T solenoidal mag-

net. This provided measurements of charged particles’ specific ionizations (dE
dx

) and

momenta. Charged particles’ times-of-flight were measured with plastic scintillators

and phototubes surrounding the tracking system. A cesium-iodide calorimeter just

inside the magnet detected electromagnetic showers generated in the crystals by pho-

tons and charged particles. Outside the magnet, proportional counters embedded in

iron detected muons. Fig. 2.4 shows a drawing of the CLEO II experiment, which

operated from 1989 to 1995, when part of the inner tracking system was upgraded

and other improvements were made. The resulting detector configuration, known as

CLEO II.V, took data until early in 1999. In the summer of that year the entire track-

ing system was replaced, the scintillator detector was removed, and a new particle
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identification system was installed. The resulting experiment, known as CLEO III,

is still in operation as of this writing. While detailed descriptions of the detectors’

configurations and performances are given elsewhere [49, 50, 51], a brief survey of the

most important points is provided here. Throughout the discussion, the following

coordinate system will be used: the z axis points along the beam line in the direction

of positron motion, the y axis points upward and the x axis points outward from the

center of CESR. Points in the x-y plane are specified in terms of their radial distance

r from the beam line and an angle φ measured from the y axis. The polar angle θ is

defined with respect to the z axis.

2.2.1 Tracking

Upon exiting the beam pipe, a charged particle generated at the IP first encounters

a set of devices designed to measure its trajectory. Prior to 1995, these consisted of

three nested wire chambers [52]. These types of detectors make use of wires held at

high positive voltage and suspended in a mixture of gases (argon/ethane before 1995,

helium/propane thereafter). Grounded wires or a grounded conducting tube form

a “cell” around each anode or “sense” wire. As a charged particle moves through

the gas, it ionizes gas atoms. Electrons thus liberated in a given cell drift under

the influence of an electric field to the central sense wire. Very near the wire, the

field is of such strength that the drifting electrons become energetic enough to ionize

gas molecules themselves, releasing more electrons which then further ionize the gas.

The resulting “avalanche” of ionization produces a measurable charge on the sense

wire known as a “hit.” The timing of the hit allows an estimation of the particle’s
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distance of closest approach to the anode wire. Combined information from multiple,

staggered, cells can be used to measure precisely a particle’s trajectory through the

tracking device.

Because CLEO’s tracking chambers are inside a magnetic field, charged particles

follow a helical path. The magnetic field is along the z axis so that, in the r-φ plane,

the radius of curvature a of a particle’s track is related to its transverse momentum

p⊥ by the relation

p⊥ = qBa, (2.3)

where q is the magnitude of the particle’s charge and B is the magnitude of the

magnetic field. Thus a measurement of a particle’s trajectory provides a measurement

of its momentum. Furthermore, the direction of curvature indicates the sign of a

particle’s charge.

The innermost tracking chamber in CLEO II was known as the Precision Tracker

(PT). A cross section of its layout is shown in Fig. 2.5. It was a six-layer straw tube

drift chamber consisting of multiple cells, each defined by a tube of aluminized mylar

that acted as a cathode. A single sense wire was strung down the center of each tube.

The tubes were mounted directly on the beam pipe in a hexagonal closest-packed

arrangement. They varied in diameter from 4.5 mm to 7.5 mm and provided the

smallest cell size in all the drift chambers. Averaged over its volume, the PT had an

r-φ resolution of about 100 µm.

The Vertex Detector (VD) surrounded the PT (see Fig. 2.5). It was a multi-wire

proportional chamber with small wire spacing. Ten layers of drift cells were composed

of anode wires, each surrounded by a hexagonal arrangement of cathode wires. The
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average r-φ resolution of the VD was about 150 µm. The sense wires in the VD

were made from high resistance nickel-chromium wires. Signals were read out from

both ends of the wires, allowing a measurement of the z position of a hit by charge

division. The resulting z resolution was about 1.7 cm. Further z information was

provided by segmented cathodes on the inner and outer surfaces of the VD. Image

charges induced on the cathodes by pulses near the inner- and outermost anode wires

were also recorded and provided a z resolution of about 750 µm. Each cathode had

eight separately-read strips in φ, and the inner (outer) cathode had 64 (96) segments

in z.

In 1995, the PT was replaced by a silicon vertex detector, pictured in Fig. 2.6. It

consisted of three concentric layers of 300-µm-thick Si wafers mounted directly onto

the beam pipe. The wafers contained many thin and long p-n junctions with depletion

zones that were enhanced by an applied reverse-biased voltage. Conducting strips

on both sides of each wafer gathered charge liberated by charged particles passing

through the depleted region. Electrons were gathered on one side, holes were gathered

on the other. On average, deposited charge from a single track was distributed among

two or three strips on each side. The position resolution achieved by this device was

about 30 µm in r-φ and 60 µm in z, much superior to the earlier, purely gas-based

tracking system.

The largest and most important tracking device in CLEO II was known as the

central drift chamber or DR [53]. Its 52 layers provided most of the information used

in the measurement of charged-particle momenta. A total of 12,240 anode and 36,240

cathode wires were arranged in a pattern of square drift cells with each layer staggered
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by one half of a cell. The number of cells in a layer increased with radius so that all

cells were of approximately the same size: 15 mm by 15 mm. Electronics monitored

both the drift time and the amount of ionization left in a cell by a passing track.

Some layers had anode wires which were skewed from the z axis by a few degrees.

These “stereo” layers provided information about the z coordinate of the tracks that

crossed them. Additional z information came from segmented cathodes on the inner

and outer surfaces of the DR. The averaged r-φ resolution for the DR was around

150 µm, while the z resolution of the stereo layers varied from 3 to 5 mm.

Altogether, the CLEO II tracking system covered about 95% of the solid angle.

For ∼2 GeV/c tracks that passed through all of the DR (| cos θ| <∼ 0.71) it provided

a momentum measurement with a precision of 0.6%.

2.2.2 Time-of-Flight Measurement

A time-of-flight detector (TF) surrounded CLEO’s tracking chambers. Its purpose

was to measure the elapsed time between a particle’s creation at the IP and passage

through the TF, approximately one meter away. When combined with a momentum

estimate, such a measurement provides some discrimination among particle species

of differing mass.

The TF made use of scintillation counters. These were made from a special plastic

that was doped to make it emit light, or scintillate, when a charged particle passed

through. This material was arranged into three sections to provide better solid-angle

coverage (see Fig. 2.4). The barrel section consisted of 64 rectangular blocks, each

2.8 m by 10 cm by 5 cm, arranged to form a cylindrical shell centered on the beam
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axis. This arrangement covered the angular region from 36◦ < θ < 144◦. The light

generated in each section, or counter, was fed through lucite light guides to a pair of

photomultiplier tubes, one on each end. The time-resolution of this system was about

150 ps. There were also two endcap sections situated outside the DR endplates. These

were each composed of 28 wedge-shaped counters about 58 cm long and 5 cm thick.

A single photomultiplier tube collected light on the narrow end of each counter. The

TF endcaps covered the angular regions from 15◦ < θ < 36◦ and 144◦ < θ < 165◦.

The entire TF covered 97% of the solid angle.

2.2.3 Calorimetry

An electromagnetic crystal calorimeter (CC) occupies the space just inside CLEO’s

superconducting magnet [54]. It was designed to measure particles’ energies. The

amount of energy lost by a particle prior to entering the CC was reduced by keep-

ing the amount of material traversed to a minimum. This motivated the detector’s

placement inside of the magnet. The CC consists of about 7,800 thallium-doped

cesium-iodide crystals, 80% of which are arranged in a barrel-shaped configuration

just inside the solenoid. The remainder occupy two endcap detectors. Each crystal is

approximately 30 cm long and 5 cm square in cross section. Barrel crystals are tilted

to point slightly away from the IP in order to minimize gaps through which particles

can pass undetected.

Particles entering these high-density crystals interact with the material and lose

energy through processes including ionization, bremsstrahlung, pair conversion, and

nuclear interactions. Electromagnetic interactions with the high-Z nuclei are ex-
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tremely effective at stopping electrons and photons, which lose energy through the

generation of a cascade of brehmsstrahlung-photon and e+e− pair production. These

“showers” result in a flash of light that is read out using photodiodes mounted on

the backs of the crystals. The energy resolution of the barrel calorimeter is approxi-

mately 2% for 2.0 GeV electrons or photons. Hadrons lose energy less quickly in such

materials, and their showers extend into the magnet material. Muons deposit only a

small fraction of their energy in the calorimeter, and travel through the magnet and

beyond.

2.2.4 Magnetic-Field Generation

CLEO’s 1.5 T magnetic field is provided by a large superconducting solenoid with a

diameter of 3 m and a length of 3.5 m. Cooled with liquid helium, the coil carries a

current of 3,500 A and stores 25 MJ of energy. It produces a field that is uniform to

±0.02% over 95% of the tracking volume. The iron flux return for the magnet also

serves as part of the absorber for the muon identification system.

2.2.5 Muon Detection

Muons are long-lived particles that do not participate in strong interactions. Be-

cause they are much more massive than electrons, they lose energy more slowly and

penetrate greater depths of material. The muon detector (MU) exploits this charac-

teristic using gas-filled tracking chambers installed in gaps between 36-cm-thick iron

absorbers surrounding the detector (see Fig. 2.4). Two endcaps provide additional
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A MU tracking super-layer is shown in Fig. 2.8. Each super-layer consists of three

layers of proportional wire chambers 8.3 cm wide, 1 cm thick, and about 5 m long.

Each chamber has eight rectangular cells, each with an anode wire strung along its

center. Three of each cell’s four walls are coated with graphite and used as cathodes.

The fourth has copper strips oriented perpendicularly to the anode wires that provide

z information. Chambers in a layer are staggered to eliminate gaps in coverage. The

eight anode wires in a counter are ganged together for read-out. Adjacent counters’

anode sets are connected through a series of resistors. Muon hits are located using

charge division from pulse-height measurments made at each end of a read-out chain.

Pulses from the cathode strips provide z information. Averaged over its volume, the

muon detector’s spatial resolution is about 5 cm.

The muon detector’s super-layers provide sensitivity to particles traversing differ-

ent numbers of “absorption lengths” of material. An absorption length is defined as
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the mean distance over which a particle travels before scattering inelastically from

a nucleus. The barrel MU super-layers are located at depths of 3, 5 and 7 nuclear

absorption lengths. The endcaps each contain one super-layer at a depth of about 7

absorption lengths.

2.3 Data Acquisition

During the CLEO II and II.V experiments, bunch trains crossed at CESR’s IP at a

rate that rose to 3.5 MHz. The actual rate of interesting physics events was much

smaller than this, of order 10 Hz.

CLEO’s various detector subsystems include tens of thousands of sensitive ele-

ments and associated electronics channels. Each of these can potentially deliver a

pulse representing the response of that element to a passing particle. In any given

event, only a small subset of all channels have significant data. Nevertheless, read out

of the detector requires several milliseconds. During the read out, the experiment is

insensitive to new physics events. This makes it essential to read out only interesting

physics events.

Fast event discrimination for CLEO II and II.V was achieved with a multiply-

tiered trigger system [55, 56] that enabled, disabled, and reset the readout of detector

components. This system was designed to efficiently pass higher-multiplicity events

involving e+e− annihilation into hadrons or τ -pairs. A pre-determined fraction of of

Bhabha scatters (e+e− → e+e−) and most µ-pair events were kept for use in detector

calibration.
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The trigger consisted of both hardware and software components. The hardware

component had three sequential levels and made use of information from the tracking

chambers, TF, and CC to determine if charged or neutral particles had passed through

CLEO. Each level used more information and made more sophisticated decisions.

The first and fastest of the hardware triggers was called L0 (“Level-0”). TF

counters were grouped into a total of 16 barrel and 14 endcap segments for use by

L0. The CC was similarly partitioned into 16 barrel and 16 endcap segments. Anode

hits in the VD were grouped by a fast track-segment processor and also used by L0.

The patterns in these different detector groups were then used to select interesting

events. It took L0 about 300 ns to make a decision. At an instantaneous luminosity of

2.0×1032cm−2s−1, L0 selected events at a rate of about 10 kHz. If an event passed L0,

individual data channel monitors were “latched.” That is, sample-and-hold circuits

stored their current values until an event either failed a subsequent hardware trigger

or was read out. The subsequent hardware triggers, L1 and L2, added DR information

to their inputs and had output rates of 100 and 25 Hz, respectively.

Particles generated in collisions generally affected only a fraction of CLEO’s many

channels. To save storage space, only those channels that registered signals above cer-

tain thresholds were recorded. For events passing L2 these channels were assembled,

written to disk, and passed through the last component of the trigger system, a soft-

ware filter known as L3. It ran reconstruction algorithms on the data and used the

resulting detailed information to reject additional uninteresting events. It was partic-

ularly good at rejecting events in which beam particles interacted with the beam pipe

or residual gas atoms. The frequency with which such events occurred depended upon
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beam conditions, and L3 could reduce the trigger rate by as much as 50%. Data from

events passing L3 were written to tape for later analysis. Overall trigger efficiency

for e+e− → BB̄ events was over 99%.

2.4 Event Reconstruction

Before the raw data collected from the CLEO II and II.V detectors could be used in

analyses, it had to be reduced into quantities of direct physical interest. The many

hits in the tracking devices had to be turned into trajectories and momenta, light

pulses observed in TF scintillators and CC crystals had to be converted into particle

flight times and shower energies, hits in the MU chambers had to be sorted into those

likely to be from muons, and so on for each detector subsystem. Momenta, energies,

and other quantities were then combined to identify different kinds of particles in

the detector and to reconstruct particles which decayed after their production in the

e+e− collision. All of this was accomplished with a software package called pass2.

2.4.1 Track Reconstruction

The most cpu-intensive task performed by pass2 was track fitting. Raw hit times were

first converted into drift distances using tracking-detector calibrations that were pre-

cisely determined and closely monitored as data were collected. Pattern-recognition

algorithms then grouped hits into track candidates and particle trajectories were fit

to these groups of hits [57]. The fits were performed assuming the trajectories were

approximately helical, with corrections due to energy loss in material [58]. Multiple
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passes through an event’s tracking hits were necessary to ensure the most accurate

fits. Fit results stored included the helical trajectory parameters (5 total), their errors

with correlations, and the residual of the fit, defined as

RESIDUAL RMS =

[∑

i

(
dobs

i − dfit
i

)2
/N

]1/2

. (2.4)

The sum here is over all non-stereo layers i in the DR, and dobs
i is the measured drift

distance for the hit in layer i, dfit
i is the drift distance predicted by the track’s helix.

N is the total number of degrees of freedom in the fit, a function of the number of

DR hits included.

To maximize efficiency, the track-finding algorithm was very inclusive. It some-

times tried to reconstruct tracks using information that was incomplete in some way.

For example, when particles emerged close to the beam direction, they included little

or no z information from stereo layers or cathodes. The tracks resulting from such fits

are known as “z-escapes.” Another type of fit made with poor information is known

as a “dredge seed.” These resulted when, near the end of the track-reconstruction

process, the track finder attempted to make a track out of hits not included in other

tracks. Such tracks usually have few hits. The track fitter flagged tracks as coming

from both of these problematic cases.

Other problematic types of tracks resulted from the confusing arrangement of par-

ticles in the tracking volumes. One such type are known as “curlers,” and result when

a charged particle had sufficiently low momentum that it curled around completely in

the drift chamber and traveled back towards the IP. This can result in two (or more)

separate track fits: one each for the outgoing and incoming parts of the particle’s
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trajectory. Sometimes, the hits generated by a single particle traveling away from

the IP could be split into multiple tracks. Extra tracks thus generated are known

as “ghosts.” Examples of both ghosts and curlers are shown in the event display in

Fig. 2.9. A separate processor was run after track fitting that attempted to eliminate

these and other types of spurious tracks [59].

2.4.2 dE/dx Calculation

The amount of ionization produced in a material by a passing charged particle depends

upon its velocity. The integrated charge measurements made for each of the hits used

in a track fit were used by pass2 to estimate the linear density of energy deposition

in the DR gas, or specific ionization, dE/dx. This quantity, when combined with a

track’s measured momentum, can discriminate between particles of different mass.

A variety of systematic detector effects also influenced the amount of ionization

deposited in each cell by passing particles. Changes in atmospheric pressure, temper-

ature, and in the gas mixture were all accounted for with time-dependent corrections

calculated using Bhabha events. Other effects corrected for include broken wires and

variation in electronics gain.

Track-parameter-dependent corrections were also applied to hits used in the dE/dx.

These accounted for variation in pulse height due to cell-entry angle, drift distance,

magnetic field, and other effects. Once these were applied, the mean charge deposited

per cell was calculated. The distribution used in this calculation was truncated to

minimize sensitivity to fluctuations in the Landau-like high-side tail. Fig. 2.10 shows

a plot of the results for different particle types over a range of momenta. Above ∼400
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MeV/c, calculated specific ionizations provide ∼ 2σ separation between electrons and

pions. Good separation between electrons and protons is possible below ∼900 MeV/c.

2.4.3 Time-of-Flight Calculation

The TF provided another means to estimate a partlicle’s velocity. Light pulses gen-

erated by the passage of charged particles traveled the length of a counter and their
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time of arrival at the photomultiplier tubes was recorded. If a reconstructed track was

found by pass2 to have entered the counter, its point of entry and the speed of light

in the scintillating plastic were used to compute the particle’s time of arrival at the

counter. In the barrel section, measurements from a counter’s two photomultiplier

tubes were averaged. The TF had a time resolution of about 155 ps (220 ps) for hits

in the barrel (endcap) counters.

We measure the velocity of a particle relative to the speed of light (i.e. β = v/c).

Fig. 2.11 shows distributions of measured βs for different particle types over a range

of momenta. The electron and proton curves remain well-separated up to about 1.6

GeV/c, higher than the 1.1 GeV/c crossing of the corresponding distributions in the

dE/dx plot (Fig. 2.10).

2.4.4 CC Shower Reconstruction

Information from CLEO’s electromagnetic calorimeter is of crucial importance to the

measurement in this thesis. As mentioned in Sec. 2.2.3, electrons deposit most of

their energies in the CC’s crystals. Therefore, neglecting the small electron mass, the

ratio of the energy measured in the calorimeter to the momentum measured in the

tracking chambers should be near one for electrons. Heavier particles, which do not

initiate electromagnetic showers, should have E/p values less than one.

