Semileptonic and Leptonic D⁰, D⁺, and D_s⁺ Decays at CLEO-c

Werner Sun, Cornell University for the CLEO Collaboration

XLIVth Rencontres de Moriond, QCD and High Energy Interactions 14-21 March 2009, La Thuile, Valle d'Aosta, Italy

(Semi)leptonic decays, LQCD, and CKM CLEO-c detector and dataset CLEO-c results for: $D \rightarrow \{K, \pi\}e^+\nu$ $D_s^+ \rightarrow Xe^+\nu$ $D^+ \rightarrow \mu^+\nu$ $D_s^+ \rightarrow \{\mu^+, \tau^+\}\nu$

(Semi)leptonic Decays and QCD

- Charm semileptonic and leptonic decays probe non-perturbative QCD.
 - Measured form factors and decay constants ↔ Lattice QCD (LQCD) calculations.
 - Validation of LQCD in charm carries over to the *B* system.
 - If LQCD is correct, then comparison with experiment sensitive to new particles.

- Validating LQCD in B system reduces theoretical uncertainty in CKM constraints.
 - Semileptonic form factors affect:
 - $|V_{ub}|$ from $b \rightarrow ul^{-}v$
 - |V_{cd}V_{cb}*|: direct
 determination of |V_{cd}|
 - Leptonic decay constants affect:
 - $|V_{ub}|$ from $B^+ \rightarrow l^+ \nu$
 - $|V_{td}|$ from Δm_d in B^0 mixing
 - $|V_{ts}|$ from Δm_s in B_s mixing

Werner Sun, Cornell University

 CLEO-c detector is same as CLEO-III but with low-mass inner drift chamber and weaker magnetic field (1.0 T).

- Results shown here based on two datasets collected Oct. 2003 to Mar. 2008:
 - E_{cm} near 3770 MeV, on $\psi(3770)$: 818 pb⁻¹ = 3.0M $D^0\overline{D}^0$ events, 2.4M D^+D^- events.
 - E_{cm} near 4170 MeV: 600 pb⁻¹ = 5.8M $D_s^{*+}D_s^{-}$ events.
 - Data samples of unique quality and size.

- Technique for most results presented today:
 - D's are pair produced; identify one D and study other D in the event.
- $e^+e^- \rightarrow \psi(3770) \rightarrow D\overline{D}$ produced at threshold, no extra particles.

- At 4170 MeV, $e^+e^- \rightarrow D_s^{*+}D_s^-$ produces extra γ or π^0 from D_s^{*+} decay.
- 10-15% of all D⁰/D⁺ are fully reconstructed in clean modes.
- 6% of all D_s⁻ are fully reconstructed in clean modes.

Werner Sun, Cornell University

Detection of Neutrinos e or µ (hadrons) v (inferred)

 $e^+e^- \rightarrow c \,\overline{c} \rightarrow D^0 \,\overline{D}^0$ $\overline{D}^0 \to \overline{K}^+ \pi^-, D^0 \to \overline{K}^- e^+ \overline{\nu}$

6

Combine:

 e^+

Knowledge of e^+e^- beam parameters (initial state)

-00

tag D

- Fully reconstructed D tag
- Lepton candidate
- [Hadron candidates from SL decay]
- Compute missing energy and missing momentum.
 - Require invariant mass consistent with zero = m(v)
 - Very clean signals!
- Absolute branching fractions from N(v)/N(tag).

Werner Sun, Cornell University 16 March 2009, XLIV th Rencontres de Moriond QCD

Semileptonic Results

Werner Sun, Cornell University

D⁰ and **D**⁺ Semileptonic (SL) Decays

Two combined analyses using 281 pb⁻¹ at 3770 MeV (one-third of full dataset)

Tagged analysis with full dataset in progress.

Werner Sun, Cornell University

D⁰/D⁺ SL: Branching Fractions

Absolute branching fractions (%):

	Tagged	Untagged	Average
$\pi^- e^+ \nu_e$	0.308(13)(4)	0.299(11)(8)	0.304(11)(5)
$\pi^0 e^+ \nu_e$	0.379(27)(23)	0.373(22)(13)	0.378(20)(12)
$K^- e^+ \nu_e$	3.60(5)(5)	3.56(3)(9)	3.60(3)(6)
$\bar{K}^0 e^+ \nu_e$	8.87(17)(21)	8.53(13)(23)	8.69(12)(19)

Werner Sun, Cornell University

• Direct determination of $|V_{cs}|$ and $|V_{cd}|$ using f(0) from LQCD [PRL 100, 062002 (2008)].

