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ABSTRACT

Using data recorded by the CLEO II detector operating at the ���S� resonance at the

Cornell Electron Storage Ring� two properties of the neutral Bd meson are measured

using a partially reconstructed tag of the decay mode B�
d � D������� Using �	
 pb��

of on�resonance data� the B�
d mixing parameter is found to be

�d � �
�� � ��� � �
� � �
 where the third error is due to the uncertainty

in the relative contributions of charged and neutral B events to the data sample�

With a larger dataset of 
�	 pb��� the B�
d semileptonic branching fraction is mea�

sured to be �
�	 � ��� 
����� This result is combined with other similarly tagged

semileptonic branching fraction measurements from CLEO� yielding a lifetime ratio

���� � � ��� � �
� � �
�� assuming equality of semileptonic partial widths�
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Chapter �

Introduction

This thesis presents measurements of two di�erent properties of an object called

the neutral B meson� The purpose of this introductory chapter is to �rst present

some of the fundamental ideas of particle physics� to then describe what a neutral B

meson is� and �nally to explain why the two properties are interesting�

��� Fundamental Particles

All matter in the universe � the stars above� the earth below� the paper upon

which these words are written� and even the person now reading them � are composed

of only a few fundamental building blocks�

Electrons �e��� familiar negatively charged particles which constitute the outer�

most portion of atoms� are a member of a class of fundamental particles called leptons�

There also exist two heavier versions of the electron� the muon �
�� and the tau ����

which� aside from their larger masses� are identical in all respects to the electron�

Three additional leptons with zero electric charge� the neutrinos complete the family






of six leptons� Each neutrino is associated with one of the three charged leptons� and

are given the names �e �� and �� � The neutrinos appear to be massless and there is

currently no direct evidence to suggest otherwise� These six leptons are grouped into

three doublets� or generations

�� �e

e

�A�� ��




�A�� ��

�

�A � �
�
�

The proton and the neutron� known to compose the nuclei of atoms� are not

fundamental particles themselves� but are composed of entities called quarks� Like

the leptons� there are six varieties of quarks which can also be grouped into three

doublets with progressively larger masses

�� u

d

�A�� c

s

�A�� t

b

�A � �
���

The up and down quarks comprise the �rst generation doublet� the charm and

strange quarks the second� and the top and bottom quarks comprise the third doublet�

The upper member of each quark doublet carries an electric charge equal to ��
�jej�

where jej is the magnitude of the electron charge� The lower members have charge
��

�
jej�

Both leptons and quarks are fermions� particles which have an intrinsic angular

momentum� or spin� of n�h��� For quarks and leptons� n � 
� Tables 
�
 and 
��

summarize the charges and masses of the leptons and quarks�

�



Lepton Symbol Charge Mass

Q�jej MeV�c�

Electron e� �
 �	



Muon 
� �
 
	��

Tau �� �
 
���

Electron neutrino �e  � �� � 
��

Muon neutrino ��  � ���

Tau neutrino ��  � �


Table 
�
� The six leptons

Quark Symbol Charge Mass

Q�jej MeV�c�

Down d �
�� �

Up u ���� �

Strange s �
�� �

Charm c ���� 
�

Bottom �Beauty� b �
�� ��

Top �Truth� t ���� 
��

Table 
��� The six quarks

�



Force Boson Symbol Charge Mass

Q�jej �GeV�c��

Strong Gluon g  

Electromagnetic Photon �  

Weak W W� �
 ���

Z Z  �
��

Gravitational Graviton G  

Table 
��� The force�mediating intermediate vector bosons

��� Fundamental Forces

The quarks and the leptons interact with one other through the exchange of

intermediate vector bosons� Such interactions give rise to the four known fundamental

forces� the strong� the weak� the electromagnetic� and the gravitational� Each force

has one or more intermediate vector bosons which are responsible for its mediation�

and they are summarized in Table 
���

A quite successful theory� the Standard Model� describes the interactions of the

strong� weak and electromagnetic forces� but makes no attempt to account for the

gravitational force�� The theory is based on the gauge group SU���color � SU���L �
U�
�Y� The quarks and leptons are grouped into lefthanded weak�isospin doublets

and righthanded singlets��� �e

e

�A
L



�� ��




�A
L



�� ��

�

�A
L

 eR 
R �R�� u

d�

�A
L



�� c

s�

�A
L



�� t

b�

�A
L

 uR cR tR d
�
R s

�
R b

�
R�

�The gravitational force has a negligible e�ect on the results presented in this thesis and it will

not be discussed again�

�



The meaning of the primed quarks d�� s� and b� will be explained shortly�

We focus here on the SU���L�U�
�Y portion of the gauge group which describes

the uni�ed electroweak force acting upon the left�handed doublets� The gauge bosons

W �
� � W

�
� and W �

� are introduced for SU���L and the gauge boson B� for U�
�Y� The

four gauge bosons couple to a scalar Higgs �eld� Through a spontaneous symmetry

breaking mechanism� linear combinations of these massless bosons become the massive

W�� W� and Z�� and also the massless �� The relationships between the �elds are

W�
� �


p
�
�W �

� � iW �
�� �
���

Z� � W �
� cos �W �B� sin �W �
���

A� � W �
� sin �W �B� cos �W �
�	�

where �W is the Weinberg angle� a fundamental parameter of the electroweak theory�

The portion of the Lagrangian which describes the electroweak interactions can

be written as

LEW
int �

gWp
�
�J�

� W
�� � J�� W

��� � gZ�J
�
� � sin� �WJ

EM
� �Z� � eJEM

� A� �
���

with

gW �
e

sin �W
�
���

and

gZ �
e

sin �W cos �W
�
���

where e is the magnitude of the electron�s electric charge�

In this thesis� we will be concerned mainly with the physics of the weak charged

current� namely those interactions involving the W� bosons� The explicit form for

the weak charged current is given for leptons by

J�
� � ���e ��� ����




�
���
 � ���

�BBB�
e




�

�CCCA �
���

	



and for quarks by

J�
� � ��u �c �t�




�
���
� ���V

�BBB�
d

s

b

�CCCA � �
�
�

where

V �

�BBB�
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

�CCCA �
�

�

The primed quarks from equation 
�� are de�ned as�BBB�
d�

s�

b�

�CCCA � V

�BBB�
d

s

b

�CCCA � �
�
��

The matrix V is called the Cabibbo�Kobayashi�Maskawa �CKM� quark mixing

matrix� The CKMmatrix is not diagonal and therefore allows for interactions between

quarks from di�erent generations� unlike the case for leptons� The CKM matrix can

be parameterized in terms of four rotation angles ��� ��� �� and � as

V �

�BBB�
c� �s�c� �s�s�
s�c� c�c�c� � s�s�e

i� c�c�s� � s�c�e
i�

s�s� c�s�c� � c�s�e
i� c�s�s� � c�c�e

i�

�CCCA �
�
��

where ci � cos �i and si � sin �i�
�� A popular approximation to the CKM matrix is

given by �BBB�

� ���� � A����� i��

�� 
� ���� A��

A���
 � �� i�� �A�� 


�CCCA �
�
��

and is called the Wolfenstein parameterization���� The strength of the quark couplings

between generations can be understood in terms of powers of the constant � � ����

The quark couplings are strongest within the same generation� suppressed by a factor

of � between the �nd and 
st generation� suppressed further as �� between �rd and

�nd generations� and the weakest �� coupling is between the �rd and 
st generation

quarks�

�
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Figure 
�
� The Upsilon Resonances

Based on a global �t to all available data and assuming unitarity of the matrix�

the �� con�dence level ranges for the magnitudes of the matrix elements are����BBB�
����� to ���	� ��
� to ��� �� to �	

��
� to ���� ����� to ���	� ��� to ���

�� to �
	 �� to ��� ���� to ����	

�CCCA � �
�
	�

��� B mesons

A B meson is a bound state of a quark�antiquark pair with a bottom quantum

number of �
� The lightest two varieties are the neutral B� composed of a b �d quark�

antiquark pair� and the charged B� composed of a b�u pair� A slightly more massive

neutral B meson� the Bs �b�s� has been observed at higher energy experiments� but

will not be discussed in any great detail in this thesis�

B mesons can be produced by colliding e� and e� at a center of mass energy

corresponding to the fourth of the � bottomonium �b�b� resonances� Figure 
�
 shows

�



the cross section for the process e�e� � hadrons in the energy region of 
 GeV����

The ��
S�� ���S�� and ���S� are relatively narrow resonances corresponding to the

N � 
� � and � S�wave states of the bottomonium system� Each of these three reso�

nances is quite narrow� decaying primarily through OZI�suppressed strong decays�	��

The ���S� at 
�	� GeV is the �rst bottomonium resonance with a mass greater

than twice the mass of the B� or the B� �but not the Bs� meson� Consequently� the

reaction

e�e� � ��� ���S�� B�B� or B�B�

is allowed to take place� broadening the resonance signi�cantly� The cross section for

the above process is approximately 
 nb�

At the energy of the ���S� the virtual photon may not decay to a b�b pair� but

may instead decay into lighter quark�antiquark pair

e�e� � ��� c�c or s�s or u�u or d �d

which has a cross section of approximately � nb� The nonresonant production of

light quarks is referred to as continuum production� For studies of B mesons� the

continuum events are considered to be background� To account for this background�

the CLEO experiment operates not only at a center of mass energy of 
�	� GeV�

referred to as ON running conditions� but also collects data at an energy about �

MeV below the ���S�� called OFF running conditions� CLEO spends approximately

��� of the time collecting ON data� and 
�� collecting OFF data� After scaling the

OFF data by a factor to correct for the di�erences in energy and integrate luminosity�

the OFF results are subtracted from the ON�

B mesons decay through the quark�level transition b � cW� or the more sup�

pressed transition b � uW�� The �rst�order feynman diagrams are shown in Fig�

�
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Figure 
��� Some feynman diagrams describing B meson decay
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ures 
���a�� �b�� �c� and �d�� More complicated amplitudes are of course possible� For

example� Figure 
���e� shows an example of a penguin decay�

The most important diagram for this thesis is the spectator process of Figure 
���a��

which is expected to be the dominant process in B decay� The W� can decay either

to a lepton�antineutrino pair� called semileptonic B decay� or the W� can decay to a

quark�antiquark pair� called hadronic B decay� In hadronic decay� theW� may mate�

rialize into a number of hadrons if fragmentation causes extra quark�antiquark pairs

to be popped from the vacuum� The semileptonic decay is particularly interesting

for two reasons� Firstly� the leptons from the W� do not interact with the hadrons

from the lower vertex� which makes this decay mode easier to understand� Secondly�

the charge of the lepton from the W� indicates the �avor of the b quark within the

B meson�

In this thesis� semileptonic decays will be used to measure two properties of the B�

meson� For both measurements� a sample of events enriched in B� will be obtained

using a technique called B� tagging� We present a measurements of the B��B� mix�

ing parameter �d and the neutral B semileptonic branching fraction Br�B� � X�����

Using common tools and techniques� these measurements investigate two complemen�

tary aspects of B� decay� The mixing measurement is a probe of the fundamental

parameters � and � of the CKM matrix describing weak decays of quarks� while the

semileptonic branching fraction measurement is a probe of our understanding of the

hadronic width of B decays� in e�ect an examination of QCD calculations and thus

an investigation of the strong force�

The remainder of this thesis is organized as follows� In Chapter �� the physical

processes of B mixing and of B semileptonic decay will be discussed� Chapter �

presents the measurement of B��B� mixing using neutral B tags� and describes the






tagging technique that will be used for both measurements� The measurement of the

B� semileptonic branching fraction is described in Chapter 	� including a discussion

of the CLEO Collaboration�s measurement of the B lifetime ratio� Finally� Chapter

� will summarize the results presented in this thesis�







Chapter �

Physical Processes

��� Mixing

The phenomenon of the spontaneous transformation of a particle into its own

antiparticle is known as mixing� or particle�antiparticle oscillation� Gell�Mann and

Pais predicted in 
�		 that mixing should occur in the neutral kaon system���� The

prediction was con�rmed by experiment in 
�	� with the observation of the e�ects of

K��K� mixing���� Neutral kaons are not the only particles expected to oscillate� For

example� in the neutral charm meson system� D��D� mixing is expected to occur as

well� but at a very small rate according to the Standard Model� D��D� mixing has

yet to be experimentally observed���� Additionally� there exist two types of neutral

bottom mesons� Bd ��bd� and the more massive Bs ��bs�� In both systems� mixing is

substantial� The ARGUS Collaboration �rst observed the e�ects of B�
d � B

�
d mixing

in 
������� and evidence exists for oscillations of Bs�
�� For the remaining discussion�

we will restrict our attention to the Bd system�


�



The Hamiltonian matrix describing the system�s evolution in the basis of �avor

eigenstates is

H

�� B�

B�

�A �

�� M � �
�
i M�� � �

�
i ��

M�
�� � �

�
i ��� M � �

�
i 

�A�� B�

B�

�A � ���
�

The diagonal terms describe the mass M and the decay width  of the �avor eigen�

states� the nonzero o��diagonal terms are responsible for mixing between the eigen�

states� The factor M�� arises from virtual transitions between B� and B�� Long

distance e�ects due to common decay modes of the eigenstates contribute to  ���

Decays to these common modes such as ���� are CKM suppressed� and so the long

distance e�ects are expected to be small in the bottom system�

�� Consequently� the

 �� term is small and usually neglected�

If the above matrix is diagonalized� one obtains the physical states jB� � and

jB� � with masses M�� M� and widths  ��  �� In the absence of CP violation� the

physical states are orthogonal and can be expressed in terms of the �avor eigenstates

as

jB� ��

p
�
�jB� � �jB� �� �����

jB� ��

p
�
�jB� � �jB� ��� �����

The frequency of B��B� oscillations is driven by the size of the mass di�erence

!M �M� �M� � �Re
q
�M�

�� � i �������M�� � i ����� � �jM��j� �����

If a meson is created at time t �  in a jB� � state� then the probability that it

will be jB� � at a later time t is

P �t�unmixedj � B��t�jB� � j� � 


�
exp�� t�
 � cos�!Mt��� ���	�

and the probability that it will instead be in a state jB� � is

P �t�mixed � j � B��t�jB� � j� � 


�
exp�� t�
� cos�!Mt���� �����


�



Integrating the above time�dependent probabilities over the entire lifetime of the

meson� one obtains the fraction of the time that the meson will decay in the state

jB� � or jB� � as

N�B�� �
Z �

�
P �t�unmixed �




�

�



 
�

 

 � � �!M��

�
�����

N�B�� �
Z �

�
P �t�mixed �




�

�



 
�  

 � � �!M��

�
� �����

Thus� the probability that a state created as jB� � will decay as jB� � is given by

�d �
N�B��

N�B�� �N�B��
�

x�d
��
 � x�d�

�����

where

xd � !M� � ���
�

�Here� the subscript d is explicitlywritten to avoid confusion with the similarly de�ned

quantities in the literature for the Bs meson��

Mixing occurs through a second order weak transition� and is described by the two

box diagrams shown in Figure ��
� The o��diagonal mass term in the HamiltonianM��

is calculated from these diagrams�

�� Neglecting QCD corrections� the expression for

the mass di�erence takes the general form

!M �
G�
FM

�
W

���
� B�jjV�A� jV�A��jB� �

X
u�c�t

�i�jAij ���

�

where �i is given by the CKM matrix elements

�i � V �
ibVid ���
��

for i � u c t� j � u c t and the terms Aij are the results of loop integrals which

are functions of the mass of the virtual quarks and of the W � Although each of the

virtual quarks inside the loop can be either u c� or t� the dominant contribution is


�
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Figure ��
� Box diagrams for Bd mixing


	



when both quarks are top�

�� The vacuum insertion approximation is used to solve

the matrix element

� B�jjV�A� jV�A��jB� � �� B�j��b���
� ���d���b���
� ���d�jB� �

� B � B�j��b���
� ���d�j �� j��b���
� ���d�jB� �

� B 	
�
f�BmB�

���
��

Here B is the bag parameter arising from this approximation� fB is the B� decay

constant� and mB is the mass of the meson� B describes the degree to which the box

diagrams of Figure ��
 dominate the mixing� and estimates are that the value lies

close to 
��
���

Perturbative QCD corrections to the box diagrams are able to be summarized in

an overall multiplicative factor �QCD �
�� 
��� Calculations indicate�
	�

�QCD � �		� ���
��

The �nal expression for !M then takes the form

!M �
G�
F

���
Bf�BmBm

�
W�QCDF �mt�j�V �tbVtd��j ���
	�

where

F �mt� � m�
t

m�
W

f�
m�

t

m�
W

� ���
��

and

f�x� �



�
�

�

��
 � x�
� �

�




�
� x��
� �

�

x� lnx

�
 � x�
� ���
��

In this expression GF is the Fermi coupling constant� mt and mW are the top quark

and W boson masses� The function F �m�
t�m

�
W � changes slowly for a range of top

masses� with F �� � 
 and F �
� � ��	�

There is a substantial uncertainty on the value of the decay constant fB which

limits the precision with which one can measure Vtd� The decay constant can be


�



Group
p
BfB�MeV Reference

BLS 
�� � 
 � �� �
��

UKQCD 
� ��
��

���
��
 �
��

PWCD 
� � 	 �
��

ELC �	 � � �
��

Hashimoto 
�
 � �� ��

�	� ���

FNAL 
�� � �� ��	
��� ��
�

APE �� � 
	 � �	 ����

Table ��
� Calculations of the B decay constant

measured through the channel B� � �� ��� but current experimental limits are con�

siderably larger than theoretical expectation� CLEO���� has set an upper limit of