Showers were reconstructed by first converting the amount of light detected in each

crystal into a deposited-energy estimation. Since showers frequently spanned multiple

crystals, clusters were formed by grouping neighboring crystals having energies above

threshold. The highest-energy crystal in a cluster was required to be at least 10 MeV.



62

0.0 0.5 1.0 1.5 2.0 2.5

Momentum (GeV/c)

1.0

1.5

2.0

2.5

3.0

1/
β T

O
F

e

µ

π

K

p

Figure 2.11: Measured times of flight as a function of momentum. Theoretical

curves for various types of particles are shown as solid lines.



63

The position of the shower was then calculated as the energy-weighted mean of all

member-crystal positions. The energy and angular resolutions for barrel showers were

3.8% and 11 mrad at 100 MeV, and 1.5% and 3 mrad at 5 GeV. Endcap performance

was somewhat degraded by the presence of the DR endplates and electronics in front

of the crystals. Showers associated with charged particles were distinquished from

photons using loose track-shower matching criteria.

2.4.5 Muon Identification

Muons were identified during event reconstruction by matching hits in the MU cham-

bers to tracks extrapolated from the tracking chambers. At least two of each super-

layer’s three chambers were required to have registered a hit in order for the layer to

be considered. The number of nuclear interaction lengths penetrated by the particle

in order to reach the furthest MU chamber registering a matching hit was calculated.

Muons need momenta of at least 1.0, 1.4, and 1.8 GeV/c in order to penetrate to

depths of three, five, and seven interaction lengths, respectively. The matched track’s

mometum was used to estimate the depth to which it would have penetrated into the

MU chambers if it were a muon, and the absence of any expected hits was noted.

2.4.6 Electron Identification

Electron identification required consideration of multiple quantities and was per-

formed after event reconstruction by software known as the Cornell Electron Identi-

fication package (CEID). CEID examined quantities associated with each track in an
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event and calculated a log-likelihood that the track came from an electron. This was

stored in a variable named R2ELEC, defined as

R2ELEC =
∑

i

ln

(
Pei

Pe/i

)
, (2.5)

where the sum is over all variables considered. Given a measurement of a particular

quantity for a track, Pei is the probability for an electron to have given that value,

while Pe/i is the probability that a non-electron would have given that value. The Pei

were calculated using variable distributions from radiative Bhabha events, while the

Pe/i came from studying tracks from Υ(1S) decays, which contain very few electrons.

Variables considered in the R2ELEC calculation included the track’s specific ioniza-

tion dE/dx, time of flight, track-shower miss distance, the shower’s shape and size,

and the ratio E/p of the shower’s energy to the matching track’s momentum. Plots

comparing dE/dx and times of flight for electrons to those of other particle types have

been shown in Figs. 2.10 and 2.11. Fig. 2.12 shows comparisons between electrons and

combined kaon and pion distributions for some of the other variables used by CEID.

Of all the variables considered, E/p has the most power to discriminate electrons and

hadrons. This quantity is sharply peaked around one for electrons while hadrons have

a broader distribution at lower values. The magnitude of the distance separating a

candidate shower’s center and the point of intersection of the track and CC surface

tends to be smaller for electrons than for hadrons. LP2SH, the RMS width of the

shower, is more narrowly distributed for electrons. The ratio of the total energy in

the shower’s innermost 9 crystals to the energy in the innermost 25 crystals is known

as E9/E25. Since electron showers tended to be confined to narrow regions, this
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quantity is more sharply peaked near one for electrons than for hadrons.

2.5 Physics Simulation

The complexity of the CLEO experiments requires the use of sophisticated simulations

to understand its response to various physical processes. CLEO’s simulation software

is based on GEANT, a program that simulates the passage of particles through matter

[60]. Because it makes use of random number generation to choose among possible

outcomes, it is often called a “Monte Carlo” generator.

The CLEO event simulation package, known as CLEOG, contains complete descrip-

tions of the various detector configurations used to collect data. These descriptions

include material in instrumented volumes, like CsI crystals and cathode traces, and

the various support structures and electronics that a particle might have encountered

as it moved through the experiment.

Production of a Monte Carlo event begins with the creation of a list of particles

created in an e+e− interaction. This list includes the 4-momenta of the particles at

the time of their creation as well as the momenta of the daughters of any unsta-

ble particles generated in the interaction. The list is generated by a program that

contains parameterizations of the known and expected physics processes available

in e+e− interactions at 10 GeV. Whenever possible, its models are constrained by

measurements.

Next, CLEOG propagates these particles through the detector. At each step, a ran-

dom number generator is used to determine if a particle interacts with any material
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it might encounter. If there is an interaction, more random numbers are used to

determine its effect on the particle in question. If this interaction occurs in an instru-

mented volume, the detector’s response is also simulated. For the tracking volumes,

the distance of closest approach and path length in a given cell are estimated using

the particle’s trajectory. The cell’s response is then simulated using hit efficiencies

and charge and drift-distance resolutions measured in data [61]. The limitations of

this approach are important for this analysis, and a detailed study comparing track-

ing efficiency in data and Monte Carlo is discussed in Sect. 3.3.2. Noise in CLEO’s

various detector systems from electronics and beam-related backgrounds is added to

Monte Carlo events using samples of data events taken with a random trigger. Finally,

simulated events are put into the same format as raw data so they can be processed

by pass2.

Fig. 2.13 shows an r-φ cross-section of a quandrant of CLEO at z = 0. Dashed

lines show GEANT-propagated particles. Moving clockwise from the left vertical edge

of the figure, trajectories are shown for an electron, a muon, a photon, and a pion.

Note the many branchings in the e, γ, and π lines in the CC. These correspond to

particles created in GEANT-simulated interactions in the crystals. Note that some of

the particles created in the pion’s shower exit the back of the CC and carry on into

the flux return.

Large samples of Monte Carlo were produced for use by CLEO’s collaborators.

For e+e− → Υ(4S) → BB̄ events, the BB̄ pairs were decayed using a table that

included final states that have been observed and others that are expected theoreti-

cally. Whenever possible, experimentally-constrained branching fractions and decay
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Figure 2.13: Simulated trajectories for particles moving through the CLEO

detector. Clockwise from left: an electron, a muon, a photon, and a pion.



69

distributions were used. If some of a particular particle’s decay modes are not ex-

perimentally constrained, theoretical predictions were used instead. Several models

were used for the semileptonic decays B → Xc`ν. The decays B → D∗`ν were

generated with CLEO-measured HQET form-factor parameters [35], and B → D`ν

was generated with the ISGW2 model. Decays to higher-mass charmed mesons, de-

noted B → D∗∗`ν, were also generated with the ISGW2 model, and nonresonant

B → D/D∗X`ν were described by the model of Goity and Roberts [62].

Samples of non-BB̄ Monte Carlo were also generated using a variety of models.

Lighter qq̄ pairs produced from e+e− annihilations were fragmented into hadrons using

the JETSET package from the European Center for Nuclear Research (CERN) [63].

Electron- and muon-pair events were generated according the results of explicit QED

calculations. Tau pairs were produced using the KORALB package [64].



CHAPTER 3

Analysis Procedure

3.1 Data Sample

This analysis was performed on data collected with both the CLEO II and II.V

detector configurations. We collected 3.14 fb−1 of ON data and 1.61 fb−1 of OFF data

with the CLEO II detector between 1990 and 1995. After a seven-month shutdown,

we collected 5.99 fb−1 of ON data and 2.74 fb−1 of OFF data with the CLEO II.V

detector. The total data sample thus includes 9.13 fb−1 of ON data and 4.35 fb−1

of OFF data. ON beam energies range from 5.285 to 5.295 GeV, while OFF beam

energies vary from 5.188 to 5.275 GeV.

OFF data was used to subtract continuum background not removed by the appli-

cation of signal-selection criteria. Prior to the subtraction, OFF events passing signal

criteria were scaled by a factor α that accounts for the difference in luminosity and

the continuum-production cross-section between the ON and OFF data samples. It

was computed as

α =
LON

LOFF

× E2
OFF

E2
ON

, (3.1)

where LON and LOFF are the ON and OFF luminosities, while EON and EOFF are

the luminosity-averaged beam energies. This approach gave αII = 1.931 and αII.V =

70
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2.156 for the CLEO II and CLEO II.V samples, respectively. In previous CLEO

analyses, this scale factor was given a fractional error of 1% and its reasonableness

was verified independently by measuring the continuum-subtracted yields for leptons

above the end point [65]. We performed a similar study on the current data by

measuring the yield of 3 to 3.5 GeV/c tracks passing all of the selection criteria

described in Sect. 3.2, with the exception of lepton-identification and continuum-

suppression requirements. In the ON sample, tracks in this momentum interval cannot

come from BB̄ decays, so the measured continuum-subtracted yield should be zero.

For CLEO II data, the resulting yield is −490±737, consistent with zero as expected.

CLEO II.V looks problematic, however, with a negative yield of −3928± 1073.

The ratio of high-momentum track yields, as an alternative measure of the scale

factor, is αII.V = 2.133, slightly more than 1% smaller than the computed value.

To search for systematic effects that might contribute to this discrepancy, we tried

varying some of the event-selection criteria. We found that the ratio of track yields

has little sensitivity to our requirements on event shape and the z-projection of a

track’s distance of closest approach to the event’s primary vertex. The measured

value of α does show a dependence on the track-multiplicity requirement, however,

an effect seen in both CLEO II and II.V data. Since we use the scale factor in the

subtraction of track spectra, we decided to adopt the value of αII.V measured with

our final selection criteria as appropriate for our analysis. We include a 1% systematic

error on both scale factors, as this accounts for the difference between the calculated

and measured values of αII.V . We have verified that values of α measured with tracks

passing our lepton-identification requirements (see Sect. 3.2.4) are consistent with the



72

values we quote here.

Note that the small uncertainty in the CLEO II.V scaling factor is only important

when our analysis is performed without continuum suppression. Our continuum-

suppression procedure (see Sect. 3.2.5) reduces the continuum background enough

that subtracted yields computed with either scale factor differ by a negligible amount.

3.2 Event Selection

3.2.1 General Event Requirements

Event selection was based on a set of requirements, or cuts, designed to eliminate

obviously non-hadronic events. These included requirements on an event’s charged-

particle multiplicity, visible energy, and event-vertex position [66]. The event vertex

is the point in an event that is closest to the largest number of tracks. It was required

to be within 2 cm of the IP in the x and y directions, and 7.5 cm in the z direction.

At least three separate tracks were required in the event. Pairs of tracks found to

have both come from a point displaced from the IP were assumed to have originated

from the same parent particle and were counted as one track. The sum of the energies

of all charged and neutral particles in the event was required to be at least 15% of

the center-of-mass energy. Also, the total energy observed in the calorimeter was

required to be between 15% and 90% of the center-of-mass energy. Together, these

requirements were found to be more than 99% efficient for simulated BB̄ events.

Because our signal events include the production of a neutrino, not all of the

available center-of-mass energy should be visible in the detector. We therefore added
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to the above event-selection criteria the loose requirement that the total visible energy

be less than the center-of-mass energy.

3.2.2 Event Multiplicity

On average, BB̄ events have higher multiplicities than backgrounds like Bhabha, µ-

pair, and τ -pair events. Therefore, we applied an overall track- and shower-multiplicity

requirement when selecting signal candidates.

While counting tracks and showers, we used selection criteria to distinguish real

particles from spurious ones, and to avoid over-counting curlers and showers matched

to tracks. Tracks and showers passing these criteria will hereafter be referred to as

global particles.

Global tracks were required to pass criteria ensuring that they were not ghosts or

curlers, they did not come from dredge seeds, and they were not z-escapes.

In addition, they were required to pass three of the following four cuts that ensure

good fits to hits produced by particles originating at the IP:

• RESIDUAL RMS ≤ 1 mm

• DR hit fraction ≥ 30%

• |DBKL| ≤ 5 mm

• |Z0KL− IP(3)| ≤ 5 cm

Here RESIDUAL RMS is the residual of the fit, as defined in Sect. 2.4.1, and the DR hit

fraction is defined as the ratio of DR hits found on a track to the number expected
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given its reconstructed trajectory. The quantities DBKL and Z0KL are impact param-

eters. Z0KL is the z coordinate of the track’s point of closest approach to the beam

axis, and DBKL is the distance in the r-φ plane between this point of closest approach

and the beam axis. Since the location of the beam-crossing point varies somewhat

with time, we cut on the difference between Z0KL and the z coordinate of the event’s

vertex, IP(3).

Tracks from secondary decay vertices typically have larger impact parameters. For

this reason, such tracks were required to pass only the first three requirements and

the RESIDUAL RMS cut.

Global showers were selected from a list of CC clusters that were not matched to

any track and were required to pass the following cuts:

• Shower Energy ≥ 50 MeV

• | cos θ| ≤ 0.90

Given the above definitions of global particles, we designed minimum event-

multiplicity requirements using samples of τ -pair and ISGW2 B → Xu`ν Monte

Carlo. Both samples were required to have a generated lepton with at least 1.4

GeV/c of momentum, and to have passed the basic hadronic event-selection criteria

discussed above. Charged and neutral multiplicity distributions from each sample are

shown in Fig. 3.1. We found that a multiplicity requirement of at least five global

tracks, or four global tracks with at least six global showers rejects over 94% of the

τ -pair events, while it keeps 93% of the B → Xu`ν sample.
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boundary.
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3.2.3 Signal-Track Selection

Because of our signal’s proximity to the kinematic limit for leptons from charmed

semileptonic B decays, it is critical that we only consider well-reconstructed tracks.

Errors in track reconstruction could “smear” leptons from B → Xc`ν decays into our

signal region. We therefore required a more stringent set of track-quality cuts for

signal-lepton candidates.

These new cuts were chosen using a sample of B → Xc`ν Monte Carlo events from

CLEO’s BB̄ Monte Carlo (see Sect. 2.5). Tracks coming from generated leptons from

B decays were divided into two groups. The first group, good tracks, had reconstructed

momenta differing in magnitude from their generated momenta by less than 1%. Bad

tracks’ generated and reconstructed momenta differed by more than 2%. Cut values

for different track parameters were chosen to reject bad tracks with minimal impact

on good tracks. To ensure that we are not relying too much on any one of the cut

variables, the effect of all of the cuts was compared to those of the sets of cuts with

one variable removed from consideration.

Signal tracks were required to pass global track-quality cuts. The following criteria

were also applied:

• | cos θ| ≤ 0.7071 (“Good Barrel”)

• RESIDUAL RMS ≤ 0.5 mm

• |DBKL| ≤ 2 mm

• DR hit fraction ≥ 50%
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• Not associated with a reconstructed displaced vertex

The impact of these cuts on mismeasured tracks near the B → Xc`ν end point

is shown in Fig. 3.2. Over 99% of tracks having reconstructed momenta smeared

beyond the kinematic end point fail our track-quality cuts.

3.2.4 Lepton Identification

Signal-track candidates were subjected to a set of lepton-identification requirements

to reject hadronic tracks. For electrons, we used the CEID package with a requirement

of R2ELEC ≥ 3.0 (Sect. 2.4.6).

For muons, we required that the track penetrated at least seven interaction lengths

of absorber material. In addition, we required that the muon identification package

found no expected hits missing at penetration depths less than the maximum reached.

Tracks that were identified as both electrons and muons (∼0.1%) were counted

as electrons. This procedure was based on a study [67] that found a measurable rate

for electrons to fake muons through matches between an electron track and random

hits in the muon chambers. Muons, on the other hand, are unlikely to fake electrons

given the use of dE/dx and E/p in electron identification.

We studied the stability of these requirements by calculating the continuum-

subtracted lepton yields, normalized to the number of BB̄ events in data. Fig. 3.3

shows this normalized yield for 15 chronologically-ordered time intervals through-

out CLEO II and II.V data-taking. We found that lepton yields are mostly consis-

tent across all of the data. However, electron yields in two blocks taken early in
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histogram shows the generated lepton momentum spectrum in generic BB̄

Monte Carlo. The reconstructed spectrum, without tight track-quality cuts,

is shown in solid squares, while the spectrum of tracks remaining after cuts is

in empty triangles.
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CLEO II.V are around 10% lower than those found in other blocks, an effect not seen

in the muons. Electron-identification studies made with samples of embedded radia-

tive Bhabha events (see Sect. 3.3.3) did not indicate a lower efficiency for these data

blocks. While we do not understand this discrepancy in yields, we note that these

blocks together make up about 10% of our ON data, which means that the effect is of

order 1% for electrons, or 0.5% for all leptons. Given that we have more significant

sources of uncertainty, we included this data in our analysis without addressing this

issue further.

3.2.5 Continuum Suppression

Non-BB̄ events at the Υ(4S) can yield leptons with momenta consistent with those

from the B → Xu`ν end point. Although the cuts discussed so far eliminate lower-

multiplicity events, continuum processes like e+e− → cc̄ still present a potentially

overwhelming background. In fact, the ratio of BB̄ to continuum events in the

end-point region is on the order of one to ten. OFF data can be used to subtract

continuum background from an ON momentum spectrum, but the resulting yield will

have a large statistical uncertainty. We therefore must eliminate continuum events

from our sample prior to the subtraction of OFF data.

The quarks produced in a cc̄ event have significant boost. Hadronization then

yields events in which particles coming from each quark tend to be collimated in

back-to-back “jets.” B Mesons in BB̄ events are produced nearly at rest and decay

almost isotropically in the lab frame. We exploited this topological difference to

suppress continuum background events.



80

1 3 5 7 9 11 13
0

2

4

6

8

CLEO II e

Dataset Number

E
le

ct
ro

ns
 / 

10
0 

B
-p

ai
rs



1 3 5 7 9
0

2

4

6

8

CLEO II.V e

Dataset Number

E
le

ct
ro

ns
 / 

10
0 

B
-p

ai
rs



1 3 5 7 9 11 13
0.0

0.5

1.0

1.5

2.0

2.5

CLEO II mu

M
uo

ns
 / 

10
0 

B
-p

ai
rs



Dataset Number

1 3 5 7 9
0.0

0.5

1.0

1.5

2.0

2.5

CLEO II.V mu

Dataset Number

M
uo

ns
 / 

10
0 

B
-p

ai
rs



Figure 3.3: Continuum-subtracted electron yields (top plots) and muon yields

(bottom plots) in the momentum interval from 1.5 to 2.2 GeV/c for the

CLEO II (left plots) and II.V (right plots) data. Each point represents a

contiguous block of data. In each figure, the solid line indicates the result of a

fit of a constant to the points. The first two data blocks were excluded from

the fit to CLEO II.V electron points. The vertical scales of all the plots are

lepton yield per 100 BB̄ events.
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In constructing a variable that discriminates between events of different topologies,

we took inspiration from the “virtual calorimeter” used in previous CLEO rare B

analyses [68]. In this approach, one defines an axis for the event and then constructs

a set of nested cones, each with its apex at the interaction point, opening about this

axis. The energies of tracks and unmatched showers pointing into the volume between

consecutive cones are summed. In our case, the high-momentum lepton’s momentum

vector provided a suitable axis, and we used separate sets of cones opening along and

against the lepton’s direction. A diagram of this arrangement is shown in Fig. 3.4.

