Study of $D \rightarrow K/\pi e^+ v$ and measurement of V_{cs} and V_{cd} at CLEO-c

- Introduction
- Reconstruction techniques
- Results: branching fractions, form factors, V_{cs} and V_{cd}
- Summary

Bo Xin Purdue University CLEO collaboration

Lake Louise Winter Institute, Feb 18 - 23, 2008

 $D \rightarrow K / \pi e^+ v$ and Vcs and Vcd at CLEO-c

Introduction

Assuming theoretical calculations of form factors, we can extract $|V_{cs}|$ and $|V_{cd}|$

- Since $|V_{cs}|$ and $|V_{cd}|$ are tightly constrained by unitarity, we can check theoretical calculations of the form factors
- Tested theory can then be applied to B semileptonic decays to extract $|V_{ub}|$.
- Gold-plated modes are $P \rightarrow P$ semileptonic transitions as they are the simplest modes for both theory and experiment:
 - $D^{0} \rightarrow K^{-}e^{+}\nu, \quad D^{+} \rightarrow \overline{K}^{0}e^{+}\nu$ Cabibbo favored : Cabibbo suppressed : $D^0 \rightarrow \pi^- e^+ v$, $D^+ \rightarrow \pi^0 e^+ v$

The CLEO-c detector and data sample

Analysis Technique (tagged)

- Candidate events are selected by reconstructing a D, called a tag, in several hadronic modes
- Then we reconstruct the semileptonic decay in the system recoiling from the tag.
- Two key variables in the reconstruction of a tag: $M_{bc} = \sqrt{E_{beam}^2 / c^4 - \left| \vec{p}_D \right|^2 / c^2}$

$$\Delta E = E_D - E_{beam}$$

- **Given Semileptonic** $D: U = E_{miss} |\vec{P}_{miss}|$
- The absolute branching fraction is

Tagging creates a single D beam of known 4-momentum

D tagging at CLEO-c (281/pb of Data)

Pure DD, zero additional particles, ~5-6 charged particles per event

~ $3.1x \ 10^5 \ D^0$ and ~ $1.6 \ x \ 10^5 \ D^+$ tags reconstructed from ~ $1.8 \ x \ 10^6 \ D\overline{D}$ events

We tag ~25% of the events, compared to ~0.1% of B's at the Y(4S)

2/20/2008

 $D \rightarrow K / \pi e^+ v$ and Vcs and Vcd at CLEO-c

Bo Xin

Reconstruction of Semileptonic Decays (tagged)

$$E_{miss} = E_{beam} - E_{K(\pi)} - E_{e}$$
$$\vec{p}_{miss} = -\vec{p}_{tag} - \vec{p}_{K(\pi)} - \vec{p}_{e}$$
$$U = E_{miss} - |\vec{p}_{miss}|$$

$$E_W = E_{beam} - E_{K(\pi)}$$
$$\vec{p}_W = -\vec{p}_{tag} - \vec{p}_{K(\pi)}$$
$$q^2 = E_W^2 - |\vec{p}_W|^2$$

- Extract yields from U distributions and measure branching fractions with multiple tag modes separately and combined
- Study form factors and CKM matrix elements using efficiencycorrected decay rate distributions

2/20/2008

 $D \rightarrow K/\pi e^+ v$ and Vcs and Vcd at CLEO-c

Neutrino Reconstruction (Untagged)

$$p_{miss} = (E_{miss}, \vec{p}_{miss}) = p_{total} - \sum p_{charge} - \sum p_{neutral}$$

$$\Delta E = E_{K(\pi)} + E_e + |\vec{p}_{miss}| - E_{beam}$$

$$p'_{miss} = \zeta p_{miss}$$

$$M_{bc} = \sqrt{E_{beam}^2 - |\vec{p}_{K(\pi)} + \vec{p}_e + \vec{p}'_{miss}|^2}$$

$$q^2 = (p_e + p'_{miss})^2$$

$$P_{miss}^2 = (p_e + p'_{miss})^2$$

$$P_{miss}^$$

$D \rightarrow K/\pi e^+ v$ Branching fractions

CLEO-c Tagged/untagged consistent, 40% overlap, DO NOT AVERAGE

CLEO-c most precise! Theoretical precision lags experiment Isospin Invariance: (from tagged analysis)