��� � 
�� for B�B� � �� ��� � corresponding to an upper limit of ��� MeV on the

product fBjVubj� Taking jVub�Vcbj � �� and jVcbj � ��� this implies an upper limit

on fB of approximately � GeV� Clearly� it will be some time before fB will ever be

measured by experiment� Consequently� the only information about fB comes from

theoretical calculations� summarized in Table ��
� Most make the assumption that

B � 
� For this thesis� we take
p
BfB � 
� � 	 MeV� following the example of

Reference ����� The assigned uncertainty of 	 MeV is to be taken with caution� and

may be an underestimate�

There is some hope that feedback from experiment can aid in the narrowing of

these predictions� CLEO��	� has measured the Ds decay constant via the channel

Ds � 
� ��� �nding fDs
� ��� � �� � ��� This measurement can be compared

with lattice calculations of fDs
� What is learned can strengthen con�dence in the fB

calculations� Additionally� the ratio fB�fDs
may be determined with better precision

than fB alone�

A measurement of !M in turn yields information about standard model parame�


�
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Figure ���� One of six unitarity triangles

ters� Unitarity of the CKM matrix implies that any two rows or any two columns are

orthogonal� six conditions in all� We examine the condition which combines elements

from the �rst and third columns

VudV
�
ub � VcdV

�
cb � VtdV

�
tb � � ���
��

This can be rewritten in the Wolfenstein parameterization as

V �
ub

�Vcb
�

V �td
�Vcb

� 
 ���
��

which describes a triangle in the complex plane with vertices at � �� � 
� and

�� ��� shown in Figure ���� Since

jVtdj � A��
q
�
 � ��� � �� �����

a measurement of !M therefore gives information about the quantities � and �� con�

straining an annular region in the ��� plane centered about � 
�� Other constraints
can be determined from measurement of the Cabibbo�suppressed rate b� u��� and


�



from measurement of the parameter j�j in CP�violating neutral kaon decays� Thus�

B� � B� mixing plays an important role in the determination of the fundamental

parameters � and � of the CKM matrix�

��� Semileptonic Branching Fraction

One of the outstanding problems in heavy quark physics is the apparent discrep�

ancy between the measured and the predicted values for the B meson semileptonic

branching fraction� This is a question of the relative sizes of the semileptonic and

hadronic B decay widths� Although both widths must be calculated to arrive at

the B semileptonic branching fraction� the hadronic portion is the more di�cult to

determine� Thus� comparison of theory and experiment is e�ectively a probe of the

hadronic portion of the the total B decay width� and a useful tool to aid in our

understanding of QCD�

Predictions for Total Rate

Semileptonic B decay proceeds through a coupling of the b quark to a c� or u�

quark and� via W�� to a l�� pair� The accompanying quark plays no direct role and

is known as the spectator� The semileptonic branching fraction is de�ned here to be

Br�B � X������ �
 �B � X������

 �B � All�
����
�

where

Br�B � X������ � Br�B � Xe���e� � Br�B � X
������ ������

The � lepton is not included in this equality because its large mass reduces the

available phase space� resulting in a smaller decay rate�


�



The rate for such semileptonic decays can be na"#vely calculated in the spectator

model by simply accounting for all possible decay products of the W and ask which

fraction are electrons �or muons�� First� accounting for all possible decay products�

one �nds that the overall B decay width is

 B �
G�
F jVcbj�m�

b


����
�QCD�	rc � �rcc � r�c� ������

and the semileptonic width is

 e �
G�
F jVcbj�m�

b


����
�QCDrc ������

In these expressions� the small contribution from b� u transitions has been neglected�

The correction factor� �QCD is approximately ������� ���� The quantities r account

for di�erent phase space factors depending on the mass of the �nal decay products

of the W � We take rc � ��	� and rcc � r�c � �
������ In this view� the semileptonic

branching fraction is given as

Br�B � X������ �
 e
 B

�
rc

	rc � �rcc � r�c
� 
��	�� ����	�

This picture is not entirely accurate� however� E�ects of hard gluon exchange

and gluon radiation increase the hadronic width���� ��� The nonleptonic width is

enhanced by the factors � and J where

� �
c�� � �c��

�
������

and c� and c� are the Wilson coe�cients given by

c� �

�
�s�
�

�s�MW �

�d�
������

with d� � � �
�� and d� � ��

��� Gluons with momenta in the range 
 to MW are

considered in this calculation� The additional factor J accounts for soft gluons below

�Here� �QCD is di�erent from the quantity presented previously in the mixing discussion�

�



the momentum cuto� 
� The product of the factors is approximately �J � 
����

but this number is sensitive to a number of quantities including the quark masses�

and a color matching factor � not shown explicitly in the expression for �� In the

asymptotic limit� � equals 
��� but in other theories of QCD � equals ��
� ���� After

perturbative QCD corrections� the semileptonic branching fraction becomes

Br�B � X������ �
 e
 B

�
rc

�rc � �J�rc � rcc� � r�c
� ������

For reasonable ranges of quark masses� the perturbative corrections lower the semilep�

tonic branching fraction into the range 
��� � 
���������

Calculations of the nonperturbative QCD corrections have been recently improved

through the advent of the Heavy Quark Expansion���� �	�� Up to order 
�m�
b � the

corrections have been found to decrease the semileptonic branching fraction� but only

by a mere �� of it�s value� Additionally� corrections to order 
�m�
b have been studied

are expected to be quite small����� The e�ects of nonperturbative corrections to the

semileptonic branching fraction are therefore usually ignored� After most e�ects are

taken into account� the prevailing view has recently been that the prediction for the

B semileptonic branching fraction is not lower than approximately 
��	������

One Exclusive and One Inclusive Model

One can examine not only the overall semileptonic decay rate  sl but also the

lepton energy spectrum d sl�dE� There exist a number of models which describe

semileptonic B decay� each with a unique lepton energy spectrum� It is not the pur�

pose of this thesis to examine the measured quantity d sl�dE in order to distinguish

among these models� Rather� a model for d sl�dE will be chosen in order to arrive

at a value of  sl� It is for that reason that the subject will now be brie�y discussed�

These models of semileptonic B decay can be broken down into two general cat�

�




egories � inclusive and exclusive� Inclusive models treat the quarks as free objects�

while exclusive models consider the decay to each �nal state meson �DD�D��� sep�

arately� Here only one model of each type will be summarized� the inclusive model of

Altarelli et al� and the exclusive model of Isgur et al�

In the model of Altarelli� Cabibbo� Corb$o� Maiani and Martinelli �ACCMM� �����

the spectator quark is taken to have a random Fermi momentum p given by

f�p� �
�p�p
�p�f

exp��p��p�f �� ������

In this model� pf is a free parameter� To conserve energy and momentum� the b quark

is assigned an o��shell mass squared

m�
b � m�

B �m�
sp � �mB

q
p� �m�

sp �����

where msp is the mass of the spectator quark and mB is the mass of the B meson�

This is convoluted with the semileptonic partial width

d sl
dx

�
G�
FV

�
cbm

�
b

����
�%�x ���G�x ��� ����
�

to arrive at the lepton energy spectrum� Here x � �E��mb and � � mc�mb� The

function %�x �� accounts for the phase space and the V �A structure of the b� cW�

current and has the form����

%�x �� �
x��
� �� � x��

�
� x��
��
� x���� �x� � �� � x����� ������

The function G�x �� accounts for the e�ects of gluon radiation and is not shown

explicitly here� It is e�ectively independent of the lepton energy and is important only

at the spectrum endpoint� One attraction of this model is that it avoids the explicit

m�
b dependence which carries a substantial uncertainty due to lack of knowledge of

the b quark mass� Instead� this dependence is absorbed in the less�sensitive parameter

pf which is determined from �tting the shape of the spectrum�

��



The exclusive models assume that the semileptonic decays proceed dominantly to

single body resonant �nal states such as D and D�� The hadronic currents can be

expressed as

� DjA�jB ��  ������

� DjV�jB �� f��pB � pD�� � f��pB � pD�� ������

� D�jA�jB �� f��� � a���
� &pB��pB � pD��� � a���

� &pB��pB � pD��� ����	�

� D�jV�jB �� ig������
���pB � pD�

��pB � pD��
� ������

where the quantities a� f and g are the form factors which each model must determine�

The form factors f� and a� are unimportant because they multiply terms which are

proportional to lepton mass and therefore negligible�

The exclusive model of Isgur� Scora� Grinstein and Wise �ISGW����� calculates

these form factors by determining them �rst for the largest lepton momentum trans�

fers� known as q�max where the �nal state meson is at rest with respect to the par�

ent meson frame� Next� the form factors are extrapolated to the kinematic regime

where the charm meson becomes relativistic� The form factors are calculated from

Schr"odinger�s equation with a Coulomb plus linear potential of the form

V �r� � ���s
�r

� br � c ������

with �s � �	� b � �
� GeV�� c � ���� GeV� The resulting form factors have the

form

F �q�� � F �q�max�exp

�
q�max � q�

�q�max

�
������

where the factor � is an ad�hoc constant which accounts for relativistic e�ects� From

the measured pion form factor� Isgur et al� �nd � � ��� The �nal state charmmesons

considered in the ISGWmodel are theD� D� and four D�� states� The default relative

abundances of D�D��D�� are ������

�
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The Ratio of Lifetimes

Non�spectator diagrams can contribute di�erently to the hadronic width of B�

and B�� contributing to di�erences in lifetimes and semileptonic branching fractions�

Thus� a measurement of the ratio of B� and B� lifetimes provides important feedback

in order to understand the puzzle of the semileptonic branching fraction�

As an example of such e�ects� the lifetimes of the D� is ��	 times that of the D��

In the D system� the lifetime di�erence is mainly caused by a reduction of the D�

hadronic rate from interference between the two amplitudes where the �d quark from

the W� decay and the spectator �d quark are interchanged�

Current predictions are that the B� and B� mesons have similar lifetimes� Isospin

symmetry indicates that B� and B� mesons should have equal widths for both inclu�

sive and exclusive channels� This assertion is supported by predictions from the QCD

corrected spectator model of B decays� as well as the observed equality of semilep�

tonic widths of the D� and D� mesons Predictions of the asymmetry in total width

of B mesons are at the level of 	����

��
��
� 
 � �	

�
f�B

�� MeV��

�
� ������

Experimentally� this asymmetry is normally expressed as the ratio of semileptonic

branching fractions� as a number of systematic errors cancel in taking the ratio�

Assuming equality of semileptonic widths� this ratio is equal to the ratio of lifetimes

or inverse that of the total widths�

��B��

��B��
� tot�B��

tot�B��

� tot�B��

�B��X�����
	 �B��X�����

tot�B��

� Br�B��X�����

Br�B��X�����

� b�
b�

�����

The ratio b��b� may thus be compared directly to the ratio of lifetimes� measured
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through decays in �ight�
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Chapter �

The Apparatus

This thesis presents some measurements of B� meson properties� In order to

make these measurements� a means of producing the B� mesons is required� as well

as a means of observing their decay� A machine called the Cornell Electron Storage

Ring �CESR� produces the B� mesons for this thesis� and a device called the CLEO

II detector observes the decays�

��� CESR

The Cornell Electron Storage Ring is located inside a ��� meter diameter tunnel

some 
 meters beneath the athletic �elds of the Cornell University campus in Ithaca�

New York� Its purpose is to collide electrons with positrons with center of mass energy

in the range of � to 
� GeV� the region of the � resonances�

Before collisions can occur� a multi step acceleration process must take place� This

begins with the thermionic emission of electrons from a hot �lament cathode at the

end of a linear accelerator� or linac �see Figure ��
�� After traversing the � meter

��



length of the linac� the electrons reach an energy of about 
	 MeV before being

injected into the synchrotron� The synchrotron takes the electrons and accelerates

them with radiofrequency cavities to 	 GeV within a fraction of a second� Having

reached their full energy� the electrons are then passed to CESR through the east

transfer line into one of � di�erent bunches� evenly spaced about CESR� This entire

acceleration cycle is repeated at � Hz until the current of electrons in CESR reaches

the desired level�

Since positrons are not naturally occurring particles� the procedure for �lling

CESR with them is somewhat more complicated than for electrons� As before� elec�

trons are accelerated in the linac� but they then strike a thin tungsten target which

is placed halfway down the length of the linac� A shower of electrons� x�rays and

positrons are produced by the target� The positrons are then collected� accelerated

down the remainder of the linac� and injected into synchrotron and CESR� but in the

direction opposite the electrons�

Once inside CESR� the electrons and positrons gradually lose energy through

emission of synchrotron radiation in the form of x�rays� The loss is of order 
 eV

per particle per turn in CESR� This energy must be continuously restored to the

beams in order to maintain the requisite center of mass energy at the beam collision

point� A set of radiofrequency cavities provides the necessary energy to the beams to

o�set synchrotron radiation losses� A separate facility called the Cornell High Energy

Synchrotron Source �CHESS�� also shown in Figure ���� uses these x�rays to study

the structure of materials�

In practice� the positrons are injected �rst into CESR� followed by the electrons�

The entire injection procedure takes approximately 
 minutes� The accelerator has

recently been running on a duty cycle where the stored beams remain in CESR for
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approximately 
 hour before the machine is �lled again� The beams have a �nite

lifetime due to losses from occasional collisions of the beam particles with residual

gas molecules in the vacuum chamber� with the vacuum chamber walls� and with

other beam particles�

Once the counter�rotating bunches of electrons and positrons are in CESR� they

are kept apart by a series of electrostatic separators such that there are no collisions�

except at one point in the ring� There� the two bunches are focussed and cross in an

area of size 	 
m wide by 
 
m high at a rate of ��� MHz� The rate at which

electrons and positrons collide is the product of the instantaneous luminosity of the

machine times the cross section� The luminosity of a collider is given by

L �
N�N�fn

�A

where N� and N� are the number of particles per bunch� n is the number of bunches�

f is the revolution frequency of one bunch� and A is the cross sectional area of the

region where the bunches cross� A typical value for L at CESR is ��	�
�� sec��cm���

This is currently the world�s highest luminosity achieved at any collider� Given a cross

section of 
 nb � 
� 
��� cm� for the process e�e� � ���S�� B �B� the rate of B

meson pair production at CESR is 
 ��	 Hz�

��� CLEO II

In this section an overview of the CLEOII detector is given� while a more detailed

description can be found in reference ��
��

����� History
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The present CLEO II detector is the product of a gradual evolution of the original

CLEO detector� which started taking data in 
��� when CESR �rst came online�

The original detector consisted of a 
� layer drift chamber inside a conventional

solenoidal magnet of radius 
 meter with a �� Tesla �eld� A system of octants

was outside the coil and included tracking instrumentation� proportional chambers�

time of �ight counters� electromagnetic calorimeters� magnetic �ux return� and muon

chambers� The �rst CLEO detector was not optimized for the study of B mesons

because it was designed before the �rst � resonance was discovered in 
���� The �rst

upgrade was in 
��
 to replace the magnet with a superconducting coil� providing a


� Tesla �eld� In 
���� a new 
 layer tracking chamber� the vertex chamber �VD�

was added at the innermost region of the detector� A completely new 	
 layer main

drift chamber �DR� was installed in 
���� and the resulting detector was dubbed

CLEO 
�	�

The CLEO II detector was installed in 
������� Two views of the detector are

shown in Figures ��� and ���� The detector recycles the same VD and DR tracking

chambers from CLEO 
�	� but all other elements are new� These include a smaller

radius beam pipe� a straw tube tracking chamber inside the VD� a time of �ight

system� a CsI crystal electromagnetic calorimeter� a new superconducting solenoid at


�	 meter radius with a 
�	 Tesla magnetic �eld� and a muon identi�cation system�

The CLEO II detector is not the end product of this evolutionary process� As

this thesis is being written� preparations are being made to replace the beam pipe

and innermost tracking chamber with a smaller radius pipe and a three�layer silicon

vertex detector� The upgraded CLEO II detector should begin taking data in the Fall

of 
��	� Additionally� construction is beginning on the CLEO III detector� planned

to be ready a few years hence� CLEO III will be based on the CLEO II detector�

�



but with all elements inside the radius of the crystal calorimeter replaced� The new

systems will include a completely new set of silicon detectors� a new drift chamber

and a ring imaging cerenkov detector for particle identi�cation at high momentum�

Thus� the CLEO II detector represents one phase of a very active and ever�improving

program to study heavy �avor physics at the ���S��

����� Beam Pipe

The CLEO II beam pipe is beryllium tube of radius ��	 cm� length �� cm and

thickness �	 mm� The pipe is designed to have walls as thin as possible while still

providing mechanical stability against the stresses introduced by one atmosphere of

pressure� A thin wall reduces the likelihood of either scattering or energy loss by

particles passing through it� The �	 mm thickness of beryllium represents ���� of

a radiation length�� Finally� the inner surface of the beam pipe is coated with a 
 
m

layer of Ni and a � 
m layer of Ag to absorb unwanted background from synchrotron

radiation�

����� Precision Tracking Layers

The PTL �Precision Tracking Layers� is the tracking device which is closest to the

beam pipe� It extends from a radius of ��	 cm to � cm and has a length of �	 meters�

It is composed of � layers� each with �� tubes containing a sense wire� as shown in

Figure ���� The walls of the tubes are conductive aluminized mylar and serve as the

cathode� and the anode wires are 
	 
m gold plated tungsten� No measurements are

made by the PTL of the z�coordinate of tracks� When CLEO II began taking data in

�A fast electron passing through one radiation length of material loses �� � of its energy�
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���� the gas used in the PTL was a 	�	 mixture of argon and ethane� Using this

gas� the spatial resolution on the position measurements was 
 
m� The PTL gas

was changed in the spring of 
��� to dimethylethane �DME� improving the resolution

to 	 
m�

����� Vertex Detector

The VD extends from a radius ��
 cm to 
��� cm and has a length of �� meters�

It is a wire chamber with 
 layers of sense wires housed between two carbon �lament

tubes� There are �� sense wires per layer in the �rst �ve layers� and �� sense wires

per layer in the remainder� each at the center of a hexagonal cell� On the inside of

the �rst and the outside of the tenth layers� cathode strips complete the remaining

�eld shaping� The cross section is shown in Figure ���� The chamber is �lled with a

	�	 mixture of argon and ethane� 	 psi over atmospheric pressure� The added pres�

sure provides higher gain and shorter drift times� Unlike the PTL� the VD provides

information about the z�coordinate of the track by comparing the relative amplitude

of signals observed at opposite ends of each sense wire� The wires are composed of a

nickel�chromiumalloy� with a slightly larger resistance than the tungsten� appropriate

for use in this charge division technique� Using this method the z�coordinate where

the track passed nearest each sense wire is measured with a resolution of 
�� cm�

����� Main Drift Chamber

The Main drift chamber extends from 
��� cm to ���� cm with a length of 
���

meters� The chamber is strung with 	
 layers of � 
m gold plated tungsten sense

wires arranged in square cells� staggered radially� The number of sense wires per layer

increases with radius so as to keep the cells nearly uniform in size� In forty layers the
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sense wires align parallel to the z axis of the detector� while the wires in the remaining

eleven layers are pitched at slight angles� These pitched stereo wires� spaced about

every fourth layer� provide information about the z�coordinate of the track� As in the