We expect continuum events to have more of their visible energy flowing into the

shells near the lepton’s momentum vector, while the energy in BB̄ events should be

more uniformly distributed. Monte Carlo studies were consistent with this expecta-

tion. We used a sample of continuum Monte Carlo and signal events simulated with

the ISGW2 model to study these variables. We defined forty conic shells, twenty in

the forward direction and twenty in the backward direction, each covering uniform

steps of 0.05 in cos θ. Fig. 3.5 shows the energy, averaged over many events, flowing

into each of the shells for both of our Monte Carlo samples.

We sought a method to combine these variables that would allow us to accept an

event as signal-like or reject it as likely background. A neural net provided a semi-

automated way to choose such a combination. A trained neural network is nothing

more than a function that divides a variable space with a decision surface and outputs

a number that depends on an input vector’s relation to that decision surface.

The type of net that we have chosen is known as a feed-forward multilayer percep-

tron [69]. It is formed by several layers of neurons, or nodes, which compute a linear
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Figure 3.4: A diagram of our virtual calorimeter.
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Figure 3.5: Plots of average energy flow into conic shells opening about the

lepton’s direction for continuum (dashed histogram) and ISGW2 signal (solid

histogram) Monte Carlo. The horizontal axis shows the bin number, with

the first bin corresponding to the cone opening about the lepton’s momentum

vector and the last bin’s cone opening in the opposite direction.
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combination x of the outputs of the previous layer’s nodes and then feed the result

into the activation function g(x). The resulting number is fed forward, along with the

outputs of all the other nodes in the layer, to the neurons in the next layer. Fig. 3.6

shows a schematic of our neural net. It has three layers: the input nodes xi, a hidden

layer of nodes hj, and an output node y. The input nodes take the values of each

of the variables used to discriminate signal from background. These are then passed

through the net in the process described above. Each hidden node then outputs a

value given by

hj = g(
∑

i

wijxi + θj). (3.2)

The output node uses the results to compute the value

y = g(
∑

j

wjyhj + θy). (3.3)

Here wij and wjk, the weights, are fitted from the data distributions.

A plot of our activation function

g(x) = (1 + e−2x)−1, (3.4)

is shown in Fig. 3.7. It outputs a value near zero for arguments sufficiently below

zero, and a value near one for sufficiently positive arguments. In this way, the hidden

nodes divide the variable space into hyperplanes which collectively form a decision

surface dividing input events into two groups.

The process of selecting a net’s weights is known as training. We’ve employed a

method called back propagation. Here one begins with a random set of weights and

then calculates the net’s output for events selected from known signal and background
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Figure 3.6: A diagram of our neural net: xi are the inputs, hj the hidden

nodes, and y is the ouput.
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Figure 3.7: The activation function used by our net.

samples. Since the desired answer t is known (say 0 for background events and 1 for

signal events), one can use the difference between it and the actual output y to correct

the weights. For every N events, an epoch, an error is calculated:

E =
1

N

N∑

p=1

(yp − tp)
2. (3.5)

Each weight vector is then updated according to the rule

wt+1 = wt + ∆wt, (3.6)

where

∆wt = −η
∂E

∂w
. (3.7)

Here η is the learning rate, which is reduced at each epoch as training progresses to

facilitate convergence.
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Training samples were chosen from continuum Monte Carlo and B → Xu`ν

signal events simulated with ISGW2. The multiplicity, track-quality, and lepton-

identification requirements outlined in Sect. 3.2 were applied and samples of 140,000

signal and 130,000 background events were selected. To limit the number of inputs

(and therefore the number of weights to train), the energy cone variables of Fig. 3.5

were combined where there was little relative change from cone to cone. We con-

structed a total of 12 cones by grouping the 10 forward-most and 10 backward-most

cones by twos, and dividing the middle 20 cones into two groups of 10 each. Note

that both distributions in Fig. 3.5 are relatively flat in the middle. This observation

motivated the large consolidated cones used in this region.

We had several considerations in mind while designing our net. Of course, we

wanted to maximize the significance of a measured excess in the end-point lepton

spectrum. In addition, we sought to limit the dependence of the efficiency of a neural-

net cut on the features of a particular model for B → Xu`ν, such as the distribution

of q2 = (p` + pν)
2 (the squared mass of the virtual W ).

We know that low q2 signal events, in which the hadronic daughter system Xu

recoils hard against the lepton-neutrino pair, are the most continuum-like topologi-

cally. Therefore, a net trained to reject continuum events using our cone variables will

likely also reject low-q2 signal events. We determined that this effect can be limited by

eliminating the backwardmost consolidated cone from our net’s consideration. The

output of the resulting net, trained on 11 energy-cone variables, is shown in Fig. 3.8.

To optimize the cut on this net, we used as our figure of merit the statistical

significance of an expected B → Xu`ν signal. Given the effectiveness of the net in
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Figure 3.8: The output of the 11-cone net for continuum (dashed histogram)

and ISGW2 signal (solid histogram) Monte Carlo.
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suppressing continuum, the ON sample remaining after a cut should be dominated

by signal events. If we let T be the total number of leptons (signal and background)

in our ON data sample, while B is the number of leptons in the OFF sample passing

our cuts, then the number of signal leptons in the ON sample, S, is

S = T − αB, (3.8)

where α is the ON-OFF scale factor. The fractional error in our continuum-subtracted

signal yield is then

∆S

S
=

√
(S + αB) + α2B

S
. (3.9)

Since α ≈ 2, we need to choose a cut that maximizes the figure of merit:

F =
S2

(S + 6B)
. (3.10)

Fig. 3.9 shows the results of the cut optimization. We used subsamples of our Monte

Carlo containing leptons of momenta from 2.4 to 2.6 GeV/c. Their normalizations

were chosen using scaled, efficiency-corrected, yields from the previous CLEO end-

point analysis [65]. The optimum cut is at 0.84, but the peak is broad so we chose

0.80 to preserve signal efficiency.

In evaluating this net, we compared its performance to a number of nets using

different sets of input variables and assorted architectures. We varied the number of

consolidated energy cones, tried removing different segments of the event from the

net’s consideration, and added additional variables like R2 (defined below) as inputs.

The nets were all trained on the same Monte Carlo samples, and compared using

S2/B as an approximate figure of merit. Efficiencies were calculated by running the
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Figure 3.9: Optimization of our neural-net cut. The x axis is the net’s output,

ranging from 0 to 1. The top plot shows histograms of the net’s output for

signal (BTOU) and continuum (CONT) Monte Carlo. Efficiencies versus cut

values are in the middle two plots, and the bottom plot shows how the figure

of merit varies with cut value.
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nets on Monte Carlo samples independent of the samples used in training. We found

that our 11-cone net has the best combined performance in terms of signal efficiency

and minimal q2-dependence.

In addition to neural nets, we explored using more traditional shape variables like

R2. R2 is defined as a ratio of Fox-Wolfram moments [70] H2/H0, where

Hk =
1

s

n∑

i=1

n∑

j=1

[|−→pi ||−→pj |Pk(cosφij)] .

Here n is the number of particles, s is the center-of-mass energy squared, φij is the

angle between the momentum vectors for particles i and j, and Pk is a kth order

Legendre polynomial. BB̄ events have R2 values near zero, while continuum events

have higher values. We picked an optimum cut on R2 by following the same procedure

used in the net cut’s optimization. We found that the net cut showed better all around

performance. The R2 cut has a signal efficiency of 44.6%, somewhat higher than the

net cut’s 33.6%. However, the background efficiency is also higher for the R2 cut

(3.8% versus 1.5%), so that the R2 cut’s overall figure of merit is 152.9, slightly worse

than the net cut’s 166.4. Fig. 3.10 shows the dependence of the signal efficiency

of both cuts on q2. The R2 cut’s efficiency has about three times more fractional

variation over the q2 range spanned by our signal events.

We expect that different theoretical models for B → Xu`ν decays might populate

the hadronic recoil-mass spectrum differently. To check for sensitivity to this variable,

we binned events in our ISGW2 Monte Carlo according to Xu mass. We grouped the

25 different exclusive hadronic modes into four bins and then computed the efficiency

of our net cut on the sample in each mass bin. Table 3.1 summarizes the results,
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Figure 3.10: Cut efficiency versus q2 for the neural-net cut (solid) and a simi-

larly optimized R2 cut (dashed). While the average efficiency of the R2 cut is

higher, it has a larger fractional variation than the net cut.
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Table 3.1: The efficiency of our neural-net cut when applied to ISGW2 Monte

Carlo signal events grouped by Xu mass.

Mode Xu Mass (MeV/c2) εS (%)

All 130 - 1500 21.4

1 130 - 550 21.9

2 770 - 780 21.6

3 950 - 1250 20.7

4 1250 - 1500 21.0

demonstrating that the net cut is insensitive to Xu mass.

To test the stability of our net’s behavior across our data, we computed the

continuum-subtracted spectra of net ouputs for events with leptons having momenta

between 1.5 and 2.2 GeV/c. Fig. 3.11 shows separate sets of overlaid CLEO II and

II.V plots for electrons and muons satisfying our selection criteria. All spectra have

been normalized to the same area. There is no discernible difference between the

shapes of the spectra in the two sets of data.

3.2.6 Other Continuum Background

QED processes can also contribute background to our analysis. Examples include

e+e− → γe+e− with additional spurious or beam-related particles, and two-photon

events: e+e− → e+e−γ∗γ∗ → e+e−hadrons. Such events frequently result in the scat-

tering of one beam particle into the detector’s acceptance with the other continuing
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Figure 3.11: Continuum-subtracted spectra of neural-net outputs for events

containing signal-quality electrons (left) and muons (right) in the momentum

interval from 1.5 to 2.2 GeV/c. CLEO II data are shown with solid histograms,

and CLEO II.V data are plotted with dots. All spectra are normalized to the

same area.
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down the beam pipe. It was previously found that a cut on missing momentum is

useful in suppressing these backgrounds [65].

We investigated this idea using leptons with momenta between 3.0 and 3.5 GeV/c.

These leptons have energies sufficiently above the B → Xu`ν end point that we can

be confident they are from the continuum. Fig. 3.12 shows histograms of the direc-

tion cosines of the missing momenta (cos θPmiss
) in events containing high-momentum

electrons passing all of our cuts. Since the lab is in the center-of-mass frame, we

calculated each event’s missing momentum as the inverse of the sum of all detected

particles’ three momenta. The large peaks show beam correlation. That is, if the de-

tected particle is an e−, the missing momentum peaks in the negative z direction - the

direction that the beam’s positrons travel. Peaking occurs in the opposite direction if

the detected particle is an e+. This pattern suggests that the detected particles come

from some QED process in which one of the beam particles escapes down the beam

pipe. A cut on cos θPmiss
helps suppress such backgrounds.

Examination of continuum Monte Carlo shows additional peaking in cos θPmiss

(Fig. 3.13). Both electrons and muons show this effect, and no beam correlation is

evident. We interpret this as a geometrical-acceptance (fiducial) effect resulting from

tracks and showers that escape at small polar angles. Signal Monte Carlo, on the

other hand, exhibits anti-peaking at the ends of its cos θPmiss
distribution. This is a

result of the 1 + sin2 θ distribution of the B mesons’ momenta.

Using the high-momentum lepton sample from data and our signal Monte Carlo,

we picked a symmetric cut on cos θPmiss
. Of course, such a cut is only reasonable if

an event actually has missing momentum. We decided to reject events which have
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Figure 3.12: Histograms of cos θPmiss
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momenta between 3.0 and 3.5 GeV/c. Beam-correlated peaking is quite evi-

dent.
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Figure 3.13: Histograms of cos θPmiss
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the momentum interval from 2.0 to 3.0 GeV/c in continuum (CONT) and

signal (BTOU) Monte Carlo.
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Pmiss > 500 MeV and | cos θPmiss
| > 0.9.

3.2.7 Physics Vetoes

J/ψ Decay

Leptons from leptonic decays of J/ψs produced in the decays B → J/ψX constitute

a significant background in the end-point region. Fig. 3.14 shows the reconstructed

momenta of signal-candidate leptons coming from J/ψ decay in generic BB̄ Monte

Carlo in the end-point region.

We applied a veto to signal-lepton candidates by calculating the invariant mass

of the lepton candidate and any identified lepton of the same type and opposite

charge with a momentum above 800 MeV/c. For electrons, we required that the

second track pass our standard electron identification cut, while muons were required

to have penetrated at least three interaction lengths of absorber material. If the

resulting mass fell within a pre-determined cut window, we rejected the candidate

lepton as the decay product of a J/ψ. Separate mass windows for electrons and

muons were determined by fitting dilepton mass distributions in ON data. In each

case, the region around the J/ψ mass peak was fitted with a bifurcated Gaussian

(separately adjustable widths on the high and low sides of the peak) and a second-

order polynomial for the background. Asymmetric mass windows were then set at

±3σ (Table 3.2). Fig. 3.15 shows the veto efficiencies as a function of momentum for

electrons and muons seperately. Overall, the veto is about 60% efficient for electrons

and muons coming from J/ψ decays. It introduces a signal inefficiency of about 0.5%
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Table 3.2: The limits of our mass windows used to veto J/ψ → `+`− candi-

dates.

Channel Lower Limit (MeV) Upper Limit (MeV)

e+e− 3022.99 3141.95

µ+µ− 3057.66 3137.73

in ISGW2 signal Monte Carlo.

γ → e+e−

We rejected electron candidates as coming from gamma conversions by combining a

given track with other tracks of opposite charge to form candidate vertices [71]. The

track was vetoed if the radial position of any well-defined vertex coincided with a

concentration of material, such as the beam pipe, the drift chamber walls, or (for

CLEO II.V) the silicon wafers in the vertex detector. This veto rejects around 45%

of electrons from gamma conversions with momenta above 1.5 GeV/c and introduces

a signal inefficiency of around one percent.

3.3 Efficiencies

We must correct our observed lepton spectra for the inefficiencies in our signal-

selection criteria. For each of our spectra, we can represent the total efficiency of

our cuts as a product of the event-selection, track-quality, and lepton-identification
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Figure 3.14: Reconstructed momenta of signal-quality leptons from J/ψ decay

in generic BB̄ Monte Carlo. The solid histogram shows the spectrum of all

such leptons. The dashed histogram is the spectrum of leptons actually vetoed.



101

J/ψ → e+ e-

0.00

0.50

1.00

Momentum (GeV/c)

V
et

o 
E

ffi
ci

en
cy

J/ψ → µ+ µ-

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
0.00

0.50

Figure 3.15: J/ψ veto efficiencies versus momentum in generic BB̄ Monte

Carlo.



102

efficiencies:

ε = εeventεtrackεlepid.

We used this approach to explore the effects of our cuts with samples of Monte Carlo

and data events. We estimated the limits of our understanding of the effects of each

cut and then combined these estimates to compute a systematic uncertainty on our

total signal-selection efficiency. Because the CLEO II and II.V detector configurations

were different, we performed separate studies for each data set.

3.3.1 Event-Selection Efficiency

We studied the efficiency of our event-selection cuts using samples of about 600,000

CLEO II and 1.1 million CLEO II.V Monte Carlo events with one B → Xu`ν transi-

tion simulated with the ISGW2 model. All four types of B mesons produced at the

Υ(4S) were represented in this sample in equal amounts. Efficiencies measured with

this sample were binned in generated momentum.

We can factor our event-selection efficiency into the following product:

εevent = εevtεANN . (3.11)

Here εANN is the efficiency of the neural-net cut and εevt is the efficiency of the rest of

the cuts on event multiplicity, visible energy and the magnitude and direction of the

event’s missing momentum. Fig. 3.16 shows the measured values of these efficiencies

for the CLEO II and II.V data separately. The general event-selection cuts contribute

around 9% to our total inefficiency, with slightly better performance in CLEO II.V.
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Figure 3.16: Measured efficiencies for general event (left) and neural-net (right)

cuts. CLEO II (II.V) efficiencies are shown with solid lines (points). Note the

different vertical scales of the two plots.

We conservatively assume that this inefficiency is known to within one third of itself

and quote a ±3% systematic error on εevt.

The neural-net-cut efficiency is quite consistent between the two sets of data, and

varies from around 50% to 35% for lepton momenta from 1.6 to 2.6 GeV/c. This

momentum-dependent structure is not unexpected, since signal events with the most

energetic leptons should be the most continuum-like in shape. Given the dependence

of the neural-net cut’s efficiency on a decay’s q2, we expect that it will contribute a

model-dependent systematic error to our total efficiency. We have studied this using

various signal Monte Carlos and discuss the results in Sect. 3.3.4.

We checked for an energy-dependent bias in our net’s efficiency using CLEO II
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continuum Monte Carlo. Separating the sample into ON and OFF components, we

found that the efficiency of our cut was constant at the 0.1% level.

3.3.2 Tracking Efficiency

We also used our ISGW2 signal Monte Carlo sample to study the efficiency of the

track-selection criteria. We can express the tracking efficiency as the product:

εtrack = εmatchεfidεsig. (3.12)

Here εmatch is the efficiency for associating a reconstructed track with a generated

lepton, εfid is the efficiency of the fiducial cut on matched tracks, and εsig is the

efficiency of our signal track quality cuts on tracks in the good barrel. Fig. 3.17

shows the measured values of the track-matching and fiducial efficiencies. Track-

matching performance appears to be slightly better in CLEO II than in CLEO II.V.

Both sets of data show an increase in track-matching efficiency starting at momenta

around 2.5 GeV/c. This is likely due to the fact that leptons must move along the

direction of the B’s boost to reach these high momenta. Since Bs are produced

with a momentum distribution peaked at high values of sin2θ, these high-momentum

leptons are produced preferentially in the heart of our tracking volume. Overall,

track-matching efficiency ranges from around 93% at low momentum to nearly 96%

for momenta around 2.6 GeV/c.