D^0/D^+ SL: Form Factors

- Form factor parametrizations:
 - Simple pole: $\alpha = 0$
 - Modified pole: α > 0
 - Fits prefer unphysical pole masses.

$$f_{+}(q^{2}) = \frac{f_{+}(0)}{\left(1 - \frac{q^{2}}{M_{pole}^{2}}\right)\left(1 - \alpha \frac{q^{2}}{M_{pole}^{2}}\right)}$$

- Series expansion:
 - Motivated by dispersion relation.
 - Considered 2- and 3- parameter fits.

$$f_{+}(q^{2}) = \frac{a_{0}}{P(q^{2})\phi(q^{2},t_{0})} \left(1 + \sum_{k=1}^{\infty} a_{k}(t_{0})z(q^{2},t^{0})^{k}\right)$$

$$z(q^{2}, t_{0}) = \frac{\sqrt{t_{+} - q^{2} - \sqrt{t_{+} - t_{0}}}}{\sqrt{t_{+} - q^{2}} + \sqrt{t_{+} - t_{0}}},$$

$$t_{\pm} = \left(M_{D} \pm M_{K(\pi)}\right)^{2},$$

Werner Sun, Cornell University

16 March 2009, XLIV th Rencontres de Moriond QCD

• Fit results: all four fits displayed.

tag mode $\triangleleft D_s D_s^+ \rightarrow Xe^+v$

- 310 pb⁻¹ at 4170 MeV [arXiv:0903.0601]
 - Half of full dataset, tagging technique
 - First measurements of absolute branching fractions.
 - First observation of
 - Cabibbo-suppressed modes
 - f₀(980) mode
 - Ratio of η to η' sensitive to mixing angle.

$D_s^+ ightarrow Xe^+ \gamma$:		
X B(%)		
ф	$2.29 \pm 0.37 \pm 0.11$	
η	$2.48 \pm 0.29 \pm 0.13$	
η'	$0.91 \pm 0.33 \pm 0.05$	
K ⁰	$0.37 \pm 0.10 \pm 0.02$	
K* ⁰	$0.18 \pm 0.07 \pm 0.01$	
$f_0 ightarrow \pi^+ \pi^-$	$0.13 \pm 0.04 \pm 0.01$	

Werner Sun, Cornell University

Leptonic Results

Werner Sun, Cornell University

 $\mathbf{D^+} \to \mu^+ \nu$

- Cabibbo- and helicity-suppressed.
- 818 pb⁻¹ at 3770 MeV
 - Combine D^- tag with μ^+ candidate.
 - Veto extra tracks and calorimeter energy deposits.
 - Compute missing mass distribution.
 - Recoil against D^- tag and μ^+ .
 - Fit results [PRD 78 052003 (2008)]:
 - $B(D^+ \rightarrow \mu^+ \nu) =$ (3.82 ± 0.32 ± 0.09) x 10⁻⁴,
 - $f_{D^+} = (205.8 \pm 8.5 \pm 2.5) \text{ MeV}$
 - Unique measurement.
 - Good agreement with LQCD [PRL 100, 062002 (2008)]
 - $f_{D+} = (207 \pm 4) \text{ MeV}$

 $D_s^+ \rightarrow \{\mu^+, \tau^+\}\nu$

Signal region

- Cabibbo-favored, less helicity suppression (τ).
- Two combined analyses, 600 pb⁻¹ at 4170 MeV:

Combine D_s tag with electron candidate.