VD� the inner and outer surfaces of the chamber contain segmented cathodes which

both provide �eld shaping and z measurements from the induced signals� Tables ��


and ��� summarizes the wire geometry in all three chambers�

The resolution of the tracking system is measured to be

��pt�pt�
� � ��

pt�

� � ������ ���
�

where pt is the component of the momentum perpendicular to the beam direction in

GeV�c� The angular resolution measured in e�e� � 
�
� events is found to be

�� � 
 mrad �� � � mrad� �����

Particle species can be determined by examining the speci�c ionization energy

loss �dE�dx� of the track within the drift chamber� The ionization distribution has

a large Landau tail� Consequently� events above the median are discarded� and the

mean calculated from the remaining sample �a 	� truncated mean� is taken to be

the best estimate of dE�dx� The measurement must be corrected for the dip angle

within the cell� for the drift distance� and for the entrance angle in the r�� plane of

the cell� A dE�dx resolution of ���� is found for e�e� � e�e� �bhabha� tracks� and

��
� for minimum ionizing pions� Figure ��� shows the dE�dx in units of keV�cm as

a function of momentum for tracks in the drift chamber� Clear bands are visible for

each particle species� We de�ne SGxxDI as the di�erence between the measured dE�dx

and the dE�dx one would expect for particle species xx� divided by the resolution�

with xx being either EL� MU� PI� KA or PR�
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Layer Radius Wires Angle Layer Radius Wires Angle

�cm� �deg� �cm� �deg�
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� 	�
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Table ��
� PTL and VD Wire Geometry

����� Time of Flight

The time of �ight �TOF� system determines the species of the particle by mea�

surement of its velocity� once the momentum is known from the curvature of the

track within the tracking chambers� The TOF system is comprised of a barrel and

an endcap portion�

The barrel TOF detector consists of �� scintillation counters mounted just outside

5 cm 17˚

10 cm

279.4 cm

279.4 cm189.8 cm 189.8 cm

Figure ���� Barrel Time of Flight Counter
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Table ���� DR Wire Geometry
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the DR� with a light guide and photomultiplier at each end� The light guides are

necessary to keep the photomultiplier tubes operating safely away from the magnetic

�eld of the detector� Figure ��� shows the geometry of a single counter� Bicron

BC��� is the material used in the counter� and the light pipes are constructed from

lucite� The photomultiplier tubes are a variation of the standard Amperex ���

The endcap TOF detector is positioned just behind each end of the DR� At each

end are �� wedge�shaped scintillation counters� shown in Figure ���� The counters are

read out with a single photomultiplier tube at the small end� These tubes are Hama�

matsu proximity mesh type� and are designed to operate inside high magnetic �elds�

Unlike the barrel� the signals from the endcap photomultiplier tubes are subsequently

ampli�ed�

Figure ��� shows a plot of 
�� as a function of momentum where � � v�c is

velocity of the particle as measured by the TOF system� Bands are clearly visible for

each particle species�

����� Electromagnetic Calorimeter

A hallmark of the CLEO II detector is its excellent capability to detect photons�

The electromagnetic calorimeter is composed of �� cesium iodide crystals doped

with thallium� The system is located just outside of the Time of Flight detector and is

divided into barrel and endcap regions� The barrel portion contains �
�� trapezoidal

crystals which are positioned such that they point towards the interaction region�

Each endcap portion is composed of ��� rectangular crystals all with axes parallel to

the z�axis of the detector� and thus lack the projective geometry found in the barrel

crystals� The crystals are � cm deep� a thickness of 
� radiation lengths� and fully

contain the electromagnetic shower� A �mm thick UVT lucite window separates the
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back end of the crystal from four photodiodes� which detect the scintillation light from

the crystal� The fourfold redundancy insures that isolated failures of photodiodes will

not compromise the calorimeter performance� The four preamp signals from a single

crystal are then summed and shaped before being sent to an ADC�

The energy resolution of the CLEO II calorimeter is excellent and for the barrel

barrel can be summarized as

�E
E
��� �

��	

E�	��
� �
� � �
E �����

where E is the photon energy in GeV� The resolution is about 
�	 � at 	 GeV and

��� � at 
 MeV� The endcap region is somewhat worse due to the drift chamber

endplate in front of the crystals which causes showering to begin prematurely�

Not only is the energy resolution of the calorimeter exceptional� but the �ne gran�

ularity permits very good resolution of position as well� This is critically important in

order to reconstruct �� or � decays to ��� This is one of the great advantages of the

CLEO II detector� For the barrel portion of the calorimeter� the angular resolution

can be parameterized as

�
�mr� �
���p
E
� 
�� ���mr� � ���
sin���� �����

The rms width of the �� invariant mass peak is approximately 	 MeV�

In this thesis� the usefulness of the calorimeter lies not in its ability to reconstruct

neutrals� but in its ability to help identify electrons� The ratio E�p of the energy

measured in the calorimeter to the momentummeasured in the tracking chambers is a

very powerful �gure of merit for electron identi�cation� An E�p close to 
 is consistent

with an electron hypothesis since all of the electron�s energy should be deposited in

the calorimeter� Hadrons and muons have smaller E�p� This can be combined with

other information from the calorimeter� and from the dE�dx measurement in the drift

��



chamber to calculate a sum of log likelihood ratios Le for the track to be an electron�
We de�ne it to be

Le �
X
i

ln�Pei�P� ei� ���	�

where Pei is the probability that a track is an electron according to the ith estimator�

and P� ei is the probability that the track is not an electron� A detailed discussion of

the electron e�ciency and hadron misidenti�cation probability �fake rate� is given in

reference �����

����	 Superconducting Solenoid

A magnetic �eld is required to measure the momentum of charged particles from

their curvature� The CLEO II magnet is a superconducting solenoid providing a


�	 Tesla axial �eld which is uniform to within ���� over the volume of the Drift

Chamber� The coil consists of two layers of 	 mm � 
� mm aluminum rectangular

tubing containing a �at ribbon of Cu�Nb�Ti superconducting cable� wound on the

inside surface of a 
�		 meter diameter aluminum cylinder� The inner layer of tubing

contains an eleven strand ribbon� while the outer layer contains a ribbon of nine

strands� all carrying a current of �� A� The entire system is cooled to a temperature

of � Kelvin using a liquid helium circulation system� The �ux return is provided by

four layers of iron outside the magnet� each �� cm thick� and which serve as absorbers

for the muon detection system�

����
 Muon Chambers

Between the iron layers for magnetic �ux return are three superlayers of detectors

for muon identi�cation� Each superlayer consists of three sublayers of plastic Iarocci

�	
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Figure ��
� Cross section of muon chamber proportional tubes�
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Figure ��

� Cross section of one muon chamber superlayer�
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tubes� shown in cross section in Figure ��
� A 	 
m gold�plated tungsten anode

wire runs down the center of each channel� The three sides of the plastic 'comb( are

coated with a layer of graphite to act as a conductive cathode� Copper strips run

perpendicular to the anode wires on the side which is not coated by graphite� The

spacing between copper strips is the same spacing as between the anode wires�

The tubes are �lled with the same 	�	 argon�ethane mixture as is used in the

main drift chamber and are operated in a proportional mode at �	 V� The readouts

from a number of neighboring counters and neighboring strips are ganged together

at both ends through 
 ) resistors� Charge division is the used to determine the

coordinate of the hit� eliminating the need for a large number of readout channels�

The spatial resolution obtained with this method is ��� cm for the counters� This

resolution is adequate since it is smaller than the uncertainty in the projected track

position at the muon chamber radius due to e�ects of multiple scattering�

The muon chambers are arranged in an octagonal geometry about the periphery of

the CLEO II detector� The cross section of one superlayer is shown in Figure ��

� An

additional superlayer covers the endcap regions of the detector� The total coverage is

��� of �� steradians� Depending on the direction of the particle� the total thickness

of the iron represents between � to 
 nuclear absorption lengths�

A detailed description of the muon identi�cation e�ciency and of the muon fake

rates are described in detail in reference �����

������ Trigger

The crossing rate for bunches of electrons and positrons in CESR is ��� MHz�

��



while the rate of interesting events is only about 
 Hz� It is not possible or desirable

for the detector to record the results of each beam crossing� A hierarchy of triggers

select interesting events to be written to tape� The Level  �L� trigger is fast�

receiving inputs from the time of �ight counters� from the vertex detector� and from

the electromagnetic calorimeter� The rate of events passed by L is of order 
 kHz�

After a L trigger� all detector gating is disabled� and a search is made for a

L
 requirement� L
 takes information from the time of �ight scintillators� from the

vertex detector� from the drift chamber and from the calorimeter� Approximately 
�	


s is required for all information to be ready for the L
 decision� and thus a deadtime

of �� is introduced� If the L
 requirement is not satis�ed� the system is reset and

detector gating resumes� The rate of events passed by L
 is of order 	 Hz�

The L� trigger takes inputs from the vertex detector and drift chamber and per�

forms detailed pattern recognition to reject events due to interactions of the beam

with the beam pipe or with residual gas molecules� L� decreases the event rate by a

factor of between two and four� As with L
� if the requirements of L� are not met�

gating resumes�

The �nal level if event �ltering is L�� and occurs in software after the entire event

has been read out by the detector� but not yet written to tape� It uses detailed

information from reconstructed events� and reduces the event rate by as much as

	��

������ Monte Carlo

An important tool used to make the measurements in this thesis is a simulated

dataset produced by a computerized Monte Carlo simulation of ���S� decays and of

the CLEO II detector response� For this thesis� the Monte Carlo is used primarily

��



to understand backgrounds� The information that will be obtained from the Monte

Carlo is not terribly sensitive to the details of the simulation� so only a brief overview

will be presented here�

The production of the simulated data occurs in three steps� The �rst step occurs

within a program called QQ which uses a random number generator to decides the

complete decay chain of an ���S� event� determining the ��momenta of all particles

involved� The probability for a particle to decay into a given mode is given by a

table of measured branching fractions and� when measurements are not available�

predictions� Portions of total decay rates that are unaccounted for are �lled in by a

fragmentation routine JETSET ��� from CERN� All particles are decayed except for

those which are expected to pass through the beampipe before themselves decaying�

The decay history output of the QQ program is then passed through a program

called CLEOG� based on the package GEANT from CERN� CLEOG simulates the

complete detector response to the event� Those particles which are not decayed within

QQ are handled here� such as decays in �ight of 
 and K� All manner of detailed

processes are simulated in CLEOG in order to make the simulated data match the

true data as accurately as possible� The program simulates the energy loss of the

particles while passing through the matter of the detector� the electromagnetic show�

ering within the calorimeter� and the ionization of the drift chamber gas� Random

noise hits in the various detectors is modeled by adding hits from randomly triggered

events in data�

The simulation of the lepton identi�cation in the Monte Carlo is especially relevant

to this thesis� If a track is known to be an electron from tagging routines� a value

for the log�likelihood Le is randomly selected from the Le distribution measured for
electrons in data� This distribution is found by embedding radiative bhabha events

��



e�e� � e�e�� in hadronic events� and recording the Le value for the track known
to be the scattered bhabha electron� If in the Monte Carlo a track is known to

be a hadron� a value of Le is chosen randomly instead from the distribution found

in continuum�subtracted ��
S� events� The muon identi�cation simulation uses the

wire and strip e�ciencies measured in data� Additionally� noise hits are added to the

muon chambers from randomly triggered events in data� The simulated Monte Carlo

muon e�ciency is found to match that of the data to the level of a few percent�

The third and �nal step of the Monte Carlo production is to process the simulated

data with the identical program as is used on the genuine data�

	



Chapter �

Mixing

��� Introduction

In this chapter� a measurement of the B��B� mixing parameter �d is presented�

First� the dilepton method of measuring mixing at the ���S� is discussed� The

limitations of this method will motivate the need for a tagged measurement� and the

tagged analysis will be presented�

It is important to reiterate that this measurement is performed at a center of mass

energy corresponding to the ���S� resonance� There is an important consequence to

consider which a�ects the mixing measurement at BB production threshold� The B

meson pairs are created in a coherent L � 
 state with C � �
� the same quantum
numbers as those of the virtual photon� The L � 
 relative orbital angular momentum

wave function is antisymmetric� The B� B� state cannot evolve to B� B� or B� B�

because a symmetric wave function would be required by Bose�Einstein statistics�

Therefore� the probability than an event created as ���S� � B� B� will decay as

	




B� B� or B� B� is simply �d

�d �
N�B� B�� �N�B� B��

N�B� B�� �N�B� B�� �N�B� B��
at the ���S�� ���
�

Given a value of �d� one must take the measured B lifetime �B � 
� B from higher

energy experiments to determine !M �

A well�established method for measuring mixing at the ���S� is to examine events

where both B�s decay semileptonically� The semileptonic decay of a B meson allows

the charge of the constituent bottom quark to be cleanly determined from the charge

of the observed lepton� Decays of the type B � Xl��� with a lepton of negative charge

indicate that the B meson contained a b quark� while B � Xl�� is the signature of

a �b antiquark�

In this method� events are examine with two leptons �dilepton� both with a mo�

mentum above some minimum required value� A pair of opposite�sign leptons is the

signature of either a B� B� or an unmixed B� B� event� while two like�sign leptons

indicate that the event is mixed �B� B� or B� B��� High momentum leptons are

required in order to exclude those from secondary decays of charm� B � D � Xl��

which incorrectly tag the �avor of the parent B and can result in a false mixing signal�

This method of dileptons can not distinguish between events containing charged

and neutral B�s� As a result� the contribution to the opposite�sign dileptons from

B� B� events must be taken into account when calculating the mixing probability

�d� At the ���S��

�d �
�





� �

	
N������

N������ �N������
 �����

where N������ is the number of like�sign primary lepton pairs� and N������ is the

number of unlike�sign pairs� The parameter � is equal to the fraction of all primary

	�



lepton pairs from B� B� events

� �
f�b

�
�

f�b�� � f�b��
� �����

Here f� and f� are the production fractions for charged and neutral B pairs at the

���S�� and b� and b� are the semileptonic branching fractions of charged and neutral

B�s� respectively�

f� � Br����S�� B� B�� �����

f� � Br����S�� B� B�� ���	�

b� � Br�B� � X����� �����

b� � Br�B� � X������ �����

Recent experimental data suggest that � is near �	� consistent with theoretical ex�

pectations� but the uncertainty on its value represents the largest contribution to the

systematic error on mixing measurements by this method� In 
��� at the time this

analysis was performed� estimates of !��� were at the level of 
	�� From equation

���� it is seen that the relationship between the fractional change in � and �d can be

summarized by the following rule

!�d��d � �!��� �����

for dilepton measurements� It is this large uncertainty which is the motivation for

seeking an alternative method�

��� Motivation for B Tagging

In principle� all dependence on � would be eliminated if the event sample con�

tained only B� events�� The ability to select such events requires some form of tagging�

�Charge conjugation is implied throughout this thesis�
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or identi�cation of a B�� In this approach� a speci�c decay mode of the B� is recon�

structed� Having done this� one has not only established that the event contains a

pair of neutral rather than charged B�s� but also the �avor of the tagged B is also

known�� If the remaining B decays semileptonically� then the charge of the lepton

identi�es the second B�s �avor� determining whether the event is unmixed or mixed�

Tag backgrounds from B�B� events are inevitable� but if the neutral B purity of the

tag is su�ciently high� the residual � dependence is no longer the dominant source

of systematic uncertainty�

A tag of the decay B� � D��l���� D�� � D��� has been developed through

correlations of l� and �� which is used to obtain a statistically useful sample of

events enriched in neutral B� This tag is used to measure B� �B� mixing�

����� Reconstruction of D�	
�
�
�

The exceptionally low momentum of B�s produced in ���S� decays is exploited

in a technique called partial reconstruction where the momentum of an undetected

neutrino in an exclusive semileptonic decay channel is inferred by conservation of

momentum and energy� This method has been used to study the decay mode B� �
D��l���� In this case� all �nal decay products except for the neutrino are detected�

The mass of the neutrino may be calculated given the four�momenta�

M�
� � E�

� � P �
� � �Ebeam � El � ED��

� � j�PB � �Pl � �PD�j�
� �Ebeam �El �ED��� � j�Pl � �PD� j� � P �

B � ��PB � ��Pl � �PD���
�����

This quantity is also known as the square of the missing mass and should equal zero if

the decay has been properly reconstructed� The only unknown quantity in the above

expression is the direction of motion of the B� The contribution of the last two terms

�The B� tag decay mode must not be accessible from B� as well� B� � J�� Ks for example�

	�



Figure ��
� fM�
� signal with and without D

� reconstruction for tag lepton momentum

� 
�� GeV�c

		



can be estimated� using the known magnitude of j�PBj � � MeV�c� Averaged over

many events� this is found to be 
 �� GeV�� Approximating j�PBj �  does not

signi�cantly shift the mean value ofM�
� from zero� but it does introduce an rms width

of 
 �� GeV�� as shown in the dashed curve of Figure ��
�

����� Without D
 reconstruction

The method may be carried one step further by tagging the decay D�� � D���

using only the �� without reconstructing the D� decay� This approach is possible

due to the extremely low decay energy of this mode� which leaves the �� nearly

at rest in the D�� center of mass frame� As a consequence� the �� alone carries

su�cient information to determine an approximate four�momentum of the D��� so

no D� reconstruction is needed� The sample can be increased by a signi�cant factor

by not requiring the D� reconstruction� For example� the single mode D� � K���

is often used in the reconstruction� The branching fraction for this mode is ���

Assuming a reconstruction e�ciency of 	�� a factor of 	 in sample size would be

gained if D� reconstruction were not required�

If the �� produced in the decay D�� � D��� were precisely at rest in the D��

center of mass frame� the energy of the D�� could be obtained by scaling the pion

energy by the ratio of the D�� and �� masses� Additionally� the direction of the ��

in the lab would coincide with the direction of the parent D��� Of course this is not

actually the case and the actual momentum PCM
� of the soft �� in the D�� center of

mass is not zero� but �� MeV�c� Therefore in this technique� the energy scaling rule

is modi�ed slightly from that described above� but the laboratory directions are still

taken to be the same� These two approximations are examined as follows�
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Energy approximation