Fiducial-cut efficiencies for both sets of data are in good agreement. We selected

tracks in the good barrel by requiring that | cos θ| ≤ 0.7071. Therefore, if signal lep-

tons are flatly distributed in cos θ, we expect εfid to be about 71%. For generated
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Figure 3.17: Measured efficiencies for track matching (left) and our fiducial

cut (right). CLEO II (II.V) efficiencies are shown with solid lines (points).

momenta up to about 2.5 GeV/c it is actually around 75%. This is another con-

sequence of the angular distribution of the leptons’ parent Bs, as is the rise of εfid

above 2.5 GeV/c.

Fig. 3.18 shows the efficiencies of our signal track quality cuts on matched tracks

in the good barrel. Here CLEO II.V shows better performance than CLEO II, with

an efficiency that is around 2% higher over most of the momentum interval of interest.

This difference is attributable to the different behavior of the gases used in the drift

chamber in the CLEO II and II.V experiments. The helium-propane mixture used

in CLEO II.V resulted in improved hit efficiency and track-fitting resolutions when

compared to the argon-ethane mixture used in CLEO II [50]. Overall, εsig is about

96% in CLEO II and 98% for CLEO II.V.



106

1.60 1.85 2.10 2.35 2.60
0.70

0.80

0.90

1.00

Generated Momentum (GeV/c)

ε si
g

Figure 3.18: The efficiency of our track selection criteria measured using signal

Monte Carlo. CLEO II (II.V) efficiencies are shown with solid lines (points).
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Studies revealed that some aspects of tracking are not perfectly simulated in our

Monte Carlo [72]. To investigate differences between tracking in data and Monte

Carlo, we studied samples of radiative Bhabha events (i.e. e+e− → γe+e−) that were

embedded into hadronic events. We used these samples to calculate a momentum-

dependent correction factor r to our overall efficiency:

r(p) =
εt embd

εt embmc

. (3.13)

Here εt embd is the tracking efficiency measured with radiative Bhabha events from

data that were embedded in hadronic data events. Similarly, εt embmc is the track-

ing efficiency found with simulated radiative Bhabha events embedded in simulated

hadronic events.

Both embedded samples were generated with radiative Bhabha selection criteria

developed at CLEO to study electron-identification efficiencies [73]. For the data

samples, e+e− → γe+e− events were skimmed from the raw data by requiring that

they have exactly two tracks of opposite charge and at least three separate showers

with energies of at least 140 MeV. The total energy in the calorimeter was required

to be at least 6.0 GeV. Additionally, tracks in candidate events were required to

be loosely matched to one of the four biggest showers, and the total energy of the

matched showers had to be at least 3.5 GeV. Also, one of the four biggest showers

was required not to be matched to either of the tracks. Hadronic target events were

selected using the general event-selection criteria described in Sect. 3.2.1. They were

also required to contain between 5 and 12 tracks, to have R2 values no larger than 0.5,

and not to contain tracks loosely identified as electrons. Simulated radiative Bhabha
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and hadronic events were required to pass the same criteria used in the data skims.

For both samples, radiative Bhabha events were embedded into hadronic beds taken

near each other in time to ensure that the state of the detector, its calibration, and

software versions were compatible.

For track-selection efficiency measurements, we considered good-barrel tracks in

the embedded event that were collinear with a pre-embedded radiative Bhabha track

to within 8◦ (cos θopen ≥ 0.99, where θopen is the opening angle between the pre-

embedded and embedded tracks). We then applied our signal track quality cuts and

calculated the resulting efficiencies. Fig. 3.19 shows plots of measured values of r(p)

for embedded CLEO II and II.V events. For both sets of data, the largest effect is

at lower track momenta, where the Monte Carlo overestimates the tracking efficiency

by about 3% for CLEO II and 5% for CLEO II.V. This effect is less dramatic for the

less stringent cuts typically used in other CLEO analyses.

We fitted the CLEO II and II.V r(p) distributions to straight lines over the momen-

tum interval from 1.5 to 2.6 GeV/c. The resulting fit functions are our momentum-

dependent corrections to the tracking efficiency estimate. We take half of the maxi-

mum deviation of r(p) from 1.0, or 2.5%, as the systematic error on the total tracking

efficiency. We also use the fits to r(p) to scale all background spectra taken from

Monte Carlo prior to their subtraction.

While factoring out the various components of the signal-selection efficiency gave

us insight into the sources of inefficiency and into differences between the two sets

of data, we computed the total efficiency by simultaneously applying all cuts to the

signal Monte Carlo sample. Fig. 3.20 shows the efficiency of all of the event-selection
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Figure 3.19: Fits to the ratio r(p) of tracking efficiencies measured with em-

bedded data and with Monte Carlo. The CLEO II result is on the left while

the CLEO II.V result is on the right.
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and track-quality cuts for simulated leptons from B → Xu`ν decays. Interestingly,

the differences in some of the individual cut efficiencies between CLEO II and II.V

nearly cancel when all of the cuts are combined. The total efficiency for all of these

cuts varies from around 30% near 1.6 GeV/c to about 24% at 2.6 GeV/c. Overall,

the efficiency in CLEO II.V is slightly higher than that for CLEO II.

3.3.3 Lepton-Identification Efficiency

We measured our electron identification cut efficiency using tracks stripped from

radiative Bhabha events and embedded into hadronic events. For this study Bhabha

and hadronic events were selected in much the same way as the samples used for the

tracking efficiency study described in Sect. 3.3.2, but in this case single tracks and

their associated calorimeter hits were stripped out of the radiative Bhabha events and

embedded into the hadronic beds.

Because electron identification relies partially on calorimeter shower shape to dis-

criminate electrons from hadrons, some care was taken to remove Bhabha events in

which beam-energy electrons radiate energetic photons in the beam pipe or other ma-

terial [73]. The directions of photons produced in this way are peaked in the forward

direction, along the parent electrons’ momenta. For electrons with final momenta be-

tween 2.0 and 3.0 GeV/c, the showers in the calorimeter from electron-photon pairs

can partially overlap. As a result, the shape of the reconstructed showers matched to

the electrons’ tracks are not “electron-like,” and the electron-identification efficiency

measured with such a sample is biased. The strategy employed to avoid this problem

involved reconstructing a “vertex momentum,” or PVERTEX, by using the sum of the
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Figure 3.20: The combined efficiency of our event-selection and track-quality

cuts measured using signal Monte Carlo. CLEO II (II.V) efficiencies are shown

with solid lines (points).
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energy of all clusters in the calorimeter matched to a given track as an estimate of the

magnitude of the parent electron’s momentum. Candidates with values of PVERTEX

larger than 3.0 GeV/c were eliminated from the sample [74].

To find the efficiency of our electron-identification cut, we considered embedded

tracks that entered the calorimeter barrel, passed our track-quality cuts, and pointed

to within 5.1◦ of the pre-embedded track (cos θopen ≥ 0.996). Fig. 3.21 shows efficien-

cies measured with all embedded samples for CLEO II and II.V data. A momentum-

dependent difference between the two data sets is clearly evident. It begins at around

1.8 GeV/c and grows to around 5% at 2.6 GeV/c, the end point of our signal-electron

spectrum. Efficiency measurements made with the samples of embedded radiative

Bhabha events described in Sect. 3.3.2 show the same effect. Although the PVERTEX

cut was applied, it is not clear that it was effective for the CLEO II.V sample. It is

likely that some fraction of the difference between the data sets is due to lower-energy

electrons radiating photons in the additional material of the silicon detector at small

radii in CLEO II.V. Given our uncertainty about the source of the effect, we use

separate electron identification efficiency corrections for CLEO II and II.V and quote

a 3% systematic error on each of them. This is somewhat larger than one half of the

size of the difference in efficiency seen at 2.6 GeV/c, the upper limit of our signal

region. We use this larger number since our B → Xc`ν background fits (Sect. 4.2.5)

suggest that the electron/muon ratio in Monte Carlo is slightly wrong.

For Monte Carlo events, the CLEO analysis software mocks up the electron-

identification package using log-likelihood distributions measured with embedded

electrons binned in momentum and polar angle. Tracks associated with generated
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Figure 3.21: The efficiency of our electron-identification cut measured with

embedded radiative Bhabha electrons. The CLEO II (II.V) efficiency is shown

with solid lines (points). The standard PVERTEX ≤ 3.0 cut has been applied to

the radiative Bhabha events used for both sets of data.
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electrons are randomly assigned a log-likelihood value from the appropriate distri-

bution. We used ISGW2 signal Monte Carlo to measure the simulated electron-

identification efficiency that results from this approach. We found the efficiency in

Monte Carlo to be flat at ∼92% in the momentum interval from 1.5 to 2.4 GeV/c.

Above 2.4 GeV/c the efficiency steps up to nearly 99%. We used the ratio of electron-

identification efficiencies measured in data and Monte Carlo to correct our simulated

electron-background spectral shapes.

The muon detector has been shown to be well-simulated in Monte Carlo [75, 76].

We therefore decided to measure the efficiency of our muon-identification cut with

simulated events. Using samples of CLEO II and II.V generic BB̄ and signal B →
Xu`ν Monte Carlo, we considered generated muons matched to reconstructed tracks

that passed our signal track quality cuts. For each data set, efficiencies measured

with the two Monte Carlo samples are in excellent agreement. ISGW2 signal Monte

Carlo provided well-measured efficiencies for momenta out to 2.6 GeV/c. Fig. 3.22

shows our measured muon-identification efficiencies for both CLEO II and II.V. The

efficiency is less than 5% for muons with momenta around 1.6 GeV/c and rises with

momentum until leveling-off at 85% to 90% at 2.6 GeV/c. It has been customary in

the past to quote a systematic error of 2% or less on muon-identifiction efficiencies

measured in CLEO II Monte Carlo. We increase this number to 3% to account for

the discrepancy between the electron/muon ratios in data and Monte Carlo discussed

in Sect. 4.2.5.

Both electrons and muons were subjected to the J/ψ vetoes discussed in Sect. 3.2.7.

We studied the inefficiencies due to mistakenly-vetoed signal leptons with Monte
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Figure 3.22: The efficiency of our muon-identification cuts measured with

ISGW2 signal Monte Carlo. The CLEO II (II.V) efficiency is shown with solid

lines (points).
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Carlo. We found that in all cases the J/ψ veto introduces an inefficiency of about

0.3% for electrons and muons that pass all other cuts. We conservatively estimate

the systematic error in this inefficiency as half of its value, or 0.15%.

Electrons were also subjected to the gamma-conversion veto. Fig. 3.22 shows the

resulting inefficiency measured with signal Monte Carlo. This cut is around 98%

efficient for signal electrons and has slightly better performance in CLEO II than in

CLEO II.V. Once again we take half the inefficiency, or 1%, as a systematic error on

its value.

3.3.4 Total Efficiencies

Fig. 3.24 shows the total efficiencies as calculated with ISGW2 signal Monte Carlo

for electrons and muons with and without the neural-net cut. Without the net cut,

the total efficiency for electrons is approximately 55% and the difference in electron-

identification efficiencies between CLEO II and II.V is evident above 2.1 GeV/c. The

total efficiency for electrons with the neural-net cut in place varies with momen-

tum from ∼25% to ∼20%, and the difference between CLEO II and II.V electron-

identification efficiencies is no longer significant. Total efficiencies for muons rise

to about 55% and 22% at 2.6 GeV/c without and with the neural-net cut, respec-

tively. Slightly higher CLEO II.V muon efficiencies are evident in the case without

the neural-net cut; this is due to the difference in track-quality-cut efficiencies noted

in Sec. 3.3.2.

Averaged over the CLEO II and II.V data sets, and over electrons and muons,

the ISGW2-measured efficiency for all cuts in the momentum interval from 2.2 to 2.6
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Figure 3.23: The efficiency of our gamma-conversion veto acting on signal

electrons in ISGW2 Monte Carlo. The CLEO II (II.V) efficiency is shown

with solid lines (points).
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GeV/c is 22.7%. The total detector-related systematic error for this interval, averaged

in the same way, is 1.1%. This includes a correction factor in the neural-net-cut

efficiency that is motivated by the results of the B → Xc`ν fits discussed in Sec. 4.2.5.

Single-parameter fits to spectra measured with the neural-net cut showed that the

Monte Carlo overestimates lepton yields by about 2.5%. We therefore corrected the

overall efficiency with a factor of 97.5±1.5%, where the systematic error is about one

half the size of the observed effect.

To evaluate the model dependence of our total efficiency, we studied the effect of

our cuts on signal Monte Carlos generated with alternative models. One of these was

the ACCMM model as implemented by Artuso [77] with a Fermi momentum (pF )

of 300 MeV/c and a spectator-quark mass (msp) of 150 MeV/c2. These values have

been assumed in past studies and have not yet been adequately tested with data.

To generate a decay, a Fermi momentum was chosen at random from a distribution

of the form described in Eq. 1.22. The b quark was then decayed by the ACCMM

prescription, and the daughter and spectator quarks were hadronized according to a

fragmentation model tuned to data. The total efficiency calculated with Monte Carlo

generated in this way is 21.6%.

We also studied signal Monte Carlo generated with a hybrid of the ISGW2 and

ACCMM models. The generator, known as InclGen, combines the resonance de-

cays of the ISGW2 model with the ACCMM model’s non-resonant final states. This

approach begins by using the ACCMM model to generate a B-meson decay with a

recoiling hadronic system of mass MX . Knowledge of the masses of resonances rep-

resented in the ISGW2 model is then used to decide between modeling the decay
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Figure 3.24: Total efficiencies for electrons (top) and muons (bottom). Effi-

ciencies on the right were computed with all cuts, those on the left are for the

set of cuts excluding the neural-net cut. CLEO II (II.V) efficiencies are shown

with blue circles (red triangles).
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inclusively or exclusively. The choice is made randomly, with relative probabilities

chosen by comparing the total decay rates for exclusive decays involving resonances

with masses near MX and ACCMM’s inclusive rate [78]. Our total efficiency cal-

culated with the InclGen Monte Carlo is 21.7%, nearly identical to the ACCMM

result.

To test the sensitivity of our efficiency to variation in pF and msp, we generated

64 samples of ACCMM Monte Carlo with values of pF c (mspc
2) varied in 50 MeV

steps from 150 MeV to 500 MeV. We then reweighted each spectrum in q2 using

the variation of εtot with q2 measured with the fully-reconstructed ACCMM sample.

We found that, over this wide range of pF and msp, the total efficiency varied by

0.8%, slightly less than the 1.0% difference between the ISGW2-simulated efficiency

and results from the models including non-resonant decays. We therefore quote a

systematic error on our efficiency of ±1% due to uncertainties in modeling B → Xu`ν.

The total efficiencies quoted thus far were calculated by factoring them into several

components, each of which received a separate systematic error: basic event-selection,

track-quality cuts, the neural-net cut, and lepton identification. We checked this

procedure by applying all cuts to the InclGen Monte Carlo at once, correcting the

resulting spectra for differences between data and Monte Carlo efficiencies, and calcu-

lating the total efficiency for one momentum bin from 2.2 to 2.6 GeV/c. The resulting

efficiency estimate, 21.4%, is in good agreement with the result of the factored calcu-

lation, 21.7%. We take this second, “full-cut” approach as more reliable and use it,

along with our estimated detector and model-dependent systematic errors to quote

an efficiency from 2.2 to 2.6 GeV/c of 21.4± 1.5%.
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We have repeated the above efficiency-calculating procedure for the five overlap-

ping momentum intervals used to calculate |Vub| in Chap. 5. Table 3.3 summarizes

the results. Our total efficiency decreases as the lower limit of the signal-lepton mo-

mentum interval increases, an effect due largely to the momentum dependence of the

neural-net cut.

Table 3.3: Total B → Xu`ν selection efficiencies for five overlapping momen-

tum intervals in the end-point region.

Momentum Interval (GeV/c) εtot (±0.015)

2.0 ≤ p` < 2.6 0.217

2.1 ≤ p` < 2.6 0.217

2.2 ≤ p` < 2.6 0.214

2.3 ≤ p` < 2.6 0.209

2.4 ≤ p` < 2.6 0.202



CHAPTER 4

The End-Point Lepton Spectrum

4.1 Uncorrected End-Point Lepton Yields

The Lepton yields in the end-point region for the ON and OFF data samples are

shown for the analyses with and without continuum suppression in Tables 4.1 and

4.2, respectively. To compensate for the difference in beam energies between ON

Table 4.1: End-point lepton yields without continuum suppression.

CLEO II CLEO II.V

Momentum Interval ON OFF ON OFF

(GeV/c) e µ e µ e µ e µ

2.0 ≤ p` < 2.1 16910 14166 1842 1748 30991 27520 3122 3053

2.1 ≤ p` < 2.2 9476 9743 1500 1746 17215 18716 2674 3095

2.2 ≤ p` < 2.3 4521 5589 1209 1561 8428 10541 2258 2882

2.3 ≤ p` < 2.4 2402 3262 981 1480 4777 6474 1829 2607

2.4 ≤ p` < 2.5 1786 2586 782 1153 3578 5047 1532 2129

2.5 ≤ p` < 2.6 1487 2049 679 988 2864 4025 1289 1873

122
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Table 4.2: End-point lepton yields with continuum suppression.

CLEO II CLEO II.V

Momentum Interval ON OFF ON OFF

(GeV/c) e µ e µ e µ e µ

2.0 ≤ p` < 2.1 6048 4826 103 79 11239 9657 157 145

2.1 ≤ p` < 2.2 2817 2746 70 70 5252 5443 117 139

2.2 ≤ p` < 2.3 955 1068 36 53 1715 2026 89 130

2.3 ≤ p` < 2.4 281 324 34 66 528 652 60 110

2.4 ≤ p` < 2.5 108 155 36 40 253 346 61 81

2.5 ≤ p` < 2.6 93 102 41 29 177 184 53 64

and OFF running, track momenta were scaled by the ratio of a nominal ON beam

energy of 5.289 GeV to each run’s beam energy (RNENRG). Combined lepton spectra

measured with and without the neural-net cut are plotted in Fig. 4.1 and Fig. 4.2,

respectively.