Veto extra tracks.

tag mode

Study extra calorimeter energy in event.

tag mode $-D_s D_s^+ \rightarrow \tau^+ \nu$ $\tau^+ \rightarrow \pi^+ \overline{\nu}$

- Combine D_s tag with track and γ from D_s^* .
- Veto extra tracks and calorimeter energy.
- Sort events by energy matched to track:
 - $E < 300 \text{ MeV } \mu$ -like / $E > 300 \text{ MeV } \pi$ -like

Werner Sun, Cornell University

16 March 2009, XLIV th Rencontres de Moriond QCD

 $\rightarrow e^+ v \overline{v}$

$D_s^{+} \rightarrow \{\mu^+, \tau^+\} \nu$ Results

- Branching fractions:
 - $B(D_s^+ \rightarrow \tau^+ \nu) \text{ from } \tau^+ \rightarrow e^+ \nu \overline{\nu} = (5.30 \pm 0.47 \pm 0.22)\%$
 - PRD 79, 052022 (2009)
 - $B(D_{s}^{+} \to \tau^{+}\nu)$ from $\tau^{+} \to \pi^{+}\overline{\nu} =$ (6.42 ± 0.81 ± 0.18)%
 - B($D_s^+ \rightarrow \mu^+ \nu$) = (5.65 ± 0.45 ± 0.17) x 10⁻³
 - PRD 79, 052009 (2009)
- Average decay constant:
 *f*_{Ds+} = (259.5 ± 6.6 ± 3.1) MeV
- 2.3σ higher than LQCD [PRL 100, 062002 (2008)]:
 - $f_{Ds+} = (241 \pm 3) \text{ MeV}$
- Decay constant ratio f_{Ds} / f_{D+} :
 - CLEO-c: 1.26 ± 0.06 ± 0.02
 - LQCD: 1.164 ± 0.011

- Charm threshold and CLEO-c:
 - Clean environment and kinematic constraints.
 - Superb detector and large sample size.
 - \Rightarrow Unique opportunities to study non-perturbative QCD.
- Theory and experiment are both making great strides in precision.
 - Uncertainties of a few percent.
 - Allows for stringent test of LQCD.
 - Important if LHC discovers strongly-coupled new physics.
- More to come from CLEO-c and BES-III!

BACKUP SLIDES

Werner Sun, Cornell University

Theoretical Errors in CKM Constraints

Theoretical errors dominate width of bands

Few % precision QCD Calculations tested with few % precision charm data \rightarrow theory errors of a few % on B system decay constants & semileptonic form factors

I. Shipsey

6

$D \rightarrow \{K, \pi\}e^+\nu$ Pole Models

Simple pole model

	V. O
	$M_{\rm pole}^{\kappa} {\rm GeV/c^2}$
Mark III [42]	$1.80^{+0.50}_{-0.20}(25)$
E691 [43]	$2.10^{+0.40}_{-0.20}(20)$
CLEO [44]	$2.10^{+0.40}_{-0.20}(25)$
CLEOII [45]	2.00(12)(18)
E687 (Tag) [46]	$1.97^{+0.43}_{-0.22}(7)$
E687 (Incl) [46]	$1.87^{+0.11}_{-0.08}(7)$
CLEO [11]	$1.89(5)^{+0.04}_{-0.03}$
FOCUS [12]	1.93(5)(3)
Belle [13]	1.82(4)(3)
BABAR [9]	1.884(12)(15)
CLEO-c (tagged)	1.97(3)(1)
CLEO-c (untagged) [3]	1.97(3)(1)

 $M(D_s^{*+}) = 2112.0 \pm 0.6 \text{ MeV}$

	$M_{\rm pole}^{\pi}~{\rm GeV/c^2}$
CLEO (2004) [11]	$1.86^{+0.10}_{-0.06}(5)$
FOCUS (2004 [12])	$1.91^{+0.30}_{-0.15}(7)$
Belle (2006) [13]	1.97(8)(4)
CLEO-c (tagged)	1.95(4)(2)
CLEO-c (untagged) $[3]$	1.87(3)(1)

 $M(D^{*+}) = 2010.0 \pm 0.4 \text{ MeV}$

	•	Modified	pole	mode
--	---	----------	------	------

	α^K	α^{π}
FOCUS [12]	0.28(8)(7)	_
CLEO III [11]	0.36(10)(5)	0.37(25)(15)
Belle [13]	0.52(8)(6)	0.10(21)(10)
BABAR [9]	0.377(23)(29)	—
LQCD $[23]$	0.50(4)	0.44(4)
LCSR [18]	$0.07\substack{+0.15\\-0.07}$	$0.01\substack{+0.11\\-0.07}$
CQM [47]	0.24	0.30
CLEO-c (tagged)	0.21(5)(2)	0.16(10)(5)
CLEO-c (untagged) [3]	0.21(5)(3)	0.37(8)(3)

Expect $\alpha \sim 1.75$

Werner Sun, Cornell University