At CLEO� the laboratory frame is the ���S� rest frame� If the D�� energy in

the laboratory is ED� � �mD�� then the energy of the �� in the laboratory is given

by a Lorentz transformation

E� � ��ECM
� � �PCM

� cos�� ���
�

where ECM
� � 
�	 MeV is the energy of the �� in the D�� rest frame and � is the

decay angle of the �� in the D�� rest frame with respect to the D�� direction in the

laboratory� Averaging over all �� the contribution from the second term drops out and

the mean energy in the laboratory is simply �ECM
� � Therefore� the approximation is

made that

� � E�

ECM
�

� *�� ���

�

The rms spread of true values � about *� depends on the polarization of the D���

Figure ��� shows the ratio �*� � ���� � ���� for unpolarized and polarized D��

with a momentum spectrum as predicted by the the model of Isgur et al�� For an

unpolarized D��� then �� and the D�� energy� is obtained with � �� uncertainty�

ED� � E�

ECM
�

MD� � eED�� ���
��

This approximation is better for D�� of helicity � �
 than for D�� of helicity � �

as the pions are preferentially emitted towards cos � �  and consequently experience

the same boost as the D���

Direction approximation

The second approximation made is that the direction of motion of the D�� is the

same as that of the soft ��� Again� the precision of this approximation depends on the
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Figure ���� Error on gamma approximation

	�



Figure ���� Opening angle � between D�� and �� directions in the laboratory�

	�



Figure ���� Vector di�erence of estimated minus true D�� momentum�

�



shape of the momentum spectrum of the D�� and its polarization� The distribution

of opening angle � between the laboratory directions of the D�� and �� is shown in

Figure ���� using a Monte Carlo with unpolarized D���s � L� T � �	� which has a

momentum spectrum described by the model of Isgur et al�� In this case� the rms

value for � is found to be 

 degrees� This approximation is better for D�� of helicity

� � where the �� is preferentially emitted parallel or antiparallel to the boost axis�

The approximate D�� momentum is then obtained simply via

e�PD� �

q eE�
D� �M�

D�

j�P�j
�P�� ���
��

Figure ��� shows the magnitude of the vector di�erence of the estimated and ac�

tual D�� momenta� The error in the D�� momentum derived by making these two

approximations is 
 � MeV�c�

The squared missing mass distribution�

fM�
� � �Ebeam � eED� � E��

� � �
e�PD� � �P��

� ���
��

is then an approximation of the neutrino mass� In comparison the momentum of the

B is 
 � MeV�c� One would therefore expect that the fM�
� distribution obtained

with this method should not be much wider than twice the �� GeV� found for the

full reconstruction� Indeed� in Monte Carlo simulations it is found to be 
 �� GeV��

shown as the solid curve in Figure ��
�

��� Analysis Overview

The mixing analysis can be summarized as follows� Oppositely charged leptons

and pions are paired and fM�
� is calculated� If fM�

� � � then the spectrum of any

remaining leptons is examined� separately for leptons which are the �
� opposite and

�




��� same charge as the lepton in the tag� Both spectra are �tted in order to determine

the number of primary leptons in each� Lastly� the ratio of primary lepton yields is

related to �d� The remainder of this section is devoted to presenting the major issues

encountered during each of these steps�

The fM�
� distribution has a striking peak at

fM�
� �  �GeV�c��� from properly par�

tially reconstructed decays� There is also a background in the same region of roughly

the same size as the signal due to random combinations of �� and ��� Because both

properly reconstructed tags and random combinations are used in this measurement�

it is necessary to understand their origins� To determine the number of tags in the

peak and in the random background� the fM�
� distribution is �tted using two mod�

els of the background shape each of which is extrapolated into the region of signal�

fM�
� � �� �GeV�c����

The peak has contributions not only from the decay B� � D��l���� but also from

B� � D����l��� and B� � D����l���� In the latter two decays� the pion produced

with the D� is not reconstructed� but the value of fM�
� is still close to zero� The sum

of the second and third decays is set to be the �xed fraction f�� of the total peak�

with the two contributing in proportion to the isospin phase space� production rate

and semileptonic branching fractions� respectively�

The random background has components with leptons from B� and B� primary

and� to a smaller degree� secondary decays� B� and B� events contribute to the

random background at di�erent rates� The number of contributions per event is de�

termined by monte carlo� and di�er for charged and neutralB events due to di�erences

in the mean multiplicity of low�momentum pions of the correct relative charge� Back�

ground tags from unmixed and mixedB� events also di�er and are treated separately�

These components are �xed to contribute to the measured random background size

��



in proportion to their tagging e�ciencies� and respective production and semileptonic

decay fractions�

If the tag candidate has a value of fM�
� � �� GeV�� then a search is made for

any additional leptons in the event� The yield of additional leptons for random back�

ground tags is lower than that for peak tags� This phenomenon is discussed in some

detail in Section ��	��� Consequently� there is a factor called the e�ective e�ciency

for the random background which describes this reduction in yield of additional lep�

tons� The e�ective e�ciencies are determined frommonte carlo separately for random

background tags from charged B events� unmixed and mixed neutral B events� It

is important to account for this e�ect in order to correctly determine the size of the

charged B contamination in the tag sample�

The yield of additional leptons is plotted as a function of momentum� These

are separated into two cases� where the additional lepton has the opposite charge as

the tag lepton �unlike�sign spectrum�� and where the additional lepton has the same

charge as the tag lepton �like�sign spectrum�� Each spectrum is then �tted to a sum

of spectra for primary B � clX and secondary B � cX c � slY decays to obtain

a value for the primary components N�� and N��� The quantity of interest is the

ratio M of primary areas in the like and unlike�sign spectra� and it is related to the

mixing parameter �d�

The total unlike�sign and like�sign signals are linear in the parameter �d� and each

is proportional to the sum of contributions from their respective sources� Each source

is the product of three quantities �
� a fraction of tags ��� a tagging e�ciency and ���

an e�ective e�ciency� Their ratioM � N���N�� depends only on known parameters

and on �d� One �nds a linear relationship of the general form

�d �
aM � b

cM � d
���
	�

��



where a b c and d are functions of known parameters�

It is tempting to consider somehow subtracting the contribution from the random

background� One �awed scheme would be to repeat the mixing analysis selecting

on the fM�
� distribution obtained using same sign ���� pairs �called the wrong�sign

fM�
� distribution� to de�ne the tag� record the spectra of additional leptons� and

then �nally to subtract these spectra from those found using the correct sign tags�

Na"#vely this would be the spectra of additional leptons for signal tags only� simplifying

matters substantially� The reason that this scheme fails is that the right�sign random

background of the signal region may have contributions from charged and neutral

B events in di�erent proportions than would occur in the wrong�sign distribution in

the same region of fM�
� � In this case� it would not be appropriate to use the wrong�

sign sample to estimate the charged�neutral composition of the background under

the right�sign peak� If one proceeded to do the subtraction� one would over�subtract

neutral B background and under�subtract charged B background� or vice versa� This

is veri�ed in Monte Carlo simulations� In fact� it is found that contributions depend

on whether a neutral B event is mixed or unmixed� Therefore� no attempt is made

to directly subtract the e�ects of the random background using some other region of

the fM�
� distributions� Instead� Monte Carlo events are used to estimate the relative

sizes of the charged versus neutral B contributions to the random background of the

right�sign fM�
� distribution as described earlier� Much of the intricacy of this analysis

involves the detailed understanding of these contributions�

There is another approach to the mixing measurement which can be considered

where the complications of tagging e�ciency and e�ective e�ciency for the random

tag background are avoided� The method is similar to the one used in Chapter 	

for the measurement of the B� semileptonic branching fraction� In this approach�
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one forms a fM�
� distribution in the usual way� but rather than requiring a minimum

value of fM�
� and plotting the spectrum of additional leptons� one instead requires

a minimum momentum of an additional lepton and then plots the fM�
� distribution

for cases where the two leptons are same and opposite sign and �ts for the size

of the peak in both plots� This method was used by the ARGUS collaboration to

measure mixing����� Although this is a simpler approach� it was not chosen because

the statistical error would have been unacceptably large compared to the results of a

separate analysis on the same data� the standard dilepton measurement� The method

used here was chosen instead to have an overall uncertainty which was competitive

with the other result�

��� Data and Selection Criteria

This measurement is based on an integrated luminosity of �	
 pb�� on the ���S�

and �		 pb�� at an energy on the continuum below the ���S�� the �S� through �S�

datasets� Events are required to have a ratio of Fox�Wolfram moments���� R�GL� �
H��H� less than �� and to pass our standard hadronic event criteria �KLASGL �


���	��

The selection requirements on the tag lepton� the tag pion and the additional

lepton are summarized in Table ��
� The 
�� GeV�c momentum requirement on

the tag lepton rejects secondary leptons from charm decays� The �
� GeV�c re�

quirement on the pion is slightly below the upper kinematic limit for pions from

B � D��X � D���� Electrons in the tag are are allowed to fall in any �ducial

region� The �ducial requirement on the muons eliminates the outermost endcap re�

�Throughout this thesis� terminology which is used internally by the CLEO collaboration will be

set in typewriter font� These terms are de�ned in Appendix C�
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gion where the monte carlo and o+ine analysis had not been modeling the muon

detection e�ciency correctly at the time of this analysis� The tag lepton identi�ca�

tion requirements are somewhat less stringent than those typically used for inclusive

lepton analyses� but the requirement of the soft pion correlation reduces the rate

at which fake tag leptons enter the sample� The loosened tag lepton requirements

increase the sample size by some ���

The second lepton in the event must satisfy the same tracking requirements as the

tag lepton� Unlike the lepton in the tag� tighter identi�cation cuts are used for these

additional leptons� where the e�ciency is better known� To eliminate false mixing

signals from double tracking� leptons which make an angle � with the tag lepton such

that cos� � ��	 are discarded�

Figures ��	 and ��� shows a candidate mixed event in data� The two tracks which

form the tag are the �� GeV�c electron candidate at top� and the �
	 GeV�c pion

candidate which is emitted nearly opposite to the electron� The second lepton in the

event is the 
�� GeV�c muon� which is the same sign as the tag lepton� Since the lower

lepton momentumof 
�� GeV�c is su�ciently high to virtually exclude contamination

from charm decay� this is almost certainly a mixed B� B� event�

��� Composition of Tags

Tag candidates are formed by pairing identi�ed leptons with pions of opposite

charge� These candidates will be referred to as right�sign� Lepton�pion pairs of the

same charge will be referred to as wrong�sign� Figure ��� shows the fM�
� distributions

observed in data after subtracting continuum contributions� A clear enhancement

is seen in the right�sign fM�
� distribution near zero� The corresponding plot with

��



Tag Lepton 
�� � p� � ��	 GeV�c

KINCD � 

NHITPT � 

NHITVD � 

RHITDR � ��

At least two of the following three

jDBCDj � 	 mm

jZ�ZDj � 	 cm

RESICD � �� mm

�electrons� R�ELEC � �

�muons� jCZCDj � ���

MUQUAL � 

DPTHMU � � if p� � 
�	 GeV�c

DPTHMU � 	 otherwise

Tag Pion p� � �
� GeV�c

KINCD � 

jSGPIDIj� �

IQALDI � 
 or ��
Second lepton KINCD � 

NHITPT � 

NHITVD � 

RHITDR � ��

At least two of the following three

jDBCDj � 	 mm

jZ�ZDj � 	 cm

RESICD � �� mm

cos ��� � ��	

�electrons� R�ELEC � �

jCZCDj � ���

�muons� MUQUAL � 

DPTHMU � 	

jCZCDj � ���

Table ��
� Selection criteria for tags
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CleoXD
Run: 42451 Event: 7413

Figure ��	� A candidate mixed event in data� cross section view of the CLEO detector�
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CleoXD
Run: 42451 Event: 7413

-2.00

-1.48

-0.82

-1.72

0.85

0.18

0.15

0.47

-0.13

Figure ���� A candidate mixed event in data� detailed view� The numbers indicate the

signed momentum of each track� The tag is the �� GeV�c electron at top recoiling

against the �
	 GeV�c pion at bottom� The additional lepton is the 
��� GeV�c

muon at right�

��



Figure ���� fM�
� distributions in data� The points are the o��resonance subtracted

data� the solid curve is the estimated monte carlo background �tted in the sideband

region� the dashed curve is the portion of the background from B�B� events�

�



the wrong�sign candidates shows no such enhancement� For the purpose of studying

background the region �� GeV� � fM�
� is designated as the signal region and ��

GeV� � fM�
� � �� GeV� as the sideband region� After passing the various selection

requirements made in data the candidates remaining in the right sign signal region

comprise the tag sample�

Background distributions obtained fromMonte Carlo are overlaid� with the dashed

histogram representing the B� B� contribution� and the solid representing the to�

tal background� including the neutral B� assuming that f� � f� � �	 and that

�d � �
�
� Agreement between data and Monte Carlo of the background shape�

both in sideband and wrong�sign distributions� is good� The absolute rate per BB

event is in reasonable agreement, the ratio of the data to Monte Carlo for right�sign

sidebands is 
�� � �� for muons and 
�� � �� for electrons� and for wrong�sign

distributions is �����
 and 
����
 for muons and electrons� respectively� The
fact that these normalizations are close to unity indicates that the Monte Carlo is

doing a reasonable job of reproducing the same soft pion multiplicities as in data�

To understand the composition of the tags� it is necessary to evaluate the size of

the background� The shape of the random background may be estimated by looking

either at �
� the wrong�sign distribution in data� or ��� the right�sign background

simulated in Monte Carlo� A study of events generated via Monte Carlo simulation

indicates that the wrong�sign distribution is a rough representation of the background

shape in the right�sign distribution�	 and justi�es method �
�� In both methods� the

distribution which models the background is overlaid on the right�sign distribution

in data� taking the number of candidates in the signal region of each� and adjusting

�As will be seen in Chapter �� the shapes of the rightsign and wrongsign distributions dif

fer slightly in the region fM�
�
� 
� but this was not fully appreciated at the time of the mixing

measurement�

�




by a scaling factor determined by �tting the sideband� The systematic error on the

number of random tags is taken to be the variance of the two numbers from the mean�

After the size of the background is estimated using either of these two methods� the

number of tags in excess of the random background is designated the peak and the

remainder random�

The raw and net numbers of tags are given in Table ���� The fraction of random

background in the tag sample is found to be

FR � �	
� � �� � �
�� ���
��

����� Peak candidates

Of the tags in the signal region� those in the peak arise from true D��lepton cor�

relations in B decay� Contributions from decays other than the tag B � D������

should occur in the partial reconstruction tag at the same level as in the tag where the

D� is reconstructed� The process which must be considered is the decay

B � D���l��� where the additional pion is not detected and the D��� may or

may not form a D�� state�� In this case� the B can be either charged or neutral� so

it may result in contamination of the peak by charged B�s� Isospin symmetry assigns

��� of such events to B� and 
�� to �B�� This can be understood by considering the

four resonant modes

B� � D������ D��� � D����

B� � D������ D��� � D����

B� � D������ D��� � D����

�Here� the term D�� loosely refers to all excited D states with L � ��

��



B� � D������ D��� � D�����

Assuming that f� � f� and b� � b�� then from isospin symmetry the number of

decays in each mode are in the proportions 
�����
� respectively� Since only the �rst

and third modes contain a D�� which could feed into our signal� the feeddown from

B� is twice the size as the feeddown from B�� A similar argument holds for the

corresponding nonresonant modes such as B� � D�������� The overall contribution

from the process B � D���l���� resonant as well as nonresonant� was found in

reference ���� to comprise �
� � �
 times the contribution from B� � D��l���� or

f�� � �
� � �� ���
��

times the total peak size� The charged B content is then ��f����
���� � ����	���
of the total peak� for � � f�b��f�b� � 
�� These three contributions to the peak are

given in Table ����

����� Sources of random candidates

The random background consists of three classes of events� those where the lepton

is from primary b � c�� decay� those where the lepton is from secondary c � X��

decay� and those containing a fake lepton� The contributions to the tags from the

various random sources are listed in Table ��	�

Primary leptons

To determine the relative abundance of charged and neutral events in the random

background of the signal region� the probability �tag per event to populate the random

background in the signal region is determined separately for B�B���tagu �� B� B���tagm �

and B� B���tag� � events� We call these quantities tagging e�ciencies� Note that

��



unmixed and mixed neutral B events are treated separately� Since the overall size

of the random background is measured� the absolute values of the three tagging

e�ciencies are unimportant� We are only interested in their relative magnitudes�

described as two separate ratios of tagging e�ciencies

The tagging e�ciencies are a measure of the multiplicity of low momentum right�

sign charged pions in the event� If a large number of such pions are available� it is

easier to form a background tag� resulting in a higher tagging e�ciency� Using a

sample of �� Monte Carlo events� we �nd that

�tag�

�tagu

� ��� � �� ���
��

�tagm

�tagu
� 
�
� � �� ���
��

where the errors are due to monte carlo statistics only� Because we are only interested

in the ratios of tagging e�ciencies� the monte carlo need only determine the relative

abundances of pions correctly to determine these parameters� Nonetheless� the Monte

Carlo does predict the absolute rates correctly� as shown at the start of Section ��	�

The somewhat higher probability per event for obtaining random background tags

in mixed events is due to an extra source not present in unmixed events� These are

pions from the second B if it decays via B� � D��X� D�� � D���� Not only do

these pions have the desired sign� but there is a high probability that they have a

su�ciently low momentum to pass our requirements� This contribution to the random

background does not normally exist in unmixed events� since such a pion would be of

the wrong sign��

To illustrate the application of tagging e�ciency ratios� consider the case where

f� � f� and �d � 
�� � �
��� In this scenario� the relative abundance of

�Unless the D�� comes from the W hadronization in the second B decay� This would be a