4.2 Background Corrections

4.2.1 Fakes

We estimate the spectra of hadrons misidentified as leptons (fakes) by first computing

the charged-hadron spectrum with the following equation [79]:

Nh =
nt − (1 + Rµ/e) · (ne/εeID)

1− (1 + Rµ/e) · (fe/εeID)
. (4.1)
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Figure 4.1: The end-point regions of the combined lepton spectra (e + µ)

without continuum suppression. The upper plot shows CLEO II data, and the

lower plot shows CLEO II.V data. The points are ON data, while the solid

histograms are scaled OFF data.
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Figure 4.2: The end-point regions of the combined lepton spectra (e+µ) with

the neural-net cut applied. The upper plot shows CLEO II data, and the

lower plot shows CLEO II.V data. The points are ON data, while the solid

histograms are scaled OFF data.
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Here nt is the continuum-subtracted spectrum of all charged tracks passing the same

track-quality, event-multiplicity, and continuum-suppression cuts applied to the lep-

ton samples. Because electron and muon candidates must pass different J/ψ vetoes,

slightly different track spectra are selected for electron and muon fake calculations.

Real leptons are subtracted from nt in the numerator of Eq. 4.1. Here ne is the spec-

trum of detected electrons, εeID is the electron-detection efficiency, and Rµ/e is the

ratio of muons to electrons among B-decay products. The denominator of Eq. 4.1

corrects for the fact that some detected electrons are fakes, where fe is the electron

fake rate.

Rµ/e is found using BB̄ Monte Carlo. Lepton universality in B decay suggests that

this ratio is one for leptons coming from Bs. Additional electron-generating modes

among B-daughter decays, however, like Dalitz decays (π0 → e+e−) and photon

conversions (γ → e+e−), make Rµ/e less than one for momenta below about 1.5

GeV/c. For both electron and muon modes, QED bremsstrahlung lowers the energy

of the lepton and changes the shapes of the spectra. The size of the effect depends

on the mass of the radiating lepton, so the impact on the electron spectrum is larger

than that on the muon spectrum. We used the calculations of Atwood and Marciano

[80] to correct our Monte Carlo Rµ/e for this effect. The result is shown in Fig. 4.3.

The hadronic track spectra Nh obtained with Eq. 4.1 are shown in Figs. 4.4 and 4.5.

The “bump” around 2.2 GeV/c that appears in all spectra is due to hadronic tracks

from two-body B decays.

We calculated fake-lepton spectra by combining Nh with momentum-dependent

misidentification probabilities (fake rates) measured with data. In an extension of an
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Figure 4.3: Ratio Rµ/e of electron and muon spectra in B decays. Note the

suppressed zero on the vertical scale.
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Figure 4.4: Hadronic track spectra without continuum suppression. The upper

plots show CLEO II data, and the lower plots show CLEO II.V data. Plots

on the left are hadronic tracks passing the electron J/ψ veto, while those on

the right pass the veto for muon candidates.
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Figure 4.5: Hadronic track spectra with the neural-net cut applied. The upper

plot shows CLEO II data, and the lower plot shows CLEO II.V data. Plots

on the left are hadronic tracks passing the electron J/ψ veto, while those on

the right pass the veto for muon candidates.
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earlier analysis [81], measurements over the entire CLEO II and II.V data sets were

performed using “tagged” samples of pions, protons and kaons [67]. Pions were taken

from the decay K0
s → π+π−. The decay chain D∗+ → D0π+ → (K−π+)π+ provided

a source of kaons and pions. Proton and antiproton samples were obtained from Λ0 →
pπ− and Λ̄0 → p̄π+. Samples of each decay process were collected from both ON and

OFF data. Backgrounds from leptons and other hadron types were subtracted using

sidebands of each of the decay mode’s mass plots. Fake rates were then calculated by

dividing the number of tagged hadrons passing lepton-identification cuts by the total

number of hadrons found. To obtain the total hadronic fake rates for a given lepton

identification cut, tagged sample fake rates f `
i were combined using relative species

abundances Yi taken from BB̄ Monte Carlo:

f`(~p) =
∑

i=p,k,π

Yi(~p)f `
i (~p). (4.2)

The resulting fake rates are shown in Fig. 4.6. They agree with the results of earlier

studies.

Fake spectra calculated with these new fake rates are shown in Figs. 4.7 and 4.8.

Fake yields are shown in Tables 4.3 and 4.4. The errors shown in the tables are

statistical on the track measurement and fake probabilities. Systematic effects were

investigated by comparing fake rates measured with spherical and continuum-like

events, ON and OFF samples, and with varying sideband definitions. It was found

that a 25% systematic error on fake lepton yields conservatively accounts for biases

in this technique.
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Figure 4.6: Abundance-weighted fake rates for our electron (left) and muon

(right) identification criteria. These fake rates were measured using tagged

samples for both CLEO II and II.V detector configurations. The errors shown

are statistical.
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Table 4.3: End-point fake-lepton yields without continuum suppression.

Momentum Interval CLEO II CLEO II.V

(GeV/c) e µ e µ

2.0 ≤ p` < 2.1 14.4± 8.5 59.1± 15.6 29.7± 17.4 121.8± 31.9

2.1 ≤ p` < 2.2 7.9± 7.1 87.1± 17.7 15.1± 12.3 171.0± 34.6

2.2 ≤ p` < 2.3 9.4± 6.5 115.1± 22.4 18.0± 12.3 221.5± 42.6

2.3 ≤ p` < 2.4 5.1± 4.5 54.8± 14.1 9.9± 8.6 104.6± 26.3

2.4 ≤ p` < 2.5 0± 2.0 16.8± 6.1 0± 4.2 34.4± 13.1

2.5 ≤ p` < 2.6 −0.2± 0.4 −2.6± 4.0 0.3± 0.5 5.2± 5.9

Table 4.4: End-point fake-lepton yields with continuum suppression.

Momentum Interval CLEO II CLEO II.V

(GeV/c) e µ e µ

2.0 ≤ p` < 2.1 5.8± 3.4 23.3± 6.1 11.6± 6.8 46.6± 12.2

2.1 ≤ p` < 2.2 3.0± 2.7 33.3± 6.7 6.1± 5.5 67.2± 13.5

2.2 ≤ p` < 2.3 3.3± 2.2 39.4± 7.6 6.2± 4.3 75.6± 14.6

2.3 ≤ p` < 2.4 1.8± 1.6 19.5± 4.9 3.6± 3.1 38.9± 9.7

2.4 ≤ p` < 2.5 0± 0.6 5.3± 1.8 0± 1.5 11.8± 4.3

2.5 ≤ p` < 2.6 0.1± 0.2 1.5± 1.0 0.2± 0.2 2.3± 1.1
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Figure 4.7: Fake-lepton spectra without continuum suppression. The upper

plots show CLEO II data, and the lower plots show CLEO II.V data. Plots

on the left are fake electrons, while those on the right are fake muons.
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Figure 4.8: Fake-lepton spectra with the neural-net cut applied. The upper

plot shows CLEO II data, and the lower plot shows CLEO II.V data. Plots

on the left are fake electrons, while those on the right are fake muons.
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4.2.2 J/ψ → `+`− Veto Leakage

We estimated the leakage through our B → J/ψX veto using generic BB̄ Monte

Carlo. To build confidence in the simulation and to extract normalization factors, we

fitted spectra of generated leptons from Monte Carlo which were vetoed as coming

from J/ψ decay to the corresponding vetoed spectra in data. The neural-net cut

was not applied in this study. Prior to fitting, the Monte Carlo electron spectra were

corrected for the difference between the simulated electron-identification efficiency and

the efficiency measured with data. Simulated electron and muon spectra were both

corrected for the difference between the measured tracking efficiencies in data and

Monte Carlo. These corrections have a small effect on the shape of the spectra. We

obtained reasonable fits in all cases, and the scale factors from the fits are consistent

with our expectations based on the numbers of BB̄ events in data and Monte Carlo.

The fits are shown in Figs. 4.9 and 4.10. The apparent discrepancy in shape at

smaller electron momenta has a negligible effect on our end-point measurement. We

used the fit normalizations to scale Monte Carlo leptons from J/ψ decay that were

not vetoed to estimate the necessary corrections for leakage through the veto. The

scaled spectra were also corrected for efficiency differences between data and Monte

Carlo. The resulting veto-leakage estimates are shown, along with other backgrounds,

in Figs. 4.12, 4.13, 4.14, and 4.15. The decays B → J/ψX and J/ψ → `+`− have

been very well-measured, and are well-simulated in our Monte Carlo. We take a 10%

systematic error on the estimate of leakage through the J/ψ veto.
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Figure 4.9: Fits of the spectra of leptons vetoed as J/ψ daughters in CLEO II

Monte Carlo to those vetoed in data. While there is some evidence for a slight

disagreement between the shape of electron spectra in data and Monte Carlo

in the 1.5 − 1.7 GeV/c interval, this has a negligible effect on our end-point

measurement.



137

1.5 2.0 2.5 3.0

0

250

500

E
le

ct
ro

ns
 / 

(5
0 

M
eV

/c
)

Momentum (GeV/c)

χ2= 52.3 for 29 d.o.f.

1.5 2.0 2.5 3.0

0

40

80

120

160

M
uo

ns
 / 

(5
0 

M
eV

/c
)

Momentum (GeV/c)

χ2= 40.6 for 29 d.o.f.

Figure 4.10: Fits of the spectra of leptons vetoed as J/ψ daughters in

CLEO II.V Monte Carlo to those vetoed in data. While there is some evi-

dence for a slight disagreement between the shape of electron spectra in data

and Monte Carlo in the 1.5 − 1.7 GeV/c interval, this has a negligible effect

on our end-point measurement.
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Figure 4.11: Fits of the spectra of electrons vetoed as gamma-conversion

daughters in Monte Carlo to those vetoed in data. The fit on the left is

for CLEO II, while the CLEO II.V fit is on the right.

4.2.3 γ → e+e− Veto Leakage

Leakage through our gamma conversion veto was handled in the same way as the J/ψ

veto leakage described above. We fitted the vetoed spectra in Monte Carlo to those

seen in data. The fits are shown in Fig. 4.11. The resulting leakage estimates are

nearly negligible in the end-point region, and we assign a conservative 25% systematic

error on their value.
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4.2.4 Secondary b → c → slν and Other Physics Backgrounds

We used generic BB̄ Monte Carlo to estimate the contributions to the lepton spectra

in the end-point region from a number of physics backgrounds. These include π0

Dalitz decays (π0 → e+e−γ), leptonic ψ(2S) decays (ψ(2S) → `+`−), semileptonic

B decays into τ , and leptonic and semileptonic decays of D and Ds mesons. The

resulting spectra were corrected for the difference between data and Monte Carlo

electron-identification and tracking efficiencies and then scaled by the ratio of the

number of BB̄ events in data to the number of Monte Carlo events in the generic

BB̄ samples. For CLEO II (II.V) this scale factor was 0.20 (0.28). The resulting

background estimates are shown in Figs. 4.12, 4.13, 4.14, and 4.15. Electrons from

leptonic Ds and π0 Dalitz decays are too small to be evident in the figures.

In general, these background estimates are small enough that we can use con-

servative assumptions about how well we understand the physics involved in each of

the contributing decays. We assume a 100% systematic error on the π0 Dalitz decay

yields, since they have little impact on the end-point spectra. Branching fractions for

the decays B → ψ(2S)X and ψ(2S) → `+`− are less well measured than those for

B → J/ψX and J/ψ → `+`−, so we estimate a 25% systematic error on backgrounds

from ψ(2S) decay. We use a 50% systematic error on the yields from D and Ds

decays. Production of τ leptons in BB̄ is well constrained by lepton universality, and

τ decays are well measured, so we conservatively assume a 25% systematic on yields

from τ decay.
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Figure 4.12: Electron backgrounds in the end-point region without contin-

uum suppression. The upper (lower) plot shows CLEO II (CLEO II.V) back-

grounds. The key lists the parent type of the electrons in each of the histograms

shown.
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Figure 4.13: Muon backgrounds in the end-point region without continuum

suppression. The upper (lower) plot shows CLEO II (CLEO II.V) back-

grounds. The key lists the parent type of the electrons in each of the his-

tograms shown.



142

CLEO II

0

20

40

Momentum (GeV/c)

CLEO II.V

2.00 2.10 2.20 2.30 2.40 2.50 2.60
0

40

ψ

D

ψ(2s)

τ

Figure 4.14: Electron backgrounds in the end-point region with continuum

suppression. The upper (lower) plot shows CLEO II (CLEO II.V) back-

grounds. The key lists the parent type of the electrons in each of the his-

tograms shown.
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Figure 4.15: Muon backgrounds in the end-point region without continuum

suppression. The upper (lower) plot shows CLEO II (CLEO II.V) back-

grounds. The key lists the parent type of the electrons in each of the his-

tograms shown.
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4.2.5 B → Xc`ν

By far the most severe background to B → Xu`ν below lepton momenta of 2.4 GeV/c

is the dominant semileptonic B-decay process B → Xc`ν. We calculated this by

fitting the lepton spectra below the end point to simulated spectra. The estimate is

extremely sensitive to the details of the B → Xc`ν decays. A great deal of effort was

invested in getting the pieces right and in determining the range of predictions that

are allowed by our spectra and by other available data.

To extract the best possible information about the composition of the B → Xc`ν,

we performed fits on combined CLEO II and II.V electron spectra measured without

the neural-net cut. The muons were subsequently fitted to the mixture determined

by the electron fit. A single overall normalization parameter accounted for possible

differences in the detected e/µ ratio between simulation and data. The electron

and muon spectra with the neural-net cut applied were each fitted to the electron-

determined mixtures, again with only a single normalization parameter. In this case

the parameter accounted for possible mis-modeling of the response to the neural-net

cut.

We kept our fitting and signal intervals separate by doing three sets of fits with

differing upper limits in momentum. For the 2.0-2.6 GeV/c measurement, electrons

(muons) were fitted in the 1.5-2.0 (1.8-2.0) GeV/c interval. The upper limit of the

fits was moved to 2.1 GeV/c for the 2.1-2.6 GeV/c interval. Fits with an upper

limit of 2.2 GeV/c were used for the three remaining intervals. This approach only

affected the systematic error estimates, as the central values of the fits’ B → Xc`ν

yield estimates agree well.
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The B → Xc`ν components used in the fits were simulated with a modified version

of CLEO’s BB̄ Monte Carlo that included QED radiative corrections as described

by the PHOTOS algorithm [82]. PHOTOS allows for the simulation of single-photon

emission on an event-by-event basis, and implements a leading-log approximation for

the bremsstrahlung matrix element. For the decay B → Deν, a PHOTOS-simulated

electron spectrum has been shown to agree to within better than 10% with the results

of an exact O(α) calculation [83].

There were four components in the standard (STD) fits. We corrected simulated

electron spectra for the measured difference between electron-identification efficiency

in Monte Carlo and data that was discussed in Sect. 3.3.3. Both e and µ spectra

were corrected by the observed ratio of tracking efficiencies in data to those in Monte

Carlo (see Sect. 3.3.2). The first component of the fits was a mixture of B → D`ν

(D) and B → D∗`ν (D∗). The decays B → D∗`ν were generated with a HQET-

based parameterization using CLEO-measured form-factor parameters [35]. B →
D`ν decays were generated with the ISGW2 model. The D/D∗ ratio was fixed in

the STD fit using measured exclusive branching fractions [3]. The second component,

denoted D∗∗, was a mixture of semileptonic decays to higher-mass charmed mesons

as described by the ISGW2 model. The third component was nonresonant B →
D/D∗X`ν as described by the model of Goity and Roberts [62]. The final component

was ISGW2 B → Xu`ν. Its normalization was fixed by CLEO’s 1993 measurement

[16] of the 2.3− 2.6 GeV/c B → Xu`ν yield, corrected for the difference in efficiency

between then and now. These components provided a very good fit to the electron

data (Fig. 4.16). Detailed information about the STD fits is presented in Table 4.5.
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Figure 4.16: The STD fit of the combined CLEO II and II.V electron spectrum

that was measured without continuum suppression. The points are data, while

the solid (dashed) histogram is the fit result in the momentum interval included

in (excluded from) the fits.
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The single-parameter STD fit to the muon spectrum without the neural-net cut ap-

plied (Fig. 4.17) shows that the Monte Carlo muon spectrum made with the electron-

determined mixture must be scaled by a factor of 0.96. This demonstrates that the

Monte Carlo does not accurately simulate our detected e/µ ratio. Since we cannot

say whether the simulated e efficiency is too high or the µ efficiency is too low, we

increased our systematic error estimates for the lepton-identification efficiencies to

account for this observation (Sect. 3.3.3).

The fits of the e and µ spectra with the neural-net cut applied (Figs. 4.18 and

4.19) also required scale corrections for Monte Carlo spectra derived using the non-

continuum-suppressed fit’s mixture (∼0.975). This demonstrates that the Monte

Carlo overestimates the neural-net cut’s efficiency, and we therefore use the fit’s nor-

malization to correct our measured efficiency and add ±1.5% to its systematic error

(see Sect. 3.3.4).

We assess the systematic error associated with the B → Xc`ν subtraction by

considering a wide range of variations of the inputs. Details of the resulting fits,

including the deviations of their total B → Xc`ν lepton yields for the 2.2−2.6 GeV/c

interval from that of the STD fits, are listed in Tables 4.5, 4.6, 4.7, 4.8, and 4.9.

A summary of the systematic error calculations for all momentum intervals in the

end-point region is presented in Table 4.10.

For the fits labeled DDSTHI and DDSTLO, we changed the D/D∗ proportion

up and down by one standard deviation, using the errors on the measured exclusive

branching fractions [3]. We also considered more extreme variations in the less-

well-known D∗∗ and nonresonant components. For the LODDUB fits, we fixed the
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Figure 4.17: The STD fit of the combined CLEO II and II.V muon spectrum

that was measured without continuum suppression. The points are data, while

the solid (dashed) histogram is the fit result in the momentum interval included

in (excluded from) the fits.
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Figure 4.18: The STD fit of the combined CLEO II and II.V electron spectrum

that was measured with the neural-net cut. The points are data, while the

solid (dashed) histogram is the fit result in the momentum interval included

in (excluded from) the fits.
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normalization of the D∗∗ component to be three standard deviations below the value

preferred by the STD fits. The NONR fits were done without any nonresonant com-

ponent. The results of these fits are negligibly different from the STD fits, so they

are not shown in the tables.

To account for uncertainty in the modeling of QED bremsstrahlung corrections to

the B → Xc`ν spectra, we did the NOFSR fits with spectra generated without PHO-

TOS. This is clearly an overcorrection, so we use one-half of the resulting variation

in the lepton yield as an estimate of the QED-associated systematic error.