 $\frac{\Gamma(D^0 \to K^- e^+ \nu)}{\Gamma(D^+ \to \overline{K}^0 e^+ \nu)} = 1.024 \pm 0.024 (stat)$

 $\frac{\Gamma(D^0 \to \pi^- e^+ v)}{2\Gamma(D^+ \to \pi^0 e^+ v)} = 0.975 \pm 0.075 \text{(stat)}$

 $D \rightarrow K / \pi e^+ v$ and Vcs and Vcd at CLEO-c

8

Absolute d Γ /dq² distributions

Form factors as a stringent test of LQCD

 $D \rightarrow K/\pi e^+ v$ and Vcs and Vcd at CLEO-c

Simple Pole Model

CLEO-c has 1st measurements of M_{pole} for D⁺ important consistency check!

□CLEO-c tagged and untagged results are consistent

Most of the recent precise measurements are NOT consistent with the spectroscopic pole
 (~14σ discrepancy between the average and the spectroscopic pole)

□Simple pole model is NOT supported by experiments

similar situation for $D \rightarrow \pi e v$ but limited statistics \rightarrow more data

Bo Xin

Modified Pole (BK) Model

CLEO-c tagged and untagged results are consistent

Experimental data are compatible with LQCD, but NOT with the physical picture of the modified pole model, which gives $\alpha = 1.75$ $(>10\sigma$ discrepancy between the average and the physical value)

CLEO-c α values > 27 σ away from BK physical value, LQCD precision (10%) lags experiments (2%) !

Becher-Hill series parameterization

•Both linear "series(2)" and quadratic "series(3)" parameterization describes data well

•Quadratic term a₂ not well-determined with current statistics

•As data does not support physical basis for the pole & modified pole models, the model independent Becher-Hill series parameterization is used for $|V_{cx}|$.

V_{cs} and V_{cd} Results

Combine measured $|V_{cx}|f_{+}(0)$ values using Becher-Hill parameterization with (FNAL_MILC-HPQCD) for $f_{+}(0)$

Expt. uncertainties Vcs <2% Vcd~4% Theory 10%

Decay Mode	$ V_{cx} \pm (stat) \pm (syst) \pm$	(theory)	PDG	
$D \rightarrow \pi e v (tagged)$ PRELIMI	NARY 0.234 ± 0.010 ± 0.004	± 0.024	0.230 ± 0.011	
$D \rightarrow \pi e v$ (untagged)	0.217 ± 0.009 ± 0.004	± 0.023	(v–v interactions)	
$D \rightarrow Kev(tagged)^{PRELIMIN$	NARY 1.014 ± 0.013 ± 0.009	± 0.106	1.04 ± 0.16 (excl. sl. Width excluding CLEO/BES)	
$D \rightarrow Kev$ (untagged)	1.015 ± 0.010 ± 0.011	£ 0.106	$0.94_{-0.26}^{+0.32} \pm 0.13$ W \rightarrow cs tagged	

Tagged/		Uncertainty (%)			PDG Г (Kev)	⊢ ⊢ ● - − - 	
untagged		V _{cs}	exp. thy	. tot.	LEP W→cs ++	•	
consistent,	$PDG\Gamma(Kev)^*$	1.04 ± 0.16	6 14.2	15.4	BESII Г (Kev)	⊢ +-●-+	-
40% overlap	$W \rightarrow cs$	$0.94^{+0.32}_{-0.02} + 0.14$		31	CLEO-c (tagged)	⊢	
DO NOT	PESUE(Kau)	$1.14 \pm 0.07 \pm 0.11$	6 5 10	112.8	CLEO-c (untagged)	⊢-●1	
AVERAGE	GLEO	$1.14 \pm 0.07 \pm 0.11$	0.5 10.4	12.0	0.5	· · · · · · · · · · · · · · · · · · ·	
	(untagged)	$1.015 \pm 0.015 \pm 0.015$	106 1.5 10.4	4 10.5	IV	′l	
CLEO	a: Past datarmir	ation of Vac. and	Vad in good	lagroom	ant with DD		e y
CLEU	-c. Desi delemm	iation of ves, and	veu in good	agreem			تيم م
2/20/2008	$D \rightarrow l$	$K/\pi e^+ v$ and Vcs and V	cd at CLEO-c	14	Bo	Xin	\triangleleft