Cabibbo suppressed process if no additional quarks are popped�

��



charged�unmixed�mixed decays produced would be ����
� The tagging probabilities

state that the relative sizes of the charged�unmixed�mixed contributions to the ran�

dom background in the signal region would be �
tag
�

tagu
��� 

tag
m

tagu
�

Secondary leptons

Random background tags containing a lepton from secondary rather than primary

B decay are studied separately� as they can give an incorrect �avor tag and possibly

a false mixing signal� The two principal sources of such leptons are from B �
cX c � slY � and B � �cX �c � �slY Leptons from B � �cX �c � �slY �anticharm

quark from the W hadronization� have a momentum spectrum similar to those from

B � cX c� slY � but do not result in an incorrect �avor tag of the B� We take the

fraction of leptons in BB events above 
�� GeV�c from both c and �c sources to be

fc��c � ���� ���� of which

fc � �����fc��c � ���� ��� �����

are from B � cX c� slY �����

There is one small asymmetry which is not signi�cant given the statistics of the

present data set� Charged and neutral B�s each decay to both charged and neutral

D�s� However� B� decay more readily to D� than do B�� Since D� has a larger

semileptonic branching fraction than D�� a larger proportion of leptons from sec�

ondary decays is expected to originate from B� than from B�� The e�ect of this

asymmetry on the �nal result is very small� and it is assumed that charged and

neutral B�s contribute equally to the total number of secondary leptons�

Fake leptons

�	



Figure ���� fM�
� distributions for tags with fake leptons� o��resonance subtracted�

Note the change in vertical scale from Figure ����
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Finally� a random background tag containing a lepton candidate which is in fact

a misidenti�ed hadron may or may not be correlated with the �avor of its parent B��

The rate at which such hadrons enter the tag sample may be studied directly using

data in which the lepton candidate enters the �ducial region for lepton identi�cation

but does not pass lepton identi�cation requirements� The number of such tags found is

scaled by the misidenti�cation probability as a function of momentum� The estimated

fM�
� distribution of tags in which the lepton candidate is a fake is shown in Figure ����

The areas of these distributions in the right�sign signal region give the number of tags

where the lepton candidate is a fake� There are �� � 
�� tags with fake muons and


���� with fake electrons� The errors are due to a systematic uncertainty of ���
on the fake probabilities����� These numbers indicate that a fraction

ff � 	��� 
��� ����
�

of all random tags contain either a fake electron or a fake muon�

��� Spectra of Additional Leptons

The probability of �nding an additional lepton in a random tag is e�ectively

lower than that for a peak tag� This is because random tags are preferentially selected

among events where the second B decays hadronically� The hadronization of the W

from the second B is an additional source of pions with which to form background

tags � a source not present when the second B decays semileptonically� This bias

occurs only for background tags where the lepton and pion candidates originate from

di�erent B�s� The bias does not occur for the portion of background tags where the

	One exception would be the process �B� � D����� D�� � D��� where the �� fakes a ���

This contribution would tend to peak at fM�
�
� 
�

��



uncorrelated pion is from the same B as the lepton candidate� nor does it occur for

peak tags �which certainly have the pion coming from the same B as the tag lepton��

The e�ective e�ciency �e� for �nding an additional lepton in a random tag� relative

to that for a peak tag� is evaluated via Monte Carlo for B� B���e�u �� B
� B���e�m � and

B� B���e�� � events� The values for the three e�ective e�ciencies are found to be

�e�u � ���	 � ��	 ������

�e�m � ��� � �� ������

�e�� � ���� � ��� ������

where the e�ective e�ciency for peak tags is understood to be 
�� These numbers are

for background tags where the tag lepton is a primary lepton� The e�ective e�ciency

for secondary tag leptons is also evaluated� and found to be 
�� �� for charged and

neutral events�

The electron spectrum is measured between �� GeV�c and ��	 GeV�c� and the

muon spectrum between 
�	 GeV�c and ��	 GeV�c� Figure ��� shows the raw spec�

trum for ON ���S� data�

Four contributions must be subtracted from these raw spectra� Firstly� the OFF

���S� data must be subtracted� Next� the spectrum of second lepton candidates

which are actually misidenti�ed hadrons must be removed� Thirdly� the contribution

when the tag lepton is a misidenti�ed hadron must be subtracted� Finally� a correction

must be made for leptons �either tag lepton or second lepton� which is from a J�	

or 	�� Figure ��
 shows the size of each of these contributions� Note the change in

vertical scale from Figure ����

The contribution to the second lepton spectra from fake second leptons is deter�

mined by �rst forming the spectrum of all tracks not identi�ed as leptons in tagged

��



Figure ���� Raw spectra of additional leptons in tagged events in data� The spectra

are sorted by type of additional lepton� and by charge relative to the tag lepton� The

points represent the on�resonance data and have not been corrected for the continuum

contributions�

��



Figure ��
� Four di�erent contributions to subtract from the raw spectra� The solid

curve is the o��resonance contribution� the solid squares represent the contribution

from fake additional leptons� the open triangles represent the contribution to real

additional leptons from fake tag leptons� and the dashed curve represents the Monte

Carlo estimate for contributions from J�	 decay�

�



Figure ��

� J�	 � 
�
� mass peak in tag signal region �Data��
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Figure ��
�� J�	� 
�
� mass peak in tag signal region �Monte Carlo�
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Figure ��
�� Fit to the unlike�sign additional lepton spectrum� The points are the

data after all corrections� the dashed curve is a primary spectrum shape from the

model of ISGW� the dotted curve is a secondary spectrum shape� and the solid curve

is the best �t to the data� The error bars on the points are statistical only�
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Figure ��
�� Fit to the like�sign additional lepton spectrum� The points are the data

after all corrections� the dashed curve is a primary spectrum shape from the model

of ISGW� the dotted curve is a secondary spectrum shape� and the solid curve is the

best �t to the data� The error bars on the points are statistical only�
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events� but which fall inside the allowed �ducial region for second leptons� These are

assumed to be hadrons� A separate spectrum is recorded for hadrons of each relative

sign to the tag lepton� like and unlike sign� Next� each momentum bin of the spectra

is weighted by the electron fake rate for that momentumbin to determine the number

of second electron candidates which are fakes� The spectra are also weighted by the

muon fake rates to obtain the spectra of muon fakes�

The contribution to the second lepton spectra from tags containing a fake lepton

is determined by repeating the entire analysis� replacing the tag lepton with tracks

which fail the lepton identi�cation requirements� and scaling the rates by the misiden�

ti�cation probability�

Contributions from the decay J�	 � l�l� must be subtracted� where both or

only one of the tag and additional lepton are from the J�	 decay� An excess of

unlike�sign events occurs when both the tag and the additional lepton are from a

single J�	� When only one of the J�	 leptons is used in the analysis� along with a

lepton from some other source� either a like or unlike�sign lepton pair can result� To

evaluate these contributions to the spectra� the analysis is performed on simulated

events� and the like and unlike�sign spectra are recorded if either tag or additional

lepton is from a J�	� The four uncorrected spectra are shown in Figure ��
 for like�

�unlike�sign� and for additional electrons�muons� The simulated event results must

be scaled by a factor equal to the number of J�	�s in data divided by the number

in the simulated event sample� To determine this scale factor� a �t is made to the

J�	 � 
�
� invariant mass peak in data and monte carlo for tags in the right�sign

signal region� One of the muons is required to pass loose identi�cation criteria� and no

requirements were made on the other track� The muon rather than the electron mode

is used because the size of the radiative tail of the invariant mass peak is smaller� and

�	




��� e���

Tags� ���S� 


�� 
���

Tags� continuum �� ���

Net� BB �����
�� 

��	�
��
Random ��������

	 	����������
Net peak �	��
	�

	 	����
	�����

Table ���� Tags in data� with muons and electrons shown separately� Calculation of

the random contribution is described in the text�

presumably less sensitive to the modeling of the tail in the simulated data� Muon

identi�cation is required on only one candidate� which minimizes the systematic error

due to possible di�erences in muon identi�cation e�ciencies between the data and

monte carlo The invariant mass peaks observed in data and monte carlo right�sign

tags are shown in Figures ��

 and ��
��

After J�	� continuum and fake subtractions and corrections for detection e�ciency

have been completed� the weighted average of electron and muon spectra is calculated�

To determine the number of primary leptons the ISGW-- model is used to �t

the primary b� cl� spectrum and a semiempirical model for the secondary c� sl�

spectrum� The �tted spectra are shown in Figures ��
� and ��
�� The numbers of

primary leptons are found to be N�� � 
����� and N�� � ������ giving a ratio

M � N���N�� � �
�� � ���� ����	�

��� Evaluation of Mixing

Each row of Tables ��� and ��	 represents one term in a sum either for N��

or N��� Collecting all of the terms explicitly� one �nds the expressions for N�� and

��



Parameter Value

FR �	
� � �
�

f�� �
� � ��

ff �	� � �
�

fc ��� � ��

�tag� ��tagu ��� � ��

�tagm ��tagu 
�
� � ��

�e�u ���	 � ��	

�e�m ��� � ��

�e�� ���� � ���

N �
 � �
tag�

tagu
� �d�


tag
m

tagu
� 
����

Table ���� Summary of parameters used to extract �d from M

Tag Process l� from Tag Fraction �fi� Sign

B� � D��l��� B� �
� FR��
 � f����
 � �d� ��
�B� �
� FR��
� f����d ��

�B� � D����l��� B� �
 � FR� f��

����
�
� �d� ��

�B� �
� FR� f��

�����d ��
B� � D����l��� B� �
� FR���f

��

����
��

Table ���� Origins of tag�lepton pairs among tags in the peak� l� refers to the addi�

tional lepton from a primary B decay� fi is the fraction of tags from the listed process

including its dependence on the mixing parameter �d� � is de�ned � � f�b��f�b��

��



Tag Process l� from Tag Fraction �fi� �e�i Sign

�B� � clX B� NFR�
 � ff ��
� fc� �
��d� ���	���	 ��
�B� NFR�
 � ff ��
� fc�

tagm
tagu

�d ������ ��
B� � clX B� NFR�
 � ff ��
 � fc��


tag

�

tagu
�������� ��

�B� B� � cX B� B� FR�
 � ff �fc�
� �d
�
� 
���� ��

c� slY �B� FR�
� ff �fc
�d
� 
���� ��

�B� B� FR�
� ff �fc 
���� ��
B �B � lfakeX FRff

Table ��	� Origins of tag�lepton pairs among tags in the random background� l�

refers to the additional lepton from a primary B decay� fi is the fraction of tags from

the listed process including its dependence on the mixing parameter �d and on the

tagging e�ciencies� �e�i is the e�ective e�ciency for an additional primary lepton to

have been produced �see text�� � is de�ned � � f�b��f�b�� N is a normalization

factor equal to �
 � �
tag�

tagu
� �d�


tag
m

tagu
� 
�����

N�� are given by

N�� � �
� FR��
 � f����
 � �d�

� �
� FR� f��

����
�
� �d�

� �
� FR���f
��

����

� NFR�
 � ff ��
� fc��
 � �d��e�u

� NFR�
 � ff ��
� fc��
tag�

tagu
�e��

� FR�
� ff �fc
�d
�

� FR�
� ff �fc

������

N�� � �
� FR��
 � f����d

� �
� FR� f��

�����d

� NFR�
 � ff ��
� fc�

tag
m

tagu
�d�

e�
m

� FR�
� ff �fc�
� �d
� ��

������

The ratio M � N���N�� is a complicated function of �d and known parameters�

One can solve for �d and �nd a linear relationship of the general form

�d �
aM � b

cM � d
������

��



where

a � �
 � FR� �NFR�
 � ff ��
 � fc���
e�
u �

�tag�

�tagu
�e�� � � FR�
� ff �fc ������

b � FR�
 � ff �fc �����

c � �
 � FR��
� �f����� �NFR�
 � ff ��
� fc��
e�
u � FR�
 � ff �fc�� ����
�

d � �
 � FR��
� �f����� �NFR�
 � ff ��
� fc�
�tagm

�tagu
�e�m � FR�
 � ff �fc��� ������

Using the values for the known parameters from Table ��� one �nds

�d �
������M � �
�

��	���M � ���
� ������

For simplicity� f��f� � b��b� � 
 have been assumed� and these dependences have

not been included in Equations ���� � ����� See appendix A for the full forms of the

above equations�

A single event can contribute more than once to this measurement� Double lepton�

pion tags are found in approximately 
�� of the events containing a tag and an

additional lepton� This occurs mainly because a pion candidate can curl around in

the drift chamber and reconstruct as two separate tracks of the same charge and

similar momenta� In this case� two tags may be found in the right�sign signal region�

If no corrections are made� this will result in a slightly underestimated statistical

error but no change of central value� To account for this redundancy the statistical

error is increased by 
��

M � �
�� � ��	 ������

and the value for �d is found to be

�d � �
�� � ���� ����	�

��



Model N�� ��� 
	 DOF N�� ��� 
	 DOF M

ISGW -- 
�� � �� �	�	 �� � �� ���� �
��

ACM 
	

 � 	� ���� �	� � �
 �	�� �
��

ISGW 
�	� � 		 �
� ��� � �� �	�	 �
�

WSB 
��� � 	� ���	 ��� � �� �	�� �
�


Avg��sys 
��� � �
 ��� � 
 �
�� � ��

Table ���� Results of �ts to lepton spectra for four di�erent theoretical models� de�

scribed in text� The systematic error on M due to model dependence is taken to be

the standard deviation of the four values�

��	 Systematic Uncertainties

Spectrum shape

To estimate the systematic uncertainty due to uncertainty in the spectrum shape�

the values of N�� and N�� are �tted to lepton spectra given by four models of b and

c semileptonic decay� by Isgur et al� �ISGW�� Altarelli et al� �ACCMM�� Wirbel et

al� �WSB������ and the model of Isgur et al� in which the D�� fraction is increased

from 

� to ��� �ISGW--�� The results of these �ts are shown in Table ���� All

of these models include secondary charm spectra which give values of fc��c around

��� somewhat lower than the current estimate� Therefore these �ts are used only

to indicate the systematic uncertainty due to model dependence� which is estimated

from the rms spread among the various models� The fractional deviation of M from

the mean is seen to be much smaller than that of either N�� or N�� alone� This

is due to the fact that the same curve is used in the �ts of the two spectra� so that

adjustments of the �t to the shape are correlated�

�



Figure ��
	� M versus fc��c

�




fc��c N�� ��� 
	 dof N�� ��� 
	 dof M

Nominal ��� 
�� � �� ���� �� � �� ���� �
��

Param .
 high ��	 
�
� � �� ���� ��� � �� ��� �
�	

Param .
 low ��
 
	�� � �� ���� �	� � �� ���� �
	�

Param .� high ��� 
	�� � �� ���
 �	� � �� ���	 �
�


Param .� low ��� 
�� � �� ���� ��� � �� �
�� �
��

Param .� high ��
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�� �
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	�� � �� ���� �	� � �� ���� �
�


Table ���� Variation of �ts with secondary lepton spectrum shape� Each of four

parameters de�ning the secondary curve is varies by �
�� The value of fc��c is listed
for each curve� along with the �t ratio M � To be conservative� this study was done

using an electron fake rate of �� times the nominal value� since the dependence of

M on fc��c was found to be strongest at low values for the electron fake rate�

fc��c

Uncertainty on the value of fc��c a�ects the analysis in two ways� Firstly�

adjustments must be made to the shape of the secondary lepton spectrum used to �t

the unlike and like�sign second lepton spectra� a�ecting the value of M � Secondly�

adjustments must be made for the fraction of the random background tags with

secondary leptons from charm� These two e�ects must be treated in the appropriate

correlated manner� In the discussion which follows� we examine the �rst issue� the

dependence of M upon fc��c�

Four parameters used to de�ne the secondary spectrum can each in turn be varied

by the values of their uncertainty� This provides a set of nine secondary spectra� all

with slightly di�erent values of fc��c� These nine �ts can be used to determine the

dependence of the �t ratio M on the value of fc��c� Table ��� gives the �tting results

��



for each of the nine di�erent secondary spectrum shapes� A plot of M�fc��c� from

Table ��� is shown in Figure ��
	� The dependence ofM on fc��c is found to be linear�

This linear parameterization can be used to quantify the systematic uncertainty on

M due to uncertainty on fc��c�

It is important to determine the slope of M�fc��c� correctly� or at least to not

underestimate it� because this dependence results in the largest contribution to the

systematic error in the �nal result� Therefore� it is important to elaborate upon a

certain point� The slope of the linear �t in Figure ���� depends on the value of the

electron fake rate� For the study shown in Table ���� a value �� times the nominal

electron fake rate was used� not the nominal value� To be conservative� this lower

value was used� because the slope of M versus fc��c was found to be larger at low

values for the electron fake rate� This happens because the spectrum of fake electrons

resembles that of the secondary leptons� If a small electron fake rate is used� then the

fakes will be underestimated and the size of the secondary component of the spectrum

will appear larger� As the absolute size of the secondary component gets larger� the

details of its shape become more important� Therefore� the �t ratio M is more

strongly dependent on the model used to �t the secondary component� Because this

study was performed using a 'worst�case( electron fake rate� the slope of the line and

therefore the largest contribution to the systematic error is probably overestimated�

Other Uncertainties

The error in the number of random tags is taken to be the spread in the values

obtained from two background �tting methods� The uncertainties in the relative

tagging e�ciencies and second lepton e�ective e�ciencies of B�B�� B�B� and B�B�

events are taken to be twice the statistical error on the Monte Carlo� The uncertainty

��



in the fraction of D��l�� decays in the sample is taken from Equation ��
� to be

����
� � 	��� The uncertainty on both fc��c and on the lepton fake rates are

taken to be ���

Correlations

The determination of �d involvesmany correlated inputs which must be accounted

for in computing the uncertainties� Given these correlations� it would be a formidable

task to solve for the errors analytically� Instead� the errors are obtained numerically�

The central value of �d can be calculated given all the central values of the input

parameters� The e�ects of the correlations are automatically taken into account by

allowing the program to recalculate a new central value for �d as any or all of the

input parameters are varied with a normal distribution within their limits� The error

is taken to be the standard deviation of the resulting ensemble of �d values� The

result is checked against analytically calculated errors in several limiting cases�

Variations in fc��c and fake probabilities a�ect the tags and the spectra in a cor�

related way which is taken into account� The resulting dependence of �d on fc��c is

shown in Figure ��
�� The model of semileptonic B decay� the D��l�� fraction and

fc��c are weakly correlated� and this is allowed for in the overall systematic error�

These sources� their uncertainties and the resulting errors on the measurement of

�d are given in Table ���� Their net contribution to the systematic error is ��
�
excluding the uncertainty due to �� which will be treated separately�

� dependence

The result has a weak dependence on the assumed value of �� It also has a

separate dependence on b��b� because of the pure B� sample in the peak� The error