We also allowed for uncertainty in the B-momentum distribution. Samples of

fully-reconstructed Bs were used to measure the charged and neutral B-momentum

distributions in data and Monte Carlo [84]. Because charged and neutral Bs differ

slightly in mass, their momenta at the Υ(4S) also differ slightly. Measured over the

entire CLEO II and II.V data sets, the average charged-B momentum was found to

be 0.3168± 0.0016 GeV/c in data, and 0.3141± 0.0006 GeV/c in Monte Carlo. Thus

the average momentum in Monte Carlo was found to be low by 3 ± 2 MeV/c. In

data, neutral Bs were found to have an average momentum about 9 MeV/c lower

than charged Bs. In Monte Carlo, however, charged and neutral Bs were modeled

as having the same mass, and as a result neutral Bs have an average simulated

momentum that is too high by about 6 ± 2 MeV/c. Given these considerations, we

allowed for an approximately 5 MeV/c variation in the scale of the B momentum

used for the boost with the BSTUP and BSTDN fits. We generated the alternative

spectra by reweighting our STD spectra in the distribution of generated B-momenta.

We also considered variations in the normalization of the B → Xu`ν component,



152

T
ab

le
4.

5:
R

es
u
lt

s
fo

r
so

m
e

of
th

e
B
→

X
c
`ν

fi
ts

.
E

n
tr

ie
s

la
b
el

ed
w

it
h

a
“*

”
ar

e
p
ar

am
et

er
s

th
at

w
er

e

fi
x
ed

fo
r

th
e

fi
ts

in
q
u
es

ti
on

.
E

x
p
la

n
at

io
n
s

of
th

e
fi
t

la
b
el

s
in

th
e

fi
rs

t
ro

w
ar

e
gi

ve
n

in
th

e
te

x
t.

T
h
e

la
st

ro
w

sh
ow

s
th

e
d
iff

er
en

ce
in

y
ie

ld
b
et

w
ee

n
ea

ch
fi
t

va
ri

at
io

n
an

d
th

e
S
T

D
fi
t

in
th

e
m

om
en

tu
m

in
te

rv
al

fr
om

2.
2

to
2.

6
G

eV
/c

.

S
T

D
D

D
S
T

H
I

D
D

S
T

L
O

L
O

D
D

U
B

S
E
C

H
I

S
E
C

L
O

N
O

F
S
R

B
S
T

D
N

B
S
T

U
P

e
n
o

N
N

χ
2

1
4
.9

0
1
5
.5

0
1
5
.2

0
1
5
.7

0
1
5
.2

0
1
4
.6

0
1
2
.3

0
1
6
.9

0
1
5
.6

0

d
.o

.f
1
1
.0

0
1
1
.0

0
1
1
.0

0
1
2
.0

0
1
1
.0

0
1
1
.0

0
1
1
.0

0
1
1
.0

0
1
1
.0

0

D
+

D
∗

n
o
rm

0
.2

6
0
.2

8
0
.2

5
0
.2

7
0
.2

6
0
.2

6
0
.2

8
0
.2

6
0
.2

6

D
∗∗

n
o
rm

0
.2

5
0
.2

2
0
.2

5
*
0
.2

1
0
.2

4
0
.2

5
0
.4

3
0
.2

7
0
.2

8

N
R

n
o
rm

0
.0

0
0
.0

0
0
.0

4
0
.0

6
0
.0

0
0
.0

0
0
.0

5
0
.0

0
0
.0

0

b
→

u
n
o
rm

*
1
.0

*
1
.0

*
1
.0

*
1
.0

*
1
.0

*
1
.0

*
1
.0

*
1
.0

*
1
.0

e
w

/
N

N
χ
2

1
8
.2

0
1
8
.5

0
1
7
.4

0
1
7
.9

0
1
8
.3

0
1
8
.2

0
1
3
.4

0
1
6
.5

0
1
7
.8

0

d
.o

.f
.

1
3
.0

0
1
3
.0

0
1
3
.0

0
1
3
.0

0
1
3
.0

0
1
3
.0

0
1
3
.0

0
1
3
.0

0
1
3
.0

0

n
o
rm

0
.9

9
0
.9

9
0
.9

8
0
.9

9
0
.9

9
0
.9

9
0
.9

8
0
.9

9
0
.9

9

µ
n
o

N
N

χ
2

1
0
.6

0
9
.9

0
1
1
.5

0
1
0
.4

0
1
0
.6

0
1
0
.7

0
1
4
.1

0
1
9
.4

0
1
2
.1

0

d
.o

.f
.

7
.0

0
7
.0

0
7
.0

0
3
.0

0
7
.0

0
7
.0

0
7
.0

0
7
.0

0
7
.0

0

n
o
rm

0
.9

6
0
.9

6
0
.9

6
0
.9

6
0
.9

6
0
.9

6
1
.0

2
0
.9

4
0
.9

5

µ
w

/
N

N
χ
2

7
.6

0
6
.6

0
8
.6

0
7
.0

0
7
.4

0
7
.8

0
1
9
.7

0
1
6
.5

0
1
0
.0

0

d
.o

.f
.

7
.0

0
7
.0

0
7
.0

0
7
.0

0
7
.0

0
7
.0

0
7
.0

0
7
.0

0
7
.0

0

n
o
rm

0
.9

6
0
.9

7
0
.9

6
0
.9

6
0
.9

6
0
.9

6
0
.9

6
0
.9

6
0
.9

6

D
iff

(2
.2

-2
.6

)
0
.0

0
8
0
.6

1
-7

0
.2

3
2
0
.0

0
2
.6

3
-2

.6
7

1
5
5
.8

2
-2

6
0
.2

1
1
4
4
.8

3



153

T
ab

le
4.

6:
R

es
u
lt

s
fo

r
so

m
e

of
th

e
B
→

X
c
`ν

fi
ts

.
E

n
tr

ie
s

la
b
el

ed
w

it
h

a
“*

”
ar

e
p
ar

am
et

er
s

th
at

w
er

e

fi
x
ed

fo
r

th
e

fi
ts

in
q
u
es

ti
on

.
E

x
p
la

n
at

io
n
s

of
th

e
fi
t

la
b
el

s
in

th
e

fi
rs

t
ro

w
ar

e
gi

ve
n

in
th

e
te

x
t.

T
h
e

la
st

ro
w

sh
ow

s
th

e
d
iff

er
en

ce
in

y
ie

ld
b
et

w
ee

n
ea

ch
fi
t

va
ri

at
io

n
an

d
th

e
S
T

D
fi
t

in
th

e
m

om
en

tu
m

in
te

rv
al

fr
om

2.
2

to
2.

6
G

eV
/c

.

S
T

D
F
L
A
T

E
ID

B
2
U

H
I

B
2
U

L
O

E
H

IF
W

E
L
O

F
W

N
C

L
A

L
T

e
n
o

N
N

χ
2

1
4
.9

0
1
5
.1

0
1
4
.9

0
1
5
.6

0
1
4
.8

0
1
4
.5

0
1
4
.9

0
1
4
.7

0

d
.o

.f
1
1
.0

0
1
1
.0

0
1
1
.0

0
1
1
.0

0
9
.0

0
9
.0

0
1
1
.0

0
1
1
.0

0

D
+

D
∗

n
o
rm

0
.2

6
0
.2

6
0
.2

6
0
.2

7
0
.2

6
0
.2

6
0
.2

6
0
.2

6

D
∗∗

n
o
rm

0
.2

5
0
.3

4
0
.2

6
0
.2

3
0
.2

5
0
.2

5
0
.2

5
0
.2

6

N
R

n
o
rm

0
.0

0
0
.0

1
0
.0

0
0
.0

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0

b
→

u
n
o
rm

*
1
.0

*
1
.0

*
1
.2

5
*
0
.7

5
*
1
.0

*
1
.0

*
1
.0

*
1
.0

e
w

/
N

N
χ
2

1
8
.2

0
1
7
.2

0
1
7
.8

0
1
8
.7

0
1
4
.8

0
1
7
.8

0
1
8
.5

0
1
8
.9

0

d
.o

.f
.

1
3
.0

0
1
3
.0

0
1
3
.0

0
1
3
.0

0
1
1
.0

0
1
1
.0

0
1
3
.0

0
1
3
.0

0

n
o
rm

0
.9

9
0
.9

9
0
.9

9
0
.9

9
0
.9

8
0
.9

9
0
.9

9
0
.9

9

µ
n
o

N
N

χ
2

1
0
.6

0
1
6
.5

0
9
.3

0
1
2
.1

0
1
0
.7

0
1
0
.6

0
1
0
.4

0
9
.1

0

d
.o

.f
.

7
.0

0
7
.0

0
7
.0

0
7
.0

0
7
.0

0
7
.0

0
7
.0

0
7
.0

0

n
o
rm

0
.9

6
0
.9

5
0
.9

6
0
.9

6
0
.9

6
0
.9

6
0
.9

6
0
.9

6

µ
w

/
N

N
χ
2

7
.6

0
1
4
.0

0
6
.1

0
9
.2

0
7
.7

0
7
.6

0
7
.4

0
5
.9

0

d
.o

.f
.

7
.0

0
7
.0

0
7
.0

0
7
.0

0
7
.0

0
7
.0

0
7
.0

0
7
.0

0

n
o
rm

0
.9

6
0
.9

6
0
.9

6
0
.9

6
0
.9

6
0
.9

6
0
.9

6
0
.9

6

D
iff

(2
.2

-2
.6

)
0
.0

0
-4

5
.3

3
-3

7
.6

9
4
1
.8

3
-7

.7
3

1
.5

9
-8

.6
6

-4
7
.3

4



154

which was fixed in any given fit. We varied the normalization by ±1σ, using the

combined statistical and systematic uncertainty in the 1993 result. These fits are

labeled B2UHI and B2ULO in the tables. For the NCL and ALT fits, we substituted

B → Xu`ν spectra generated using the ACCMM-based and InclGen generators for

the default ISGW2 spectrum.

We also tried changing the lower and upper limits of the electron fits for each fit

interval. In each case two alternative sets of fits were performed: one with a lower

electron momentum limit of 1.6 GeV/c (ELOFW), and the other having an upper

limit that is 0.1 GeV/c smaller that the standard fit’s upper limit (EHIFW). For

example, alternative intervals of 1.6 − 2.0 and 1.5 − 1.9 GeV/c were used for the

2.0− 2.6 GeV/c measurement.

Given our uncertainty about the source of the momentum-dependent structure in

electron-identification efficiencies observed in Sect. 3.3.3, we have included a set of fits,

labeled FLATEID in Table 4.6, in which simulated e spectra were corrected assuming

a flat electron-identification efficiency. To be consistent, we corrected Monte-Carlo-

estimated background e spectra from other physics processes in the same way before

subtracting them from the spectra used in this set of fits.

Our last set of fit variations concerns uncertainties in the measured form factors

for B → D`ν and B → D∗`ν. We accounted for these by reweighting our default

Monte Carlo to be consistent with varied values of the respective form factors for

these processes.

Because our default B → D`ν is simulated using the ISGW2 model, we had

to reweight it to be consistent with the description using HQET-based form factors
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described in Sect. 1.3.3. We reweighted our STD B → D`ν spectra in q2 using the

ratios of normalized q2 distributions from the ISGW2 and the HQET descriptions.

Results of the fits corresponding to the HQET spectrum with the central value of ρ2

are labeled DCENT in Table 4.7. We also reweighted to HQET with ρ2
D increased by

one sigma (DRHO2UP).

To properly account for the uncertainties of the three measured B → D∗`ν form-

factor parameters R1, R2, and ρ2
A1

, we used reweighted spectra to estimate the partial

derivative of the yield with respect to each of the form-factor parameters at their

central values. Weight tables were made with Monte Carlo studies for three sets

of parameters: (R1 + 0.5σ,R2, ρ
2
A1

), (R1, R2 + 0.5σ, ρ2
A1

), and (R1, R2, ρ
2
A1

+ 0.5σ).

The results of fits with the corresponding sets of reweighted Monte Carlo spectra

are shown in Table 4.8. We combined the resulting partial derivative estimates with

the form-factor parameter errors and their correlations to estimate the systematic

error due to B → D∗`ν HQET form-factor uncertainties. This was done separately

for each of the five momentum intervals considered in our |Vub| calculations. For

the 2.2 to 2.6 GeV/c interval, the resulting error estimate is ±139. As a check, we

generated three additional weight tables corresponding to independent −1σ variations

in each of the form-factor parameters. The details of the resulting fits are presented

in Table 4.9. A calculation using these fits gives an error ±117 for the interval from

2.2 to 2.6 GeV/c. We note that this result is quite consistent with that obtained

with the +0.5σ variations, and take the latter as a more conservative estimate of this

systematic error.

To compute the total systematic error for the B → Xc`ν lepton yields in each
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Table 4.7: Results for B → Xc`ν fits with reweighted B → D`ν spectra.

Explanations of the fit labels in the first row are given in the text. The last

row shows the difference between each fit variation and the STD fit in the

momentum interval from 2.2 to 2.6 GeV/c.

STD DCENT DRHO2UP

e no NN χ2 14.90 15.20 15.50

d.o.f 11.00 11.00 11.00

D + D∗ 0.26 0.27 0.27

D∗∗ 0.25 0.22 0.18

NR 0.00 0.02 0.05

b → u *1.0 *1.0 *1.0

e w/NN χ2 18.20 16.30 14.90

d.o.f. 13.00 13.00 13.00

norm 0.99 0.98 0.98

µ no NN χ2 10.60 11.70 12.30

d.o.f. 7.00 7.00 7.00

norm 0.96 0.96 0.96

µ w/NN χ2 7.60 9.00 9.90

d.o.f. 7.00 7.00 7.00

norm 0.96 0.96 0.96

Diff (2.2-2.6) 0.00 -69.10 -114.85
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Table 4.8: Results for B → Xc`ν fits with reweighted B → D∗`ν spectra

corresponding to +0.5σ varations in the HQET form factors. Explanations

of the fit labels in the first row are given in the text. The last row shows

the difference between each fit variation and the STD fit in the momentum

interval from 2.2 to 2.6 GeV/c.

STD R1 + 0.5σ R2 + 0.5σ ρ2
A1

+ 0.5σ

e no NN χ2 14.90 12.70 12.60 12.30

d.o.f 11.00 11.00 11.00 11.00

D + D∗ 0.26 0.25 0.25 0.27

D∗∗ 0.25 0.31 0.25 0.07

NR 0.00 0.05 0.09 0.20

b → u *1.0 *1.0 *1.0 *1.0

e w/NN χ2 18.20 19.60 15.90 14.30

d.o.f. 13.00 13.00 13.00 13.00

norm 0.99 0.99 0.98 0.98

µ no NN χ2 10.60 12.00 12.50 14.50

d.o.f. 7.00 7.00 7.00 7.00

norm 0.96 0.96 0.96 0.96

µ w/NN χ2 7.60 8.70 9.50 11.60

d.o.f. 7.00 7.00 7.00 7.00

norm 0.96 0.96 0.96 0.96

Diff (2.2-2.6) 0.00 -29.85 -47.97 -86.63
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Table 4.9: Results for B → Xc`ν fits with reweighted B → D∗`ν spectra

corresponding to −1σ varations in the HQET form factors. Explanations of

the fit labels in the first row are given in the text. The last row shows the

difference between each fit variation and the STD fit in the momentum interval

from 2.2 to 2.6 GeV/c.

STD R1 − 1σ R2 − 1σ ρ2
A1
− 1σ

e no NN χ2 14.90 14.30 13.10 16.40

d.o.f 11.00 11.00 11.00 11.00

D + D∗ 0.26 0.29 0.28 0.27

D∗∗ 0.25 0.10 0.18 0.28

NR 0.00 0.00 0.00 0.00

b → u *1.0 *1.0 *1.0 *1.0

e w/NN χ2 18.20 15.80 19.30 21.60

d.o.f. 13.00 13.00 13.00 13.00

norm 0.99 0.98 0.99 0.99

µ no NN χ2 10.60 12.30 11.80 11.40

d.o.f. 7.00 7.00 7.00 7.00

norm 0.96 0.96 0.96 0.96

µ w/NN χ2 7.60 8.20 7.80 7.40

d.o.f. 7.00 7.00 7.00 7.00

norm 0.96 0.96 0.97 0.97

Diff (2.2-2.6) 0.00 32.50 80.62 156.52
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momentum interval, we take the average value of the “symmetric” sets of varia-

tions DDSTHI/DDSTLO, SECHI/SECLO, BSTUP/BSTDN, and B2UHI/B2ULO.

These averages are then added in quadrature with the LODDUB, NONR, NOFSR,

FLATEID, and DRHO2UP variations, as well as the largest member of the EHIFW/ELOFW

and NCL/ALT pairs and our estimate of the variation due to uncertainty in the

B → D∗`ν HQET form factors. Table 4.10 summarizes this calculation for the five

momentum intervals used in computing |Vub|.
In general, the largest contributors to the B → Xc`ν systematic error are the

form-factor uncertainties for B → D∗`ν and B → D`ν. Variation in the mean

B momentum has a significant effect on all intervals. The forced reduction of the

D∗∗ component is particularly important for the 2.0 − 2.6 GeV/c interval since the

difference between the B → D∗∗`ν and nonresonant spectra is mostly above 2.0

GeV/c.

4.3 Corrected End-Point Lepton Yields

The yields of leptons for five overlapping momentum intervals in the end-point region

are summarized in Tables 4.11-4.15. For all intervals beginning below 2.4 GeV/c,

the B → Xc`ν background estimate makes the largest contribution to the systematic

error of the subtracted lepton yield. The total error for the two highest momentum

intervals is dominated by the statistical uncertainty of the subtracted OFF data.

When statistical and systematic errors are combined, the best-measured yields, those

for the intervals starting at 2.2 and 2.3 GeV/c, have fractional errors of ∼15%. The
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Table 4.10: Results of B → Xc`ν yield systematic error calculations for five

momentum intervals in the end-point region. Differences in yield due to each

of the fit variations are presented in rows, with the last row containing the

total estimated systematic errors for each momentum interval.