Summary

What we have achieved (281/pb)

- □ Most precise $B(D \rightarrow K e^+ v)$ and $B(D \rightarrow \pi e^+ v)$.
- □ Most precise measurements of $f_{+}(0)$ and shape for $D \rightarrow \pi e^{+}v$.
- \Box Best *direct* measurement of $|V_{cs}|$.
- \Box Most precise determination of $|V_{cd}|$ from semileptonic decays.

What we are going to achieve (818/pb)

- □ Statistical uncertainties will be reduced by a factor of $\sqrt{3}$
- Most systematic uncertainties are being reevaluated.
 Some are expected to be reduced.
- □ More stringent tests of theory for $D \rightarrow K/\pi e^+ v$ f₊(0) and shape.
- \Box Reduced uncertainties on $|V_{cs}|$ and $|V_{cd}|$.

We are eagerly awaiting

more precise LQCD calculations of semileptonic form factors.

2/20/2008

 $D \rightarrow K / \pi e^+ v$ and Vcs and Vcd at CLEO-c

15

q² resolutions and Raw q² distributions

 $\begin{array}{c} \text{CLEOIII}(Y(4S)): \\ \delta q^2 \sim 0.4 \; \text{GeV}^2 \\ \text{CLEO-c}(\psi(3770)): \\ \delta q^2 \sim 0.012 \text{GeV}^2 \end{array}$

Excellent q² resolution and S/B ratio

□To find the absolute decay rate, need to subtract background and apply efficiency corrections.

Bo Xin

2/20/2008

 $D \rightarrow K / \pi e^+ v$ and Vcs and Vcd at CLEO-c

Simple Pole Model

Modified Pole (BK) Model

 $D \rightarrow K/\pi e^+ v$ and V cs and V cd at CLEO-c

Projections with 818/pb data

1000 Luminosity (pb⁻¹) Statistical uncertainties will be reduced by a factor of $\sqrt{3}$ CLEO-0 √s = 3.770 GeV taken □Most systematic uncertainties are being reevaluated. 80 some are expected to be reduced. 281/pb 818/pb NOT CLEO-c official 281/pb 818/pb Ldt CLEO-c Based on tagged analysis) stat.(%) syst.(%) analysed $B(D \rightarrow Kev)$ 1.4 0.9 1.5 1.0 200 BES-II Mark-III $f_{+}^{K}(0)V_{cs}$ (linear) 1.1 0.7 0.8 0.5 I. Shipsey Experiments $f_{+}^{K}(0)V_{cs}$ (quad.) Aspen 2008 1.6 1.00.8 0.5 CKM Unitarity Winter Conference 4.127 $B(D \rightarrow \pi ev)$ 1.0 $\frac{\delta Vcd}{Vcd} = 0.9\%$ $f_{+}^{\pi}(0)V_{cd}$ (linear) 3.7 2.3 0.40.7 $\frac{\delta V cs}{\delta V cs} = 2.7 \times 10^{-4}$ $f_{+}^{\pi}(0)V_{cl}$ (quad.) 5.3 3.5 0.7Vcs $\frac{\delta f_+^{\pi}(0)}{f^{\pi}(0)} = (2.3 - 3.5)\%$ $D \to \pi e^+ \upsilon \quad \frac{\delta Vcd}{Vcd} = (2.3 - 3.5)\% \oplus \frac{\delta f_+^{\pi}(0)}{f_+^{\pi}(0)}$ $D \rightarrow \pi e^+ \upsilon$ $D \to Ke^+ \upsilon = (0.9 - 1.2)\%$ $D \to Ke^+ \upsilon = (0.9 - 1.2)\% \oplus \frac{\delta f_+^{\pi}(0)}{\delta f_+^{\pi}(0)} = (0.9 - 1.2)\% \oplus \frac{\delta f_+^{\pi}(0)}{\delta f_+^{\pi}(0)}$

2/20/2008

 $D \rightarrow K / \pi e^+ v$ and Vcs and Vcd at CLEO-c

19