��



is calculated by assuming that f��f� � 
� � �	 and b��b� � 
� � �
�� which

corresponds to a 
�� uncertainty in �� The resulting uncertainty in �d is ��

and is reported separately� The dependence on � is also calculated assuming that

its uncertainty is dominated by that of either b��b� or f��f� alone �Figure ��
��� A

reasonable parameterization of the � dependence is found to be

�d � �
������
 � ����		� ������

Discussion

The major systematic uncertainties a�ecting previous measurements of mixing

using dileptons have a signi�cantly reduced in�uence in this method� There are a

number of reasons for this� First� the tag sample consists of two parts� peak and

random background� The peak� which comprises approximately half of the tags� has

a high purity of B��s and therefore nearly no dependence on the di�erences between

f� and f�� or b� and b�� The peak also contains no leptons from secondary decays

of charm or fake leptons� which reduces the natural occurrence of false mixing events

due to an incorrect �avor tag� Second� although the background tags are dependent

on these e�ects� they contribute less to the additional lepton tag due to their lower

e�ective e�ciency� The result of this is that the purity of the lepton sample in B�

is 
��� The variability of this purity under the uncertainties of production and

semileptonic decay of charged and neutral B�s is small� Therefore� the �nal result has

a relatively small dependence on �� which was the original goal�

�	



Source �sys�value ��d

fc��c �� �



D��l�� fraction �	� ��

M � Models �� ��

�tagm ��tagu �� ��

�tag� ��tagu �� �


�e�u � primary leptons� B
� B� �
� ��

�e�m � primary leptons� B
� B� �� �


�e�� � primary leptons� B
� B� �
 ��

�e�� secondary leptons �� ��

Fakes �� �	

Fraction of randoms in tag �� ��


Overall �
�

f��f� �	 ��

b��b� �
� �


Table ���� Sources of systematic errors and the uncertainty introduced by each into

the measurement of �d�

��



Figure ��
�� Central value of �d as a function of fc��c

��



Figure ��
�� Central value of �d as a function of �

��



��
 Result

The result is then

�d � �
�� � ��� � �
� � �
 This thesis ������

where the error associated with � is shown last� This can be compared with with

mixing result obtained by other collaborators using the dilepton method with the

same dataset

�d � �
	� � �
� � �
���	�����	��� Dileptons ������

Note the substantially smaller systematic error due to � uncertainty on the tagged

measurement� The two measurements were published together in September 
���

in reference ����� At that time� the tagged measurement had the smaller combined

uncertainty and was the world�s most precise measurement of �d�

The ratio xd is found to be

xd � !M

 
� ��	� �
� ������

where the error on xd is determined from the quadratic sum of all three errors on �d�

The neutral B lifetime has been measured by experiments at higher energy ex�

periments to be �� � 
���
 � ��� ps����� This yields a mass di�erence

!M � ��� � ��� � 
�� �hs�� �����

which is consistent with values obtained by experiments at LEP which observe the

time�dependent oscillation frequency directly�����

The top quark has recently been discovered by the CDF and D collaborations at

Fermilab� We use the CDF result mt � 
�� � �� 
 GeV�	�� One can then use the

measured value of xd and these other measurements to arrive at a value of jVtdj as a

��



function of fB� shown in Figure ��
�� As the �gure shows a precise determination of

jVtdj is limited by knowledge of the decay constant fB� However for a wide range of
fB values� the CKM matrix element appears to satisfy the following bounds

�	 � jVtdj � �
	� ����
�

This measurement provides a constraint on the location of the unitarity triangle�s

vertex within the �� � plane� A measurement of jVtdj results in an allowed region of
annular shape centered at the point �
��� Measurement of the CKM�suppressed rate

b� u�� relative to the dominant mode b� c�� provides an additional constraint� a

semicircular allowed region about the point ���� We take the result�	
�

jVubj
jVcbj � ��� ��� ������

Additional information can be obtained from the measurement of the CP asymmetry

parameter � in neutral kaon decays� de�ned via

jK�
L �� ��
 � ��jK� � ��
 � ��jK� ������
 � j�j������ ������

jK�
S �� ��
 � ��jK� � ��
� ��jK� ������
 � j�j������� ������

and measured to be j�j � ����� � ��� � 
�� ���� In terms of standard model

parameters� the expression for j�j is

j�j � ���A�BK����S�xc xt�� �
F �xc� � ��A��	�
� ��F �xt�� ����	�

where A� � and � are the four CKM parameters� �� �� and �� are QCD correction

factors� xi � m�
i�M

�
W � F �x� is the function of Equation ��
�� and

S�x y� � xy

��
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The allowed region from this measurement is a curving band across the �� � plane�






Figure ��
� shows the �
� contours for each of the three measurements� For the

mixing measurement� we have assumed a top quark mass of 
�� GeV�c� �QCD � �		�

and
p
BfB � 
� MeV �top plot�� 
� MeV �middle plot�� and �� MeV �bottom

plot��







Figure ��
�� jVtdj as a function of fB� The �
� error bands are due to uncertainty

on �d only�
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Figure ��
�� �� � constraints� for fB � 
� MeV �top�� 
� MeV �middle�� and ��

MeV �bottom�� Also shown are the contours obtained from charmless semileptonic

B decay and from j�j in CP�violating kaon decays�
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Chapter �

Semileptonic Branching Fraction

��� Introduction

Despite more than ten years of experimental and theoretical work� experimental

measurements of the semileptonic branching fraction of B mesons have been con�

sistently and signi�cantly lower than theoretical predictions�	��� The measurements

have been made in several ways� most precisely as an average over B� and B� mesons

�	�� 	�� ��� from the ���S� resonance and with very limited statistics for neutral

B�s�	���

CLEO has measured theB semileptonic branching fraction� averaging over charged

and neutral B�s using two methods� The �rst measurement examines the energy spec�

trum of leptons at the ���S�� Figure 	�
 shows the spectrum for both muons and

electrons� The spectrum is composed of two parts� The higher energy leptons are

from the desired primary decays of the type B � DX��� The lower energy leptons

are from the secondary semileptonic decays of charm mesons� D � KX�� for ex�


�



ample� One must therefore �t the spectrum to a sum of these two components to

arrive at a normalization for the primary area and thus a value for the semileptonic

branching fraction� Using the model of ISGW for the primary spectrum� an average

B branching fraction of �
���� ��� ����� is obtained� For this �t� the D�� frac�

tion of the primary spectrum is allowed to be a free parameter� the best �t obtained

with ��� � 
��� Fitting with the ACCMM model �not shown� a branching fraction

of �
�	� � �� � ����� is found for pf � ��	 � �	 MeV�c and mc � 
�� � �	

MeV�c�� The di�erence between these two central values clearly indicates that model

dependence is the limiting uncertainty on the precision of this measurement�

The second measurement determines the average B semileptonic branching frac�

tion with little dependence on model� One demands that the event contain a high

momentum lepton p � 
�� GeV�c which tags the �avor of the �rst B in the event�

Next charge and angular correlations are exploited to examine the spectrum of any

primary electrons from the remaining B in the event� Figure 	�� shows the spectrum

of primary and secondary electrons from the B opposite the tag� The overlaid curve

shows the agreement with the shape expected from the ISGW-- model� The average

B branching fraction� obtained using lepton tags is �
��� � �
� � ������

��� Motivation for B Tagging

It is clear that the measured average B semileptonic branching fraction is less

than the theoretical predictions� The natural next step is to examine the separate

B� and B� semileptonic branching fractions� This motivates a tagged measurement

�The quantity measured is actually a more complicated weighted average �f�b��	f�b�����f�b�	

f�b���
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Figure 	�
� Fit to the ���S� single lepton spectrum� using the model of ISGW with

a �oating D�� component� Open circles are the electron spectrum� close triangles

are the muon spectrum� The data and theoretical functions have been corrected to

account for e�ects of radiation and bremsstrahlung�
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Figure 	��� The ���S� primary and secondary electron spectra using lepton tags�

Overlaid are the curves showing the expected shape for the ISGW-- model� The

data and theoretical functions have been corrected to account for e�ects of radiation

and bremsstrahlung�
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where one �rst counts the number of B�s reconstructed in some tag mode� then counts

the fraction for which the remaining B decays semileptonically� This method has the

additional advantage that by counting the number of B mesons in the event sample

directly� one relies neither on assumptions about non�BB decays� nor on the ratio

f��f��

The focus of this chapter is a measurement of the B� semileptonic branching

fraction� b�� using partially reconstructed B� � D����� tags� For completeness� also

reported here are other results of similar tagged measurements of b� and of b� using

the same data� Combining these di�erent measurements� value of the ratio b��b�

is extracted� Assuming equality of semileptonic partial widths� this is an indirect

measurement of the ratio of lifetimes�

��� Analysis Overview

The procedure of this analysis is somewhat simpler than that of the mixing

measurement� The fM�
� distribution formed from right�sign lepton and pion pairs is

�tted to determine the number of tags in the signal NB� This is the number of events

of the type

B� � D�����D�� � D��� B��B��� Anything�

Next� two other fM�
� distribution are plotted� These are the subsets of the initial

events for which there is an additional fast electron �muon� present� The presence of

such an additional fast lepton is a signature of the semileptonic decay of the remaining

neutral B meson� Leptons of either sign are accepted to account for the possibility of

B� �B� mixing� The fM�
� signal size is again determined� The events being counted

are those of the type
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B� � D�����D�� � D��� B��B��� X���

Several corrections must be applied to the number of tags observed to contain lep�

tons� Since leptons of both signs are accepted� secondary leptons from charmedmeson

decay� which have an approximate kinematic limit of 
�� GeV�c� can contaminate the

primary lepton sample� Another source of background is fake leptons� hadrons which

pass lepton identi�cation criteria� After background subtractions and e�ciency cor�

rections� the spectrum is extrapolated to the unobserved lower momentum region to

obtain N�� A weighted average of the electron and muon results for N� is taken� The

neutral B semileptonic branching fraction is given by

Br�B� � X���� �
N�

NB�
�	�
�

In this analysis� if multiple tag combinations are possible in a single event� all are

accepted� No attempt is made to select a single candidate� The reason for doing this

is to avoid introducing a bias for which a correction would have to be later applied�

This subtle phenomenon will now be discussed here �rstly because it justi�es the

method� and secondly because it a�ects other similar measurements which rely on

candidate selection criteria� as will be discussed in Section 	���

If one tag is chosen per event� then there is some chance of discarding a correct

combination of a lepton and a pion in favor of a background combination� This is

e�ectively an ine�ciency for reconstructing tags� much like any other criterion im�

posed for de�ning a good tag� The problem arises when this tagging ine�ciency may

be di�erent for numerator and denominator� resulting in a bias� This is expected to

happen� The probability to form an additional background combination is a function

of the environment in which a correct tag combination is embedded� For example�

given that the �rst B in the event decays to the tag signal mode� when the opposite
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B decays generically� there are generally more tracks in the event than when the op�

posite B decays semileptonically� With more tracks� it is more likely that a random

combination will be formed� increasing the chances of discarding the correct combi�

nation from the �rst B� The correct simulation of this e�ect depends on accurate

knowledge about backgrounds� This bias would result in an anomalously large value

for the branching fraction� It is for this reason that we explicitly do not select one

tag combination per event� eliminating the possibility for this kind of bias� and the

need to correct for it�

��� Data and Selection Criteria

The data used in this analysis consist of integrated luminosities of 
��	 fb�� on

the ���S� resonance and ��� fb�� taken on the continuum� the �S� through �S�

datasets� This is a larger data sample than was used for the mixing measurement�

All events are required to have KLASGL � 
� but no R�GL requirements are made�

The pion and tag lepton momenta P� and P� are required to satisfy P� � �
� GeV�c

and 
�� � P� � ��� GeV�c� Pion candidates are additionally required to have

speci�c ionization within two standard deviations of the pion hypothesis�

The relatively high momentum cut of 
�� GeV�c on the lepton is chosen to reduce

contributions from the B� decay to D����� �D��� � D������ which is believed to

be small but is otherwise di�cult to separate kinematically from the signal mode in

the fM�
� distribution� Due to high reconstruction e�ciency� the tag sample is large

despite the stringency of the requirement on lepton momentum� Figure 	�� shows

the lepton momentum spectrum from B � D����� and B � D������ decays� with

relative normalizations of �	�	���
 respectively� Table 	�� shows the fraction of the







Tag Lepton 
�� � p� � ��	 GeV�c

jDBCDj � 	 mm

�electrons� R�ELEC � �

�muons� MUQUAL � 

DPTHMU � 	

Tag Pion p� � �
� GeV�c

KINCD � 

jSGPIDIj� �

IQALDI � 
 or ��
Second lepton 
�� � p� � ��	 GeV�c

jDBCDj � 	 mm

cos ��� � ���

�electrons� R�ELEC � �

jCZCDj � ���

�muons� MUQUAL � 

DPTHMU � 	

jCZCDj � ���

Table 	�
� Selection criteria for tags

p� min� D� Frac� D�� Frac� Weight D� Weight D�� Max� B�

�GeV�c� ��� ��� by �	�	 by ��
 ���


�� �
�
 ���
 ���� 	�� 



�� ���� 
��� ���� ��� �


�� ���� ���� 
��� �� �

�� ��
� ��� ��	 �
 


Table 	��� Contamination of the fM�
� signal fromD�� feeddown� The second and third

columns show the percentage of each lepton spectrum above the lepton momentum

shown in the �rst column� The fourth and �fth columns show the percentages of all

primary leptons in the mode above the cut� assuming ���	�	��	��
� production ratios

of D�D��D��� The last column shows the expected percentage B� contamination offM�
� signal� assuming resonant D�� production and that D�� decays to D�� but not

to D��








Figure 	��� Momentum spectra of leptons from B � D���� and B � D������
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B � D��D������ lepton spectrum above a given minimum lepton momentum� and

the fraction of all primary leptons above the given momentum assuming D�D��D��

production fractions of ���	�	��	��
 �		�� The last column shows the percent contam�

ination of the fM�
� signal for the given minimum momentum requirement on the tag

lepton� assuming no nonresonant production of B � D����� and that D�� always

decays to D��� not to D�� With the 
�� GeV�c requirement� we estimate that the

B� contamination of the tags from D�� feeddown is therefore less than 	��

��� Tag Sample

We examine the fM�
� distribution and evaluate background from several sources�

The continuum contribution is estimated using the data collected at energies o�

resonance� corrected for luminosity and energy di�erences� The distribution of the

background due to incorrect combinations in BB is obtained via Monte Carlo sim�

ulation� The shape is de�ned almost entirely by the phase space distribution� Its

normalization is obtained by �tting to the data in the sideband region� �� � fM�
� �

�� �GeV�c���� The number of tags is determined by counting candidates in the signal
region �fM�

� � �� �GeV�c���� and subtracting the backgrounds� The fM�
� distribution

obtained after continuum subtraction is shown in Figure 	��� with BB background

distributions� We �nd �

� � 
�� tags�

The signal peak is narrower ��� �GeV�c���� than the peak in the mixing analysis

of Chapter � ��� �GeV�c���� � This is a consequence of requring a higher momentum

lepton in the tag� When calculating fM�
� � the uncertainty on the D� ��momentum

becomes less important as the lepton momentum increases�
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Figure 	��� fM�
� distribution for data �o��subtracted� and for Monte Carlo BB back�

ground�

Figure 	�	� fM�
� distribution for data �o��subtracted� and for Monte Carlo BB back�

ground� for tags with an additional lepton�
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Figure 	��� Fake determination� number of hadrons per tag for each hadron momen�

tum bin�



	



��� Additional Leptons

Additional leptons in tagged events are required to have a momentum in the

range 
�� � p� � ��� GeV�c� The same fM�
� plotting procedure is applied to tagged

events with an additional lepton� and the results are shown in Figure 	�	� In such

events there are two leptons� and we require that the cosine of the angle between

them be less than ���� to eliminate single tracks which are reconstructed as two��

The shape of the BB background is determined by Monte Carlo simulation�

The background to tags with an additional primary lepton occurs when the re�

constructed tag is correct but the additional lepton is either a fake or a secondary

lepton from charm decay�

����� Fakes

The number of fakes is determined as follows� First� a ���� tag combination

is formed in the usual way� Next� a search is made for all tracks within the lepton

�ducial jCZCDj � ��� and with 
�� � P � ��� GeV�c� but which fail electron and

muon identi�cation criteria� For every such hadron candidate encountered� the value

of fM�
� is recorded in one of ten separate plots� Each plot corresponds to a di�erent


 MeV�c wide hadron momentumbin between 
�� and ��� GeV�c� Figure 	�� shows

these ten plots� The sideband regions are then �tted to the same background shape

as was used in Figure 	�� to obtain the signal sizes in the region fM�
� � �� GeV��

These signal sizes represent the number of hadrons in each momentum bin across

from signal tags� The appropriate electron �muon� fake rate per track is then used as

�This opening angle cut is di�erent from the one used in the mixing measurement� which was

later determined to be unnecessarily restrictive�
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a weight for each hadron momentum bin to give the number of electron �muon� fakes

at that momentum� The yields are then integrated from 
�� to ��� GeV�c to obtain

the total numbers of fakes�

����� Secondaries

After subtracting the estimated contribution from fakes� a correction is applied

for the contribution of secondary leptons to the sample of neutral B�s� Of all lep�

tons from inclusive BB decay with momentum above 
�� GeV�c� the fraction arising

from secondary decay is taken to be ��� � ��� After accounting for detection

e�ciencies� the fraction among detected leptons is ��� � ������ � ��� for

electrons �muons�� However� the situation in tagged events is di�erent than in the in�

clusive environment mentioned above� After tagging� the probability of encountering

a secondary leptons is twice as large because the undetected D� can also contribute

to secondary leptons� Therefore� in this analysis the fraction of all additional leptons

which are secondaries is taken to be �	� for electrons and ��� for muons�

����� Biases and Lepton E�ciency

Bias from NTRKCD requirement

Selecting events based on a given NTRKCD biases the branching fraction measure�

ment� since the e�ciency to pass the cut is di�erent for numerator and denominator�

Figure 	�� shows the NTRKCD distributions in monte carlo for all tags and for tags with

an additional lepton� Mean value of NTRKCD is slightly lower for tags with additional

leptons� because the charged multiplicity of a semileptonicB decay is lower than for a

generic B decay� The e�ciency to pass the requirement NTRKCD� 	 is �	� lower for
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Figure 	��� NTRKCD distribution for all tags and tags with an additional lepton�
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tags with leptons than it is for all tags� To correct for this bias we apply a correction

of ��	� to the yield of leptons N��

Bias from tagging e�ciency

There is a bias due to di�erent tagging e�ciencies in numerator and denominator�

As mentioned above� there are more tracks per event when the opposite B decays

generically� The e�ciency for DUET to reconstruct a track depends on the multiplic�

ity of the environment in which the track is embedded� That is� it is more di�cult

to reconstruct a tag in a high multiplicity than in a low one� This mostly a�ects the

e�ciency to reconstruct the soft pion of the tag� not the lepton� This is expected

because the pion track overlaps with many other tracks in the event� Thus� the ef�

�ciency to reconstruct the soft pion is more sensitive to the details about the event

environment than the fast lepton� Since the average charged track multiplicity is

di�erent for events in the numerator and denominator of the branching fraction� then

the average e�ciency to reconstruct a tag is di�erent for both� There is a systematic

uncertainty in the size of this non�cancelation of tagging e�ciency�

We determine the size of the correction for this bias by comparing the distributions

of generated charged multiplicity for genericB� decays� and for the second undetected

B in a tagged event� Figure 	���a� and �b� shows the generated charged multiplicity

of generic B� decays in monte carlo� along with the generated charged multiplicity

of B� across from reconstructed tags� Note the downward shift in the mean for the

latter� This is due to the variation of tagging e�ciency with the multiplicity of the

opposite B� These two distributions have somewhat di�erent shapes because there

is a de�cit in the lower plot at large multiplicities� The small di�erence in shapes

can be seen by taking the ratio of the two distributions� shown in Figure 	��� �Since
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Figure 	��� Generated charged multiplicity for �a� generic B� decay for �b� the second

B� in a tagged event and �c� for semileptonic B� decay�
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Figure 	��� Ratio of Figure 	���b� to Figure 	���a� which determines the variation of

tagging e�ciency with generated charged multiplicity of the event� The slope indi�

cates that the tagging e�ciency drops by ���� of it�s value for every extra generated

charged track in the event�
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Figure 	�
� Generated charged multiplicity for generic B� decays �upper� and for

semileptonic B� decays� weighted by relative tag reconstruction e�ciency�
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the initial plots both had unit area� the ratio is equal to unity at the midrange�� A

linear �t to this plot gives a slope of ����� ��� This indicates that the tagging

e�ciency drops by ���� of its value for every extra generated charged track from the

opposite B�

Figure 	���c� shows the generated charged multiplicity for semileptonic B� decay�

Note the shift in the means of the distribution� On average� a semileptonic B� decay

in the monte carlo has 	�
���� � 
�� fewer tracks than a generic B� decay� Thus� we

expect the average tagging e�ciency when the second B decays semileptonically to be

��� ��track� 
�� tracks � ��
� lower than the tagging e�ciency when the second B

decays genericly� To properly determine the correction� we take the two distributions

in Figure 	���a� and �c� which both have unit area� and multiply them by the relative

e�ciency curve of Figure 	��� The results are shown in Figure 	�
� After weighting

by the e�ciency in this way� the ratio of areas is found to be 
��
��� Therefore�

we apply a ���� correction to the values for N��

Lepton e�ciency

To obtain the total numbers of primary leptons in the tag samples� N�� these

raw numbers of detected primary leptons are corrected for detection e�ciency in the

observed momentum region� p� � 
�� GeV�c� then extrapolated to the unobserved

region� The detection e�ciency includes e�ects of geometric acceptance� track re�

construction and identi�cation criteria� We �nd it to be �	�
� for electrons and

	��� for muons� not yet including a reduction of 
�
� due to the requirement on

the dilepton opening angle and to e�ects of the track multiplicity cut� To account for

the unobserved portion of the spectrum� we use the ISGW model which predicts that

B meson semileptonic decay consists primarily of three exclusive modes� B � D���
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B � D��� and B � D����� in the percentages ������

� However� based on CLEO�s

preliminary measurement of the inclusive lepton momentum spectrum which yields

slightly di�erent rates����� we take the proportions to be ���	�	��	��
 �		�� For elec�

trons �muons� the fraction of the spectrum above 
�� GeV�c is found to be ���
�

�	
����� Details of the e�ciency calcluation are given in Appendix B�

Assuming lepton universality� we average the electron and muon totals to obtain

N�� Shown in Table 	�� are the raw numbers of tags� with and without leptons� and

the various corrections applied to arrive at the semileptonic branching fraction�

��� Statistical and Systematic Uncertainties

About 	� of the tags are found to be identi�ed more than once because the

soft pion curls and is reconstructed as more than one track� Although this has no

systematic e�ect on the measurement� there is some overcounting of tags both in the

numerator and denominator� which is accounted for by increasing the statistical error

by ��	� of its value�

Several sources of systematic error are present in the measurement� These include

the uncertainties in the lepton spectrum extrapolation� in the e�ciencies for tracking

and lepton identi�cation� in the two bias corrections� in the number of fake and

secondary leptons� and �nally in the �ts to the signal sizes in the fM�
� distributions�

The single largest contribution to the systematic error is the uncertainty in the

shape of the primary lepton spectrum in order to determine the fraction of the spec�

trum below the momentum cuto� of 
�� GeV�c� The error was originally conserva�

tively estimated by changing the percentage of B � D���� from � to �� of the
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total semileptonic branching fraction in the ISGW model� giving an uncertainty of

�� on the result� This uncertainty can be greatly reduced in future measurements�

The tagged lepton spectrum of Figure 	�� can be used to determine directly from

the data what fraction of the spectrum lies below 
�� GeV�c� e�ectively eliminating

all model dependence� Based on the statistical error bars in Figure 	�� which uses

the �S� through �S� datasets� the fraction of the spectrum below 
�� GeV�c can be

determined with an uncertainty of ��� already a substantial improvement over the

conservative �� uncertainty we choose for this result�

Uncertainties in lepton identi�cation and tracking e�ciencies are ��	� and ����

respectively� The systematic uncertainty on the correction for the bias introduced by

the NTRKCD cut is taken to be the full size of the correction� �	�� The systematic

uncertainty on the correction for the bias introduced by the noncanceling tagging

e�ciencies is also taken to be the full size of the correction� ���� The uncertainty

in both the rates of fakes and of secondary leptons is taken to be ���

The remainder of this section will be devoted to a detailed discussion of the system�

atic uncertainty on the �ts to the fM�
� distributions� In order to justify the technique

of determining the systematic errors on the �ts� one must �rst understand some de�

tails about the fM�
� distribution� The BB background of the fM�

� distribution may be

separated according to their general origin � a correlated and an uncorrelated compo�

nent� The correlated portion is where the lepton and pion are decay products of the

same B� More speci�cally� the lepton is likely a primary lepton from B decay �not

necessarilyB � D������� but the pion is a product of theD decay� The uncorrelated

portion is where the lepton and pion originate from di�erent B�s� Again� the lepton

is primary� but the pion comes either from the D or from the hadronization of the

W � Thus� uncorrelated background consists of pions from two sources� but correlated
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background has pions from only one�

The correlated and uncorrelated components of the fM�
� background have di�er�

ent shapes� shown in Figure 	�
�� This can be understood by �rst looking at the

distribution of the cosine of the opening angle between the lepton and pion� cos ����

Figure 	�

 shows the opening angle distribution for uncorrelated and correlated back�

ground� As expected� the uncorrelated background is nearly �at in cos ���� The slight

dip at the center is from detector acceptance e�ects� not a deviation from isotropy�

The correlated background� however� is not isotropic and shows a clear enhancement

towards cos ��� � �
� This is because theD tends to be boosted away from the lepton�

and consequently the decay products of the D preferentially populate the hemisphere

opposite the lepton� The 'slope( of this enhancement towards cos ��� � �
 depends
primarily on the momentum of the D and the charged multiplicity of the D decay� If

the monte carlo correctly reproduces these� then the predicted shape for the correlated

background should be reliable�

The missing mass squared is a function of lepton and pion momenta� and of their

opening angle

fM�
� � f�P� P� cos ����� �	���

Figure 	�
� shows the relationship between cos ��� and fM�
� for the range of lepton and

pion momenta passing our selection criteria for the right�sign Monte Carlo background

with the prominent signal removed� If the lepton and pion are parallel� a wide range

of fM�
� values are possible� On the other hand� if the pion is opposite the lepton� the

value of fM�
� is forced to zero� Due to this funneling e�ect� the correlated background

is enhanced in the fM�
� distribution near zero� shown in Figure 	�
�� The uncorrelated

background does not produce such a bump� but rather exhibits a plateau�like behavior

in the region �� � fM�
� � �
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Correlated Uncorrelated

Right�sign �� � �� �

Wrong�sign 
� � �� �

Table 	��� Composition of right�sign background and wrong�sign distribution

The right�sign ������ and wrong�sign ������ fM�
� background distributions are

expected to have di�erent ratios of correlated�uncorrelated components� This is sim�

ply due to arguments of charge conservation� Consequently� the overall shapes of the

right and wrong�sign distributions are di�erent� This is the reason why the wrong�

sign distribution is not used to model the shape of the right�sign� Rather� the monte

carlo right�sign background shape is used to estimate the background in data under

the signal� Table 	�� shows the relative abundance of correlated and uncorrelated

components of the right and wrong�sign distributions as predicted by monte carlo�

There is another consequence which follows from the above discussion� Recall

that two kinds of plots are made� First� the right�sign fM�
� distribution is plotted

for all ���� pairs passing our cuts� Then the subset of the initial distribution is

considered for which there exists a second fast lepton �e or 
�� presumably from

the semileptonic decay of the second B� As was shown above� the uncorrelated

fraction of the background for the full sample was about two�thirds� For the lepton

subsamples� the correlated�uncorrelated mixture is expected to be di�erent� In the

lepton subsamples� it is no longer possible to get an uncorrelated pion from the

hadronization of the W � since the W is decaying to a lepton and neutrino� Therefore

the two components should be more nearly equal in size� This will result in the

lepton subsample having a slightly di�erent background shape than the full sample�

We take advantage of the fact that there should be little� if any� di�erence between

the muon and electron subsamples� This allows the sum of the monte carlo electron
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Correlated Uncorrelated

Right�sign �full sample� �� � �� �

Right�sign �lepton subsample� �� � 	� �

Table 	��� Composition of right�sign background for the full sample and for the lepton

subsample�

subsample and muon subsample background shapes to be taken� and used to �t each

of the electron and muon subsamples in data� The two shapes are combined in order to

reduce the statistical error bars by a factor of
p
�� Table 	�� shows the composition of

the right�sign background for the full sample and the lepton subsamples� as predicted

by monte carlo�

In order to quantify the systematic error on the estimates of the background

sizes �and thus the signal sizes�� the agreement between the shapes of the wrong�sign

distributions in monte carlo and data is examined� The same �tting procedures are

applied to the wrong�sign distributions as are used in the right�sign� and a comparison

is made between the monte carlo prediction for the background size in the region

fM�
� � �� with the known value from data� The size of the discrepancy� if any� is

taken to be the size of the systematic error on the right�sign background estimates� In

doing so� we make the assumption that the monte carlo can correctly model the right�

sign distribution if it can correctly model the wrong�sign distribution� This is a valid

assumption� We have shown above that the two distributions contain the same physics

processes �correlated and uncorrelated components�� except in somewhat di�erent

mixtures�

Figure 	�
� shows the wrong�sign distribution in data� with the wrong�sign monte

carlo shape �t in the sideband region �� � fM�
� � ��� Based on this �t� the

predicted area in the region �� � fM�
� is ��
��	�� The actual area is �������� The
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���� �all� ���� �with 
� ���� �with e�

MC prediction� fM�
� � �� ��
� � 	� 
	�
 � ��� 
��� � ���

Actual area� fM�
� � �� ���� � �� 

�	 � 
��
 
���	 � 
���

Actual � predicted ��� �� ����� 
��� ���	 � 
	��

Actual � predicted ��� ����� ��� ����� 
��� ���� � 
���

Worst case di�erence ��� 	�� 
�� ���

���� �all� ���� �with 
� ���� �with e�

MC background prediction �	�� ���� �	��

Uncertainty� from above 
�� 
�� 
���

Signal size �
� 
���� ��
��

Systematic error on signal ��� ��� ��
 ��


Table 	�	� Determination of systematic errors on signal sizes

di�erence measured � predicted is ��� ��� Converting this to a percentage of the

predicted area� the actual area di�ers from the predicted area by ����� ����� This

is consistent with zero� and does not indicate any problem with the monte carlo� On

the other hand� the discrepancy could be at worst ABS������ � ���� � 	���� To be

conservative� this is taken to be the systematic error on the size of the background in

the right�sign distribution� Unfortunately� this is not the number we are ultimately

interested in� What is desired is the fractional systematic error on the signal size�

The monte carlo prediction for the background size in the right�sign is �	��� Taking

	��� of this number� the systematic error is found to be 
��� The central value for

the signal size is �
�� Therefore� the percent systematic error on the signal size is


����
� � �����

A similar procedure is used for the wrong�sign lepton subsamples� This is done

separately for the muon and electron subsamples� The fM�
� distribution is plotted

for ������ pairs when there is an additional fast muon present� and separately when

there is an additional fast electron present� The shape which is used to �t both these
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Source � error

Fit to number of tags ���

Fit to number of tags with leptons ��


Fake leptons ��

Secondary leptons 
��

Correction for event selection bias �	

Correction for tagging e�ciency bias ��

Spectrum shape ��

Tracking e�ciency ��

Lepton identi�cation e�ciency ��	

Total 
��

Table 	��� Systematic errors on branching fraction�

distributions is the sum of the two wrong�sign lepton subsamples in the Monte Carlo�

The �ts are shown in Figures 	�
	 and 	�
�� and the result are shown in Table 	�	�

along with the above numbers already described� The percent systematic error on the

signal sizes for the lepton subsamples is found to be ��
� in both cases� We assume

that this potential systematic error is 
� correlated between the two subsamples

and will not cancel when taking the lepton average� Thus� the overall error on the

signal sizes in the lepton subsample is taken to be ��
��

In this way� the systematic error on the monte carlo �ts is determined by directly

comparing the monte carlo with data� Note also that these systematics errors are

largely determined by the statistics of the test� which is limited by the size of the

data� not the monte carlo� Thus� these systematic errors should decrease with more

data� unless and until a discrepancy between monte carlo and data becomes apparent�

We add the sources in quadrature for the total systematic error� The systematic

uncertainties are summarized in Table 	��
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lepton requirement

none �

� � 
��

e ��
�� � ����

fake 
�	� ��

secondaries 
��� � ���

primary observed �		�� � ���


corrected e �Ne� �
�� � ����


 
���� � ���

fake ���� ��	

secondaries ���� ���

primary observed 
�
�
 � �
�

corrected 
 �N�� ��
�	 � ���


N� average ����� � 	���

Br�B� � X���� 
�	 � ��

Table 	��� Numbers of decays reconstructed without and with a requirement of ad�

ditional leptons� with corrections applied to obtain semileptonic branching fraction�

��	 Result

The neutral B semileptonic branching fraction measurement using these tags

is then

Br�B� � X���� � �
�	 � �� � 
���� �	���

where all systematic uncertainties have been added in quadrature� This is the world�s

most precise measurement of the B� semileptonic branching fraction� This tagged

measurement does not depend on assumptions about non�BB decays of the ���S��

Because we make the approximation that the tag sample is pure B�� there is a small

dependence on the ratio f��f� from B� contamination via D�� feeddown� but this

dependence vanishes if the lifetime ratio is unity�


�




��
 The Ratio of Lifetimes

The rate of exclusive semileptonic decay in ���S� events is proportional to

the product of the semileptonic branching fraction and the production rate of the

parent particle� The ratio of rates from charged and neutral B�s is then equal to

�b�f�����b�f���� where f�� and f�� are the production fractions� and has been mea�

sured by CLEO and ARGUS�	�� 	��� This may be considered a measurement of b��b�

under the assumption that f���f�� � 
� but the uncertainty on this assumption is a

major source of systematic error�

Three similar tagged semileptonic branching fraction measurements have been

made by other collaborating members of the CLEO experiment using the same dataset

but di�erent tagging techniques� It is beyond the scope of this thesis to discuss their

work in great detail� but their results are presented here for completeness in order

to arrive at an overall measurement of the lifetime ratio� These other results include

two additional measurements of b�� and the �rst measurement of b��

The �rst of these three additional measurements uses a partial reconstruction

technique applied to the hadronic decay B� � D����D�� � D���� As in the

method presented in this thesis� the mode is identi�ed without bene�t of the D�

reconstruction� Starting with the two pions� energy conservation gives the D� energy�

and consequently the opening angle � between the D� and �� in the laboratory�

The only remaining unknown is the azimuthal angle 	 of the �� relative to the

D�� boost axis� and this is chosen to maximize the apparent reconstructed B meson

mass� or pseudomass� For true B� � D���� events� this quantity will lie in a

narrow region between the mass of the B meson and the beam energy� Using this

technique� a total of ��� � 	� tags are reconstructed� Corrections must be made

for biases introduced by event shape cuts� and by noncanceling tag e�ciency� All
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tag combinations are accepted in this analysis� so there is no bias introduced from

choosing a best candidate� The neutral B semileptonic branching fraction obtained

using this method is �
�� � ��� 
�����

The second measurement uses fully reconstructed hadronic decays of neutral B

mesons as a tag� The eight reconstruction modes are B� � D���� D����� D����

D����� D�a�� � D
��a�� � 	K

�
s � 	K

��� The daughter particle momenta pi and en�

ergies Ei are summed to form pB and EB� Two �gures of merit are calculated

which are used to identify signal� First� the beam constrained mass MB is de�ned

as MB �
q
E�
beam � �pi��� Second� the normalized energy di�erence ��!E� is taken

to be �Ebeam � EB����!E�� where ��!E� is the expected resolution on the energy

di�erence for a particular decay mode� The signal is taken to be the size of the peak in

the MB distribution at the B meson mass after requiring ��!E� � � The sidebands

of the ��!E� distribution are used to estimate the MB background� In this manner�

	
	� �
 neutral B tags are reconstructed� A correction must be made for bias intro�

duced by event shape cuts� The additional bias introduced by tag e�ciency variation

is found to be twice as large for this tagging method as for the partially reconstructed

tags� �� averaged over all decay modes� Finally� unlike the other tags� a decision is

made which tag combination to retain among all possibilities in the event� and extra

systematic error is assigned to account for any potential bias� This method obtains

a neutral B semileptonic branching fraction of �
��	 � ��� � �����

The third measurement is the only one of the charged B semileptonic branching

fraction� This tag is similar to the previous one� fully reconstructing the hadronic

decay modes B� � D����D�����D����D����� D�a�� � D
��a�� � 	KM � 	K��� Unlike

the neutral B tags� additional leptons of only one sign are accepted� eliminating the

need for the small correction for secondary leptons from charm decay� In all other
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respects� this technique is the same as the previous one� The number of charged B

tags is ��� � ��� and the charged B semileptonic branching fraction is measured to

be �
�
 � 
��� 
�	���

In summary� the four measurements are

Br�B� � X����� � �
�	� ��� 
���� This Thesis�

Br�B� � X����� � �
��� ��� 
���� Partial Hadronic�

Br�B� � X����� � �
��	� ���� ���� Full Hadronic�

Br�B� � X����� � �
�
 � 
��� 
�	�� Full Hadronic�

We average the three B� measurements� using the quadratic sum of statistical and

uncorrelated systematic errors to determine the relative weights� The �nal CLEO

results for the charged and neutral B branching fractions are therefore

Br�B� � X����� � �
�
 � 
�� � 
�	�� CLEO

Br�B� � X����� � �
�� � �� � 
�
��� CLEO

Both are consistent with our measurement of the average B branching fraction�

�
��� � �� � ����������

In taking the ratio� the systematic uncertainties of the lepton spectrum shape�

tracking e�ciency and lepton identi�cation cancel� yielding

b�
b�

� ��� � �
� � �
�� �	���

This result was published in reference �	�� and is consistent with lifetime ratios from

ALEPH �
���	�	��	�������	��� DELPHI �
����	����	��
��	��
��	��� ���� OPAL ������
�����

��� and CDF �
��� �
�� �	� ��
�� as well as with theoretical expectations� It is

also in agreement with CLEO�s other result �	�� and the ARGUS measurement �	��

under the assumption that f���f�� � 
�
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Figure 	�

� Cosine of opening angle between lepton and pion for correlated and

uncorrelated background�
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Figure 	�
�� Relationship between cosine of opening angle and fM�
� for the momenta

passing our requirements�
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Figure 	�
�� fM�
� for correlated and uncorrelated background�


��



Figure 	�
�� Fitting the wrong�sign monte carlo to the wrong�sign data� Results

listed in �rst column of Table 	�	� top half�
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Figure 	�
	� Fitting the wrong�sign monte carlo to the wrong�sign data� muon sub�

sample� Results listed in second column of Table 	�	� top half�
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Figure 	�
�� Fitting the wrong�sign monte carlo to the wrong�sign data� electron

subsample� Results listed in third column of Table 	�	� top half�
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Chapter �

Conclusion

This thesis has presented measurements of two properties of the neutralBd meson�

the mixing probability �d and the semileptonic branching fraction B� � X����� We

�nd

�d � �
�� � ��� � �
� � �
 ���
�

and

Br�B� � X����� � �
�	 � ��� 
����� �����

The tagged measurement of �d has a systematic error due to uncertainty in

� � f�b
�
���f�b

�
��f�b

�
�� which is signi�cantly smaller than for the alternative dilepton

method� Using a value of the B� lifetime measured at other experiments� the mass

di�erence between the eigenstates of CP� !M � is extracted� There is a signi�cant

uncertainty on the determination of the CKM matrix element Vtd due to imprecise

knowledge of the decay constant fB� A better determination of Vtd cannot be made

until fB is known with more precision� The constraint imposed by this mixing mea�

surement on the allowed region of the � � � plane is consistent with measurements

of charmless semileptonic B decay and from measurement of j�j from CP�violating
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neutral kaon decays�

Additional data from the ���S� may aid in a more precise determination of jVtdj
through a somewhat indirect means� More data will given an improved measurement

of the purely leptonic decay rate  �Ds � 
���� and consequently the decay constant

fDs
� This is an unambiguous test of lattice QCD� and should in turn help in the

determination of fB from the lattice�

The B� semileptonic branching fraction measurement is consistent with CLEO�s

measurement of the inclusive lepton production at the ���S�� suggesting that non�

BB decays of the ���S� are probably not contributing to the puzzle of the semilep�

tonic branching fraction� It is also consistent CLEO�s model�independent lepton

tagged measurement of the average B semileptonic branching fraction� Combining

this tagged B� branching fraction with measurements made by other collaborators

of the B� and B� semileptonic branching fractions� an value of the lifetime ratio is

obtained which is consistent with unity�

This branching fraction measurement is less than the minimum 
��	� which has

has recently been expected by theory� adding to the growing body of evidence that

the discrepancy is a real one� One must then determine if the shortcoming lies with

the measurements� the calculations� or both�

Many hypotheses have been proposed to explain this discrepancy� A sampling

include the presence of uncounted portions of the semileptonic branching fraction�

the presence of unusually large nonspectator contributions to the hadronic width� an

unexpectedly small charm quark mass� and unexpectedly large higher order contri�

butions to the nonperturbative QCD corrections�

The discrepancy is unlikely to be due to unobserved semileptonic B decays in�

volving either � leptons or baryons� ALEPH has measured the B semi�tauonic


��



branching fraction Br�B � X�� ���� � ����� � ��� � ����� which is consistent

with expectations����� A search was made by the ARGUS collaboration for semilep�

tonic decay B� � ��
c �p�

�� by searching for a lepton and proton in an event tagged by

another fast lepton tag� No events were found and they set an upper limit of �
��

for this branching fraction�	���

If anomalously large non�spectator processes occurred in B decay� the semilep�

tonic branching fraction could be reduced� CLEO has set an upper limit on the

purely leptonic channel B�� ����� of ����
������� The charmless hadronic decays
B � K� and B � �� have contributions from hadronic penguins� and CLEO has

evidence for their existence at the level of 
������� Another rare process� the elec�

tromagnetic penguin decay B � K�� has been observed with a branching fraction of

approximately 
������� All of these results are consistent with expectations and do

not indicate any evidence for enhanced non�spectator processes contributing to the

total width of the B meson�

Another means of enhancing the hadronic width is to lower the mass of the charm

quark� increasing the rate for the transition b� c�cs� Although a smaller charm mass

would drive the semileptonic branching fraction in the desired direction� it would

increase the average number of charm quarks produced per B decay� For a nominal

charm quark mass� the expected charm content of B decay lies in the range 
�
 � 
���

while CLEO has measured the content to be 
�
��� charm and anticharm quarks

per B meson decay����� If the charm quark were lowered to solve the semileptonic

branching puzzle� the expected yield would rise� creating an inconsistency with the

data� Therefore� a low charm quark mass alone seems to be an unacceptable means

of explaining the semileptonic branching fraction puzzle�

It has been suggested that if the resolution of the puzzle were due to unusually


��



large higher�order nonperturbative corrections� then the ratio of lifetimes would be

expected to di�er signi�cantly more from unity than shown in Equation ������	�� Yet

the lifetime ratio measured by CLEO and other experiments seems to be consistent

with unity and theoretical expectations� tending to discount this possibility� This

serves to remind us that measurement of the lifetime ratio is an important element

to the understanding of the semileptonic branching fraction puzzle�

There have been recent developments with the calculation of next�to�leading order

radiative QCD corrections to the hadronic width which take into account the �nite

mass of the charm quark���� ���� The authors account for e�ects in both b� c�ud and

b� c�cs transitions� The authors predict a B meson semileptonic branching fraction

of �
���
���� using pole quark masses� or alternatively �

���
���� using running

MS masses�

In spite of these intriguing possibilities� there is as yet no consensus in the physics

community as to the source of the discrepancy� and the issue remains a controversial

one� This thesis has presented additional evidence that� like the average B semilep�

tonic branching fraction� the B� branching fraction as well is below 
��	��
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Appendix A

Full Form for �d

The relationship betwen �d and M is

�d �
aM � b

cM � d
� �A�
�

When f��f� � b��b� � 
� the coe�cients are

a � �
 � FR� �NFR�
 � ff ��
 � fc���
e�
u �

�tag�

�tagu
�e�� � � FR�
� ff �fc �A���

b � FR�
 � ff �fc �A���

c � �
� FR��
� �f����� �NFR�
� ff ��
� fc��
e�
u � FR�
 � ff �fc�� �A���

d � �
 � FR��
� �f����� �NFR�
 � ff ��
� fc�
�tagm

�tagu

�e�m � FR�
 � ff �fc��� �A�	�

These expressions become more complicated if the dependences on f��f� and

b��b� are included� These must be included in order to evaluate the sensitivity of �d

to variations in �� The full expressions are

a � �
 � FR��
� f�� � f���
 � ������
 � �����

NFR�
� ff ��
 � fc���e�u ��

tag

�

tagu
�e�� ��

FR�
� ff �fc�
 � ����

�A���

b � FR�
� ff �fc�
 � ���� �A���
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c � �
 � FR��
� ��f����
 � ���� �NFR�
 � ff ��
� fc��e�u �
FR�
 � ff �fc��

�A���

d � �
� FR��
 � ��f����
 � ���� �NFR�
� ff ��
 � fc�
tagm
tagu

�e�m�
FR�
� ff �fc��

�A���

where � � f�b�
f�b�

and � � b�
b�
�
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Appendix B

Lepton E�ciency Calculation

The lepton e�ciency correction involves four steps�

� Determine the primary lepton spectrum as a function of reconstructed momen�

tum�

� Determine the e�ciency for tracking and lepton identi�cation as a function of

reconstructed momentum�

� Multiply the spectra by the e�ciency and then integrate the area between 
��

GeV�c and ��	 GeV�c�

� Apply additional correction factors�

B�� Shape of primary lepton spectrum

First� the lepton spectrum is generated in the B meson rest frame using the

model of ISGW with D�D��D�� fractions of ���	�	��	��
�� This is done separately

for electrons and muons�


��



Next� the spectrum is convoluted to include the e�ects of B motion at the ���S��

A weighted average of two di�erent boosts are taken� corresponding to the beam

energies of the �S� and �S� datasets� Recall that the neutralB semileptonic branching

fraction measurement is based on the �S� through �S� datasets�

Thirdly� electroweak radiative corrections are applied to the spectrum according to

the prescription of Marciano and Atwood����� The radiative correction factor fEW�El�

which multiplies the lepton spectrum is

fEW�El� � �
Emax � El

CEl
�r �B�
�

where

r �
��

�
�ln�

�El

ml
�� 
� �B���

and ml and El are the lepton mass and energy� C is related to the average and

maximum energies of the lepton through

C � �Emax �El��E l� �B���

After applying the radiative correction� the spectrum represents the momentum

of primary leptons leaving the interaction point� More speci�cally� the spectrum has

not yet been modi�ed by either e�ects of bremsstrahlung in the detector material or

by measurement resolution� These two e�ects are accounted for by constructing a

nearly�diagonal smearing matrix with Monte Carlo using tagged leptons which maps

generated momentum to the reconstructed momentum� The matrices for electrons

and muons are shown in Figure B�
� Every column has unit area� The spectrum is

then multiplied by the smearing matrix to produce the primary spectrum expressed

as a function of reconstructed momentum� shown in Figure B��� The discontinuities

at �� GeV�c for electrons and about 
�� GeV�c for muons are due to the fact that

the smearing matrices are de�ned to be diagonal below these momenta�
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B�� Determine e�ciency for tracking and lepton

ID

Next the e�ciency to observe a lepton at a given reconstructed momentum is

determined� This e�ciency includes three contributions�

� The e�ciency for the lepton track to enter the proper lepton �ducial region�

� The e�ciency for DUET to reconstruct a lepton track and then for the track

to pass quality cuts�

� The e�ciency for the lepton track to pass lepton identi�cation requirements�

The tracking e�ciency as a function of generated lepton momentum� �TR�QQ�� is

de�ned to be the ratio of two spectra� The denominator of the ratio is the generated

momentum spectrum of all generated leptons� with a generated cosine Pz�P � ����

The numerator is the generated momentum spectrum of all DUET tracks passing

tracking cuts which are matched to a generated lepton by tagging subroutines� and

with a generated cosine Pz�P � ���� Due to occasional tracking errors� it is possible

to match multiple DUET tracks to a single generated lepton� This de�nition of the

tracking e�ciency includes this slight over e�ciency� Figure B�� shows �TR�QQ�

for electrons and muons� This is the tracking e�ciency as a function of generated

momentum�

What is required is actually the tracking e�ciency as a function of reconstructed

momentum �TR�DUET�� We make the approximation that

�TR�DUET� � �TR�QQ� �B���

�Here� the term generated lepton excludes leptons from gamma conversions and decays in �ight�


��



which is the same approximation made by the analysis of the inclusive single lepton

spectrum� To be exact� the e�ciency �TR�QQ� should be multiplied by the smearing

matrices of Fig� B�
 to obtain �TR�DUET�� However� this detail is not necessary if

the e�ciency is su�ciently �at�

The lepton identi�cation e�ciency as a function of reconstructed lepton �ID�DUET�

is de�ned to be the ratio of two spectra� The denominator is the reconstructed mo�

mentum spectrum of all DUET tracks passing tracking cuts which are matched to a

generated lepton by tagging subroutines with a reconstructed cosine jCZCDj � ����

The denominator is the reconstructed momentum spectrum of the subset of these

tracks which pass the lepton identi�cation requirements� Figure B�� shows �ID�DUET�

for electrons and muons�

The overall e�ciency for tracking and lepton identi�cation as a function of recon�

structed momentum �TR�ID�DUET� is the product of the two e�ciencies �TR�DUET�

and �ID�DUET�� and is shown in Fig� B�	 for electrons and muons� Note that these

e�ciencies do not include the factor of ��� for the �ducial cut�

B�� Multiply spectrum by e�ciency

We multiply the spectra of unit area found in section A�
 by the �tracking �

ID� e�ciency from section A�� to obtain the spectra in Fig� B��� The area above 
��

GeV�c is the e�ciency to detect a primary lepton inside the �ducial region jCZCDj �
���� and is found to be ���� for electrons and ���� for muons� Thus� the overall

e�ciencies for detecting a primary lepton after tracking� �ducial and PID cuts are

equal to

�e � ��� � ���� � ��
� �B�	�


	



�� � ��� � ���� � ���� �B���

B�� Correction factors

Additional correction factors must be applied to the above e�ciencies� As dis�

cussed in Section 	����� these include corrections for the bias due to event selections�

correction for the dilepton opening angle cut� and a correction for the bias due to

tagging e�ciencies� Table B�
 summarizes these correction factors� Table B�� shows

the overall e�ciency corrections for each tag obtained by multiplying the results of

section B�� by the corrections in Table B�
�

Event Selection ���	

Opening Angle ����

Tag E�ciency 
��

Overall Correction 
�
�

Table B�
� Correction factors to lepton e�ciencies

�e ��
�

�� ���	

Table B��� E�ciencies with all corrections


	




Figure B�
� Electron and muon momentum smearing matrices

Figure B��� Reconstructed momentum spectra for electron and muons in the ISGW

model with �
� D���
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Figure B��� Electron and muon tracking e�ciencies

Figure B��� Electron and muon identi�cation e�ciencies
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Figure B�	� Electron and muon tracking � identi�cation e�ciencies

Figure B��� Electron and muon spectra times �tracking � identi�cation� e�ciencies
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Appendix C

CLEO Terminology

�� Datasets

Name Dates pb�� Comment

�S� ��May���Oct� 
� Included BB� scan

�S� 

Nov���Jun�
 ��� Changed to Single Interaction Point

�S� 
�Sep�
�
�Feb�� �� Installed DAQ�

�S� 
Apr�����May�� �
� DME gas in PTL

�S� �Jul���	Oct�� ��� �

�S	 �Nov���
�Jan�� �
� New RF cavities for CESR

�S
 
�Mar����Jul�� ��
 �

�S� 
Aug�����Sep�� ��� �

�� Event

NTRKCD number of charged tracks in CD �PT�VD�DR��

R�GL Ratio of second to the zeroth Fox�Wolfram moments�


		



�� Track

PQCD track momentum with electric charge as sign�

CZCD cos � of track where z is beam axis�

DBCD track impact parameter in r � ��

Z�CD track impact parameter in r � z�

RESICD RMS residual in tracking �tting�

TRKMAN program to kill false tracks�

KINCD general quality of track candidate�

 / track from primary vertex�

� / track from secondary vertex�

IQALDI quality of dE�dx for a track�


 / good� more than 

 hits�

NHITPT number of hits in PT for a track�

NHITVD number of hits in VD for a track�

RHITDR pecentage of DR hits over expected for a track�

�� Lepton Identi�cation

R�ELEC likelihood for electron candidates�

MUQAL quality of muon chamber hits matching CD track�

 / good� match in all layers�


K / fair� unsatisfactory match in one layer�

DPTHMU depth of MU hits in unit of nuclear interaction length�
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Appendix D

Comments on a B� Tag

The neutral B tag used in this thesis is lepton�pion pair of opposite charge with

fM�
� � � It is worth noting that a charged B tag with a similarly high e�ciency

unfortunately cannot be made from a lepton�pion pair of the same charge with fM�
� �

� because the decay chain B� � D������� D�� � D��� does not exist� In particular�

energy conservation prevents D�� from decaying to D���� as �MD� �M��� � MD��

by a mere ��� MeV�c��

However� a fM�
� tag made from combinations of �� and �� would be a linear

combination of 
 ��� B� and 
 
�� B�� Table D�
 shows the �ve possible decay

modes of B � D��� with the D� branching fractions� Unfortunately� unlike the B�

tag� there is no incorrect� or 'wrong�sign(� way to pair the leptons and ���

One application for a ���� tag would be in the determination of f��f�� The

quantity f� �and thus f�� can be measured by comparing the rate of events with a

single ����� tag with rate for double tagged events� As an independent check� one

could use single versus double ���� tags� for example� to also arrive at a value of

f��f��
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B� � D����� D�� � D��� ���

D�� � D��� �
�

D�� � D�� 
�

B� � D����� D�� � D��� ���

D�� � D�� ���

Table D�
� Decay modes of B � D���
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