Variation 2.0-2.6 2.1-2.6 2.2-2.6 2.3-2.6 2.4-2.6

DDSTHI 396.7 205.4 80. 20.9 0.7

DDSTLO -397.2 -166.8 -70.2 -20.0 -0.7

SECHI 40.7 12.3 2.6 0.3 0.0

SECLO -41.3 -12.4 -2.7 -0.3 0.0

BSTUP 21.9 78.9 72.4 19.4 0.5

BSTDN -392.9 -277.0 -130.1 -27.0 -0.4

B2UHI -232.8 -119.2 -37.7 -3.7 0.0

B2ULO 232.7 119.1 41.8 4.1 0.1

LODDUB 707.3 95.1 20.0 2.0 0.0

NONR -3.7 -1.3 -0.3 0.0 0.0

NOFSR -295.7 -43.5 77.9 16.2 0.4

FLATEID -564.2 -225.9 -45.3 -3.7 0.2

DRHO2UP -536.0 -259.5 -114.9 -30.3 -0.9

DSTFF 644.1 291.7 138.6 16.2 0.4

EHIFW -168.0 -34.3 -7.7 -0.7 0.0

ELOFW 352.6 -70.9 1.6 0.1 0.0

NCL -61.1 -31.3 -8.7 -0.8 0.0

ALT -372.0 -168.4 -47.3 -4.6 -0.1

Total 1458.6 573.0 246.5 49.6 1.4
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largest interval, from 2.0 to 2.6 GeV/c, has the largest total error of ∼24%.

Table 4.11: Lepton yields in the momentum interval 2.0− 2.6 GeV/c.

e µ Sum

NON 29466 27529 56995

NOFF 857 1006 1863

Excess 27703± 182± 18 25451± 178± 21 53154± 255± 38

Fakes 42± 12± 10 365± 18± 108 406± 29± 109

J/ψ 211± 8± 21 201± 7± 20 413± 10± 41

Other Backgrounds 163± 10± 53 267± 9± 79 430± 13± 132

B → Xc`ν 25346± 79± 764 23020± 73± 694 48367± 107± 1459

B → Xu`ν 1940± 199± 767 1598± 221± 700 3538± 279± 1470

4.3.1 Electron-Muon Yield Comparisons

We calculated corrected electron and muon yields separately for 100 MeV/c intervals

from 2.0 to 2.6 GeV/c. For this purpose, the efficiency- and background-calculating

procedures discussed in Chaps. 3 and 4 were repeated separately for electrons and

muons. In addition, the QED-radiative corrections discussed in Sect. 5.3 were also

computed separately for each type of lepton. The resulting yields are presented in

Table 4.16. For this comparison, errors are separated into components that are corre-

lated and uncorrelated between electrons and muons. Yield errors that are correlated
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Table 4.12: Lepton yields in the momentum interval 2.1− 2.6 GeV/c.

e µ Sum

NON 12179 13046 25225

NOFF 597 782 1379

Excess 10949± 121± 12 11430± 128± 16 22380± 176± 28

Fakes 24± 9± 6 295± 16± 85 319± 24± 85

J/ψ 128± 6± 13 139± 6± 14 267± 8± 27

Other Backgrounds 76± 9± 22 142± 7± 41 218± 11± 62

B → Xc`ν 9318± 48± 284 9506± 47± 289 18824± 67± 573

B → Xu`ν 1403± 131± 285 1348± 161± 293 2751± 191± 584
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Table 4.13: Lepton yields in the momentum interval 2.2− 2.6 GeV/c.

e µ Sum

NON 4110 4857 8967

NOFF 410 573 983

Excess 3265± 77± 8 3673± 85± 12 6938± 115± 20

Fakes 15± 6± 4 194± 13± 58 209± 19± 58

J/ψ 68± 4± 7 90± 5± 9 158± 6± 16

Other Backgrounds 40± 8± 10 67± 6± 18 107± 10± 29

B → Xc`ν 2147± 23± 116 2415± 24± 130 4562± 33± 246

B → Xu`ν 995± 81± 117 906± 106± 133 1901± 122± 256
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Table 4.14: Lepton yields in the momentum interval 2.3− 2.6 GeV/c.

e µ Sum

NON 1440 1763 3203

NOFF 285 390 675

Excess 855± 51± 6 958± 59± 8 1813± 78± 14

Fakes 6± 4± 1 79± 8± 27 85± 11± 27

J/ψ 35± 3± 3 50± 4± 5 85± 5± 8

Other Backgrounds 20± 6± 5 32± 5± 9 52± 8± 14

B → Xc`ν 191± 7± 22 249± 8± 28 440± 11± 50

B → Xu`ν 603± 52± 23 549± 65± 32 1152± 80± 61
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Table 4.15: Lepton yields in the momentum interval 2.4− 2.6 GeV/c.

e µ Sum

NON 631 787 1418

NOFF 191 214 405

Excess 239± 38± 4 344± 41± 4 584± 56± 8

Fakes 0± 2± 0 21± 3± 9 21± 4± 9

J/ψ 15± 2± 1 21± 2± 2 36± 3± 4

Other Backgrounds 7± 5± 2 15± 5± 5 21± 7± 6

B → Xc`ν 3± 2± 1 3± 2± 1 6± 3± 1

B → Xu`ν 215± 38± 5 285± 43± 7 499± 57± 14
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between the two lepton types include the systematic errors on continuum subtrac-

tions and all background estimates, and the statistical error on calculated fake leptons.

Uncorrelated errors include the statistical errors on the continuum subtractions and

backgrounds, and the systematic errors on the fakes. The uncertainties in our effi-

ciency estimates are almost completely correlated between electrons and muons. The

only uncorrelated errors are those for the lepton-identification cuts. The fourth col-

umn in Table 4.16 contains the differences between the e and µ yields in each bin.

The last column presents the significance of each difference in units of its uncertainty.

Overall, e and µ yields are in reasonable agreement.

Table 4.16: A comparison of e and µ yields for 100 MeV/c bins in the end-point

region. The first (second) error presented on each yield is uncorrelated (corre-

lated) between the two lepton types. The last column presents the significance

of the difference between the two yields in each interval.

Momentum Interval Electron Yield Muon Yield Difference Significance

(GeV/c) (σ)

2.0 ≤ p` < 2.1 2134± 648± 1589 1157± 737± 1653 −977± 981 -1.00

2.1 ≤ p` < 2.2 1784± 450± 1174 2097± 516± 1291 313± 685 0.46

2.2 ≤ p` < 2.3 1840± 287± 581 1676± 342± 641 −164± 447 -0.37

2.3 ≤ p` < 2.4 1952± 180± 184 1278± 224± 177 −674± 287 -2.35

2.4 ≤ p` < 2.5 827± 162± 70 1012± 160± 78 185± 227 0.81

2.5 ≤ p` < 2.6 413± 152± 36 361± 124± 29 −52± 196 -0.26
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4.4 Corrected End-Point Lepton Spectrum

Fig. 4.20(a) shows the total ON spectrum measured in data and our total background

estimate, including the scaled OFF data. Fig. 4.20(b) shows a background-subtracted,

efficiency-corrected spectrum over the same interval. For the purposes of making this

plot, the efficiency and systematic error calculations discussed above were repeated

separately for each 50 MeV/c bin, and statistical and systematic uncertainties were

combined in quadrature. Below 2.3 GeV/c, the B → Xc`ν subtraction dominates the

uncertainties, which are strongly correlated from bin to bin. The overlaid theoretical

spectrum in Fig. 4.20(b) is a prediction based on fits to the B → Xsγ photon-energy

spectrum (Sect. 5.2). It is normalized to the signal yield in the momentum interval

2.2− 2.6 GeV/c.



168

L
ep

to
n

s 
/ (

50
 M

eV
/c

)
5000

2500

1500

3000

0

0

3.002.752.502.252.00
Momentum (GeV/c)

( a )

( b )

0970102-001

Figure 4.20: (a) Lepton spectra for ON (filled circles) and scaled OFF (shaded

histogram) data with the neural-net continuum suppression applied. The

solid histogram is the sum of the scaled OFF and B-decay backgrounds.

(b) Background-subtracted, efficiency-corrected lepton spectrum attributed to

B → Xu`ν. The error bars represent combined statistical and systematic un-

certainties. The curve gives the B → Xu`ν predicted with the measured

B → Xsγ spectrum, as is described in the text.



CHAPTER 5

Calculating |Vub|

5.1 Partial Branching Fractions

The partial branching fraction for B → Xu`ν (` = e or µ) in a given momentum

interval ∆p is given by

∆Bu(∆p) =
N`(∆p)

2NBB̄ε(∆p)
, (5.1)

where ε(∆p) is the total efficiency for detecting leptons in the momentum range

(Chap. 3), and N`(∆p) is half of the total yield of electrons and muons (Chap. 4).

NBB̄ is the number of BB̄ events in our sample, which was calculated from the

hadronic-event yield [85] and the measured integrated luminosity [86].

Hadronic events were counted run by run, where a run corresponded to a single fill

of CESR. For this purpose, all events passing the general event criteria described in

Sect. 3.2 were classified as hadronic. The contributions of events other than e+e− in-

teractions, including beam-wall and beam-gas collisions, were estimated using events

that passed all of the event-selection criteria except for the event z-vertex cut. The

background-subtracted hadronic-event yields were then divided by luminosity mea-

surements made with well-understood QED events (e+e− → e+e−, e+e− → µ+µ− and

e+e− → γγ) to obtain the cross section. The resulting hadronic cross sections were

169
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grouped according to time periods during which CLEO and CESR configurations

were stable. Average hadronic cross sections were computed for ON and OFF runs,

and the difference between these was taken to be the Υ(4S) cross section, which was

combined with the total ON integrated luminositiy to get NBB̄. For the entire CLEO

II and II.V data sample, we found

NBB̄ = (9.665± 0.174)× 106. (5.2)

Using Eq. 5.1 to combine the lepton yields in Tables 4.11-4.15, the efficiencies in

Table 3.3 and the BB̄ count in Eq. 5.2 leads to the partial branching fractions listed

in Table 5.1.

Table 5.1: Partial branching fractions for five overlapping momentum inter-

vals in the end-point region. The first errors are statistical, the second are

systematic.

Momentum Interval (GeV/c) ∆Bu(10−4)

2.0 ≤ p` < 2.6 4.22± 0.33± 1.78

2.1 ≤ p` < 2.6 3.37± 0.23± 0.74

2.2 ≤ p` < 2.6 2.33± 0.15± 0.35

2.3 ≤ p` < 2.6 1.43± 0.10± 0.13

2.4 ≤ p` < 2.6 0.64± 0.07± 0.05
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5.2 The Spectral Fractions fu

In order to calculate |Vub| using Eq. 1.36, we must determine the fraction of the

B → Xu`ν lepton spectrum fu in each of the momentum intervals in Table 5.1. For

a given momentum interval ∆p, the total branching fraction is given by

Bu(∆p) =
∆Bu(∆p)

fu(∆p)
(5.3)

Determination of fu was previously done with theoretical models and is the source

of much of the model dependence in earlier inclusive determinations of |Vub|. For

this thesis we replace models with the relationship between the B → Xsγ photon-

energy spectrum and the lepton-momentum spectrum from B → Xu`ν discussed in

Sect. 1.3.2. Before detailing the fits to the Eγ spectrum that lead to fu estimates, we

briefly review the experimental methods used to measure the spectrum.

5.2.1 B → Xsγ Inclusive Eγ Spectrum Measurement

At the Υ(4S), the B → Xsγ photon-energy spectrum extends from around 2.0 to 2.7

GeV. The inclusive measurement of this spectrum at CLEO [27, 87] is very similar

to the lepton-spectrum measurement described in Chapter 3 of this thesis. For the

majority of photon energies, the dominant background is continuum production of

photons through initial-state radiation and π0 and η decays. Continuum suppression

therefore plays a central role in the analysis. Non-signal-mode production of photons

in B decays is a smaller background, but it is difficult to estimate and is an important

limitation on the measurement near the lower end of the spectrum.
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Continuum suppression was achieved partly through the consideration of event

shape, in a manner very similar to the approach described in Sect. 3.2.5. Shape

variables, including R2 and the energy flow into cones opening about the photon’s

direction, were combined into a single variable r with a neural net.

In addition to this, each event was searched for a reconstructable B → Xsγ decay.

Xs candidates were constructed from kaons, either charged tracks consistent with

being Ks → π+π− or K±, and one to four pions, of which at most one could be a

π0. A B candidate’s energy E and momentum ~p were then formed by combining the

Xs and photon momenta. A “beam-constrained mass” was computed from ~p and the

beam energy Ebeam:

M =
√

E2
beam − |~p|2. (5.4)

Candidate B decays were evaluated using a chi-squared defined as

χ2
B =

(
E − Ebeam

σE

)2

+
(

M −MB

σM

)2

, (5.5)

where σE = 40 MeV and σM = 4.0 MeV were determined with Monte Carlo studies.

Candidates were considered acceptable if χ2
B < 20. If an event had multiple acceptable

candidates, the one with the smallest χ2
B was used. The thrust axis [88] of the

candidate B was also calculated and used to compute | cos θtt|, where θtt is the angle

between the B’s thrust axis and the thrust axis of the rest of the event. This quantity

is expected to be flat for signal and peaked near one for continuum background.

Finally, if an event contained an electron or muon, both the magnitude of its

momentum (P`) and the angle between its direction and that of photon (θ`γ) were

added to the list of continuum-suppression variables. Events were divided into the
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following four categories:

1. Those having both a reconstructable B → Xsγ decay and a lepton.

2. Those having only a reconstructable B → Xsγ decay.

3. Those having only a lepton.

4. Those having neither a reconstructable B → Xsγ decay nor a lepton.

For each event category, a separate neural net was used to combine the following

variables:

1. r, χ2
B, | cos θtt|, P`, and θ`γ.

2. r, χ2
B, and | cos θtt|.

3. r, P`, and θ`γ.

4. r.

Each net was trained using signal and background Monte Carlo samples.

Rather than cutting on the net output of each of the nets, rj, statistics were

maintained by converting the outputs into weights wj = s(rj)/[s(rj) + (1 + α)b(rj)],

where s(rj) and b(rj) are the expected yields, calculated with Monte Carlo, of signal

and continuum background for a particular net output rj. The quantity α is the

luminosity scale factor between the ON and OFF samples. Weights so defined were

summed over ON and OFF data and a continuum subtraction was performed.

Remaining backgrounds from other B-decay processes were investigated using

BB̄ Monte Carlo. The largest sources of background were π0 and η decays, and
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Figure 5.1: Continuum- and background-subtracted photon-energy spectrum

for B → Xsγ. The histogram represents a spectator-model fit to the data.

data was used to tune Monte Carlo π0 and η yields, as well as those for ω and η′.

Backgrounds from KL decays and n̄ interactions were determined by fits of calorimeter

shower-shape distributions in Monte Carlo to those in data. Backgrounds from other

B-decay processes thus determined were subtracted from the continuum-subtracted

weight distribution, and the resulting spectrum, along with a fit to the Monte Carlo

spectrum generated using the spectator model of Ali and Greub [89], is shown in

Fig. 5.1.
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5.2.2 Fitting the Eγ Spectrum

The B → Xsγ photon-energy distribution was fitted over the Eγ range 1.5− 2.8 GeV

[28]. This was done by first generating a B → Xsγ hadronic-mass spectrum with a

parton-level calculation [26], a particular choice for the values of the HQ-expansion

parameters λ1 and Λ̄, and one of the three shape functions, as discussed in Sect. 1.3.2.

This spectrum was used to reweight fully-simulated B → Xsγ Monte Carlo in MXs ,

giving an Eγ spectrum in the lab frame correctly including efficiency and resolution

effects. This was then fitted to the data spectrum in Fig. 5.1. Only the normalization

of the simulated spectrum was allowed to float in the fit, and the resulting χ2 measured

how well the shapes of the two spectra agreed. The same shape function and λ1-Λ̄ pair

were used, along with a parton-level calculation of the lepton-momentum spectrum

[24], to generate a B → Xu`ν spectrum from which the fractions fu were directly

calculable.

The Eγ-fitting procedure and fu calculations were repeated for a wide range of

λ1-Λ̄ pairs until the best-fit function was found. This, along with a set of pairs that

formed a 1σ error ellipse in the λ1-Λ̄ plane, was used to estimate fu with statistical

errors. Fig. 5.2 shows the best-fit result and error ellipse in the λ1-Λ̄ plane for the

fits done with the exponential shape function of Ref. [26]. The fitting procedure

was repeated for each of the three shape-function parameterizations, and resulting fu

estimates were averaged. The results are shown in Table 5.2.

Several different sources of systematic error on fu were considered. The effect of

uncertainty in the BB̄-background estimation was explored by varying the size of the

subtracted background spectrum by ±1σ and determining the λ1-Λ̄ pair that best
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Figure 5.2: The central value (point) and 1σ error ellipse in the λ1-Λ̄ plane

from fits to the measured B → Xsγ photon-energy spectrum. The fits were

done with theoretical spectra generated using the exponential shape function.



177

Table 5.2: Fractions of the B → Xu`ν momentum spectrum in five overlapping

intervals in the end-point region, as determined from fits to the B → Xsγ

photon-energy spectrum. The first error is statistical. The second error reflects

differences among the shape functions, uncertainties in subtracting B-decay

backgrounds from the photon spectrum and the scale for evaluating αs. The

third error is associated with the theoretical assumption that the same shape

funcion F (k+) can be used for both decays.

Momentum Interval (GeV/c) fu

2.0 ≤ p` < 2.6 0.278± 0.043± 0.025± 0.017

2.1 ≤ p` < 2.6 0.207± 0.037± 0.020± 0.017

2.2 ≤ p` < 2.6 0.137± 0.025± 0.016± 0.016

2.3 ≤ p` < 2.6 0.078± 0.015± 0.009± 0.013

2.4 ≤ p` < 2.6 0.039± 0.008± 0.003± 0.009
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fitted the new spectrum. The difference between the fu values obtained with these

best fits was used to estimate the resulting systematic error. Perturbative corrections

to the predicted spectrum were also varied by changing the scale at which the strong

coupling constant αs was evaluated. The nominal scale µ used in evaluating the

strong coupling constant was mb. Alternative sets of fits were done for values of αs

evaluated at µ = mb/2 and µ = 2mb. The resulting systematic error was obtained by

using the difference between the spectral fractions obtained with the best-fit shape

functions for the alternative αs points. This error is quite small, as variation from αs

changes was largely compensated by the variation in λ1 and Λ̄ required to obtain the

best fit in each case. Table 5.2 shows the total systematic error due to variation in

the shape-function parameterization, BB̄-background subtraction, and perturbative

corrections.

We also estimated the theoretical error in fu due to the HQ-theory assumption

that the photon-energy spectrum from B → Xsγ can be used to compute the lepton-

momentum spectrum from B → Xu`ν. This is of order ΛQCD/MB for intervals

beginning close to the B → Xu`ν end point and changes to order (ΛQCD/MB)2 when

more of the spectrum is included [90]. Although there is at present no rigorous recipe

for evaluating this uncertainty, we followed a suggestion from Neubert that it could

be estimated by varying the shape-function parameters by ±10%. The resulting

variations in fu are presented as the third error in Table 5.2. While the adequacy of

this estimate of the uncertainty remains to be determined, it is encouraging that these

uncertainties are overshadowed by statistical errors in all but the smallest momentum

intervals. We are hopeful that continued theoretical work will clarify the status of



179

this approach and lead to a better estimation of both this uncertainty and that due

to the duality assumption, which remains unquantified.

5.3 Branching Fraction Measurements

The prescription for computing the B → Xu`ν spectrum and fu in Ref. [24] does not

include the effect of QED-radiative corrections. These slightly reduce the yield of lep-

tons in the measured momentum ranges. We have estimated this effect by comparing

lepton yields in ISGW2 signal Monte Carlo generated with and without PHOTOS

[82]. We divided our partial branching fractions by the resulting “efficiencies,” which

are shown in Table 5.3. We include an uncertainty of ±0.02 (one third to one half

of the observed effect), a conservative assumption considering that the PHOTOS al-

gorithm has been observed to agree to better than 10% with analytic calculations of

the effects of QED radiation in other processes (see Sect. 4.2.5).

We combine the partial braching fractions in Table 5.1, the spectral fractions

in Table 5.2, and the QED-radiative corrections in Table 5.3 to get the branching

fractions shown in Table 5.4. Each result is quoted with three errors. The first is

from the combined statistical and systematic error on the yield measurement for each

interval. The second is derived from the combination of the statistical error on fu and

the systematic errors due to the difference between shape-function parameterizations,

BB̄ subtraction uncertainty and the perturbative corrections. The third uncertainty

comes from the error on fu due to the non-universality of the shape function, which

we choose to keep separate because of the preliminary nature of its evaluation.
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Table 5.3: Ratios of the amounts, in a given momentum interval, of simu-

lated b → u`ν events generated with PHOTOS to those made without QED-

radiative corrections.

Momentum Interval (GeV/c) εIB (±0.02)

2.0 ≤ p` < 2.6 0.96

2.1 ≤ p` < 2.6 0.96

2.2 ≤ p` < 2.6 0.95

2.3 ≤ p` < 2.6 0.94

2.4 ≤ p` < 2.6 0.94

Table 5.4: B → Xu`ν branching fractions for five overlapping momentum

intervals in the end-point region. The first errors are from the yield mea-

surements for each interval. The second are derived from the fu estimations,

excluding the uncertainties due to the non-universality of the shape function,

which are presented as the third errors.

Momentum Interval (GeV/c) Bu(10−3)

2.0 ≤ p` < 2.6 1.59± 0.68± 0.28± 0.10

2.1 ≤ p` < 2.6 1.66± 0.39± 0.34± 0.13

2.2 ≤ p` < 2.6 1.77± 0.29± 0.38± 0.21

2.3 ≤ p` < 2.6 1.94± 0.22± 0.43± 0.31

2.4 ≤ p` < 2.6 1.74± 0.24± 0.38± 0.38
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5.4 |Vub| Calculation

We use Eq. 1.36 to calculate |Vub| from the branching fractions in Table 5.4. We

average the charged and neutral B lifetimes and use τB = 1.60 ± 0.02 ps [3] in the

calculations. Table 5.5 contains the results. Each value of |Vub| is quoted with four

errors. The first three come from the branching-fraction errors in Table 5.4. The

fourth reflects the uncertainty in Eq. 1.36, both in its theoretical derivation and in

τB.

Fig. 5.3 shows our values of |Vub| and their combined quoted errors versus lower-

lepton-momentum cut-off. There is an approximately 10% variation in |Vub| as the

cut-off momentum is changed from 2.0 to 2.4 GeV/c, with a trend toward smaller

values at lower cut-offs. The total quoted error is fairly consistent among the intervals,

and easily contains the spread in the central values of |Vub|. Table 5.5 clearly shows

how, as the cut-off is lowered, competing trends in the different sources of error

compensate for one another. There is essentially no B → Xc`ν background above 2.4

GeV/c, and here the error due to our ∆B measurement is the smallest. The error due

to fu is largest for this interval, however, since it is difficult to precisely determine

this small spectral fraction. The largest interval, beginning at 2.0 GeV/c, has the

largest error due to uncertainty in ∆B since the b → c subtraction is enormous here.

The spectral fraction, on the other hand, is the largest and best-determined for this

interval. We decided in advance to use the 2.2 to 2.6 GeV/c number as our final

result for |Vub|, since it falls in the middle of these two trends. We therefore quote
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Table 5.5: Values of |Vub| computed for five overlapping momentum intervals

in the end-point region. The first error quoted on each of the values is from the

uncertainty of the partial branching fraction measurement, the second is from

the combination of the statistical error on fu and its systematic errors due

to the difference between shape-function parameterizations, BB̄-subtraction

uncertainty and perturbative corrections. The third uncertainty comes from

the error on fu due to the non-universality of the shape function, and the fourth

error reflects the uncertainty in Eq. 1.36, both in its theoretical derivation and

in the B lifetime used in its evaluation.

Momentum Interval (GeV/c) Vub(10−3)

2.0 ≤ p` < 2.6 3.87± 0.83± 0.35± 0.12± 0.15

2.1 ≤ p` < 2.6 3.95± 0.46± 0.40± 0.16± 0.16

2.2 ≤ p` < 2.6 4.08± 0.34± 0.44± 0.24± 0.16

2.3 ≤ p` < 2.6 4.27± 0.24± 0.47± 0.34± 0.17

2.4 ≤ p` < 2.6 4.05± 0.28± 0.45± 0.45± 0.16



183

1.95 2.05 2.15 2.25 2.35 2.45
0

1

2

3

4

5

Lepton Momentum Lower Limit (GeV/c)

V
ub

 / 
10

-3

Figure 5.3: |Vub| versus lower-lepton-momentum cut-off. The error bars reflect

the combination in quadrature of the errors listed in Table 5.5.
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|Vub| = (4.08± 0.34± 0.44± 0.24± 0.16)× 10−3. (5.6)

Contributions to the uncertainty in the |Vub| determination are summarized in

Table 5.6. The error on fu is broken into three components: (1) the statistical error

from the B → Xsγ fits; (2) the systematic error due to the differences among the

different shape functions used, the uncertainty in the BB̄-background subtraction,

and the choice of scale for evaluation of αs (Systematic A); and (3) the error due to

the Heavy Quark theoretical uncertainty (Systematic B). Statistical uncertainty on

fu is the largest contributor to our total error, while next largest components, the

systematic errors on fu and on the B → Xc`ν subtraction, are all about the same

size.

5.4.1 Model-Based Calculations

For comparison, we calculated the spectral fraction for the 2.2 − 2.6 GeV/c interval

using both the ISGW2 and ACCMM models. We used values for the ACCMM pa-

rameters that were assumed in past studies: a spectator mass (msp) of 150 MeV/c2

and a Fermi momentum (pF ) of 300 MeV/c. Both models led to |Vub| values that

were ∼20% lower than our result. This indicates that the inclusive spectrum is softer

than previous expectations. We also tried using a set of ACCMM-parameter values

obtained with a fit of the Ali and Greub spectator model to the B → Xsγ photon

spectrum: msp '230 MeV/c2 and pF '440 MeV/c. The result was a |Vub| value that

was only 5% lower than the result given in Sect. 5.4.
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Table 5.6: Sources of systematic uncertainty in the measurement of |Vub|, in

units of 10−3. Details regarding the three fu errors are given in the text.

Source Contribution

Yield Statistical ±0.131

B → Xc`ν Systematic ±0.264

Other Backgounds Systematic ±0.075

Efficiency - Detector Systematic ±0.107

Efficiency - B → Xu`ν Systematic ±0.097

Uncertainty in Eq. 1.36 ±0.162

fu Statistical ±0.372

fu Systematic A ±0.233

fu Systematic B ±0.245

Overall ±0.63
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5.5 Conclusions

We have presented a new measurement of the CKM parameter |Vub| made with an

observation of the inclusive spectrum of electrons and muons from charmless semilep-

tonic B decays at the Υ(4S). We made the first use of Heavy Quark theory to

combine the observed lepton yield in the momentum interval 2.2 − 2.6 GeV/c and

CLEO’s recent measurement of the B → Xsγ photon-energy spectrum to determine

|Vub| without relying on phenomenological models. The result,

|Vub| = (4.08± 0.63)× 10−3, (5.7)

has a combined fractional uncertainty (∼15%) that is smaller than those of previ-

ous measurements. We repeated the calculation for intervals having lower lepton-

momentum limits as large as 2.4 GeV/c and as small as 2.0 GeV/c. We found that

our result is stable with respect to these variations in end-point interval, an observa-

tion that helps to validate our overall approach.

5.5.1 Comparisons With Previous Measurements

In comparing our new result with those of the past, we begin with CLEO’s previous

inclusive measurement [16]. The most direct comparison that can be made here is for

∆Bu. The new measurement for 2.3 ≤ pl ≤ 2.6 GeV/c, (1.43 ± 0.10 ± 0.13) × 10−4,

can be compared with the previous result for this interval, (1.21±0.17±0.15)×10−4.

Although the results are consistent, some caution is appropriate in comparing the

errors. For the previous measurement, the continuum was subtracted using fits to the

OFF spectrum. We no longer use this method but instead do a more straightforward
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direct subtraction. Thus, the statistical error of the new result is reduced by less

than the factor of 3 expected on the basis of statistics. The systematic error of the

previous result included a sizable contribution due to variation among the functional

forms used in the continuum fits, but it certainly underestimated the error in the

B → Xc`ν subtraction, since it did not account for the form-factor uncertainties and

other sources of error that we now recognize as quite significant.

Fig. 5.4 shows a graphical comparison of CLEO and other |Vub| measurements

from the last decade. For this purpose, the 1993 CLEO inclusive result |Vub|/|Vcb| =
0.08±0.02 was converted to |Vub| by using a value for |Vcb| of (40.4±1.3±0.9)×10−3,

an average of LEP and CLEO results used by the CKMFitter group [91] in December

of 2001 [92].

Fig. 5.4 also shows the results of two exclusive measurements made by CLEO. The

first, from 1996 [93], was made with observations of semileptonic B decays to π±, π0,

ρ±, and ρ0. The analysis technique used strict event-selection requirements that

enabled the “reconstruction” of the neutrino in each decay from the event’s missing

energy and momentum. The neutrino’s momentum was then combined with those

of the lepton and the candidate hadron to make a signal B candidate. Extraction of

|Vub| from the measured signal-mode branching fractions required knowledge of each

decay’s form factors, and it was the theoretical uncertainty in these that limited the

approach. In 2000 an updated B → ρ`ν measurement was made with somewhat

looser event requirements and roughly one third more data [94]. The result was

combined with the 1996 measurement to obtain the value shown in Fig. 5.4.

In addition to the CLEO |Vub| measurements shown in Fig. 5.4, there are four
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Figure 5.4: A comparison of measured values of |Vub| from the last decade.

The horizontal axis is in units of 10−3. The values labeled “CLEO Inclusive

(1993)” and “DELPHI (2000)” have been converted from measurements of the

ratio |Vub|/|Vcb| with the value of |Vcb| listed in Table 5.7.
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results from the LEP experiments: ALEPH [95], L3 [96], DELPHI [97], and OPAL

[98]. (DELPHI measured the ratio |Vub|/|Vcb|. The corresponding |Vub| constraint was

computed with the same value of |Vcb| used for the early CLEO inclusive measurement

just discussed.) Although the details of the individual analyses differ somewhat, they

are all inclusive measurements performed using e+e− → bb̄ interactions at the Z0.

At these energies, b hadrons are formed in jets that are back-to-back in the center-

of-mass frame. This separation allows the estimation of the neutrino momentum in

a semileptonic decay using a jet’s missing momentum. Isolating semileptonic B de-

cays is challenging, however, because not all of the available energy in an event is

carried by the b hadrons. On average, about 30% of a b jet’s energy is carried by

fragmentation products, diluting the signal. All four experiments used particles’ mo-

menta and relative proximity to the candidate lepton and the event’s primary vertex

to reject fragmentation products and form hadronic systems X in their B → X`ν

candidates. Of course, removing B → Xc`ν was a significant challenge. Each exper-

iment used kinematic constraints to reject charmed final states as much as possible,

and estimated the significant remaining background using Monte Carlo. Models used

for this purpose included ACCMM and, in some cases, form-factor calculations like

ISGW2. Systematic error estimates of this background did not include effects, such

as HQET form-factor variations, that we now know to be significant. Although each

experiment retained efficiency across most of the lepton spectrum, the criteria they

used did not have acceptances that were uniform over phase space. Signal efficiencies

were estimated using models, including the ACCMM model with internal parameters

that we now understand to be incorrect.
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Very different analysis procedures and event environments are represented in the

eight measurements shown in Fig. 5.4. Their good agreement reinforces the notion

that we know the value of |Vub| to within ∼15%.

5.5.2 Implications of the Measurement

Our new value of |Vub| constrains the position of the upper vertex of the unitarity

triangle in Fig. 1.3. In the Wolfenstein parameterization of the CKM matrix (Eq. 1.7),

the ratio |Vub|/|Vcb| is given by

|Vub|
|Vcb| =

Aλ3|(ρ− iη)|
Aλ2

= λ(ρ2 + η2)1/2. (5.8)

Since λ = 0.22, values of |Vub| and |Vcb| together provide a circular constraint in the

ρ-η plane.

To determine how our new measurement of |Vub| fits in with other experimental

constraints on the unitarity triangle, we used the global fitting package developed

and maintained by the CKMFitter group [91]. This software takes as its inputs

experimental constraints on CKM matrix elements and performs a global fit in the

ρ̄-η̄ plane to constrain the location of the upper vertex of the unitarity triangle. (The

parameters ρ̄ and η̄ are forms of Wolfenstein’s parameters ρ and η that have been

rescaled to account for O(λ4) corrections.) We obtained a copy of the package that

included values of experimental constraints from the summer of 2001 [92], replaced

its |Vub| value with our new result, and performed a fit. All other inputs to the fit

were kept to the values listed in Ref [92].
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Fig. 5.5 shows a set of individual constraints on the position of the unitarity tri-

angle’s upper vertex. The lines in Fig. 5.5 labeled “|Vub/Vcb|,” “∆md,” “∆ms/∆md,”

and “|εK |” bound 95% confidence intervals from these constraints. Experimental in-

puts used in their calculation are presented in Table 5.7. The precision of our |Vub|
result dominates the width of the |Vub|/|Vcb| constraint, an annulus centered on the

point (0, 0). The quantity ∆md is the Bd-B̄d mass difference derived from Bd-B̄d

mixing observations. It constrains |Vtd| and gives rise to an annulus centered on the

point (0, 1). The experimental lower limit on the Bs-B̄s mass difference ∆ms can be

combined with ∆md to generate a more stringent upper limit on |Vtd|, which gives

rise to the line labeled “∆ms/∆md,” in the figure. The CP-violating parameter εK

in the neutral K system gives rise to the figure’s hyperbolic bounds. Finally, the

shaded wedges originating at (0, 1) represent 1σ and 2σ contours coming from the

world average experimental value of sin 2β. The average used here is dominated by

the BaBar and BELLE experiments’ observation of a CP-violating asymmetry in the

neutral B system.

All constraints clearly overlap in the upper-right-hand quadrant of the ρ̄-η̄ plane,

showing that the Standard Model remains quite adequate in its treatment of the CP-

violating sector of weak decays. The irregular contours in the region of overlap are

the 5% and 95% contours for the combined fit done with the CKMFitter package.

They should be taken only as further evidence that current experimental constraints

are consistent with the Standard Model, and we leave a detailed analysis of the fit

results to the CKMFitter group.
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Figure 5.5: Constraints in the ρ̄-η̄ plane from the experimental inputs to the

CKMFitter. Shown are 5% confidence levels from indivual constraints labeled

as |Vub/Vcb|, ∆md, ∆ms/∆md, and |εK |. The shaded wedges represent 1σ and

2σ contours on the angle β. Our new measurement of |Vub| was used to derive

the |Vub/Vcb| contour shown. The irregular contours represent the 5% and 95%

CLs for the global fit done with the CKMFitter package.
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Table 5.7: Inputs to the CKMFitter

Input Parameter Value

|Vub| (4.08± 0.63)× 10−3

|Vcb| (40.4± 1.3± 0.9)× 10−3

∆md (0.489± 0.008)ps−1

∆ms > 15.0ps−1 at 95% C.L.

|εK | (2.271± 0.017)× 10−3

sin 2β 0.793± 0.102

5.5.3 Outlook for |Vub| Measurements

There are good prospects for further improvement in |Vub| measurements made with

the inclusive-end-point approach used in this thesis. Most of the errors that domi-

nate our overall uncertainty should improve as the large data sets of the B factories

BELLE and BaBar continue to be exploited. The largest uncertainty in Table 5.6

comes from the variation in fu allowed by the statistical uncertainty in the B → Xsγ

photon-energy spectrum. Therefore, a higher-statistics measurement of the Eγ spec-

trum should allow for reduction in this error. It may also be possible to improve

experimental constraints on the BB̄ backgrounds to radiative B decay, included in

“fu Systematic A” in Table 5.6. The largest systematic uncertainty in the end-point

yield measurement, that due to the estimate of the B → Xc`ν background, has a

large component from the uncertainties in the B → D(∗)`ν form factors. Current

measurements of these factors are statistics-limited and will be improved upon with
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the larger data samples available to the B factories.

With their big data samples and boosted centers-of-mass, the B factories will

be able to employ alternative inclusive approaches to isolating B → Xu`ν decays.

For example, in several years they will have large samples of BB̄ events with one

fully-reconstructed B meson. Such events will provide new kinematic constraints,

improved neutrino-momentum resolutions, and increasingly precise measurements of

the hadronic-recoil-mass (MX) spectrum. It has been suggested that the use of com-

bined cuts on q2 and MX to reject B → Xc`ν could lead to a measurement of |Vub|
with calculable errors at the 5 to 10% level [99].

Exclusive approaches to |Vub| measurement, in which specific hadronic final states

are selected, remain limited by theoretical uncertainties in form-factor calculations.

High statistics data samples may help by allowing the measurement of differential

decay distributions that could discriminate among decay models. Improved Lattice

QCD calculations tuned with, among other things, D-decay measurements made

with the upcoming CLEO-c experiment [100] should provide significantly improved

understanding of exclusive form factors and probably the best measurement of |Vub|.
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