

Latest Charm Semileptonic Decay Results from CLEO-c

OUTLINE

CLEO-c in the context of testing the Standard Model with precision quark flavor physics.

Decay constants Form Factors CKM matrix elements

 $\psi(3770) \to D^0 \overline{D^0}$ $\overline{D^0} \to K^+ \pi^-, D^0 \to K^- e^+ \nu$

Ian Shipsey, Purdue University CLEO-c Collaboration

DPF Jul 30 2009 Charm Semileptonic Ian Shipsey

Big Questions in Flavor Physics

Dynamics of flavor?	Why generations?
	Why a hierarchy of masses
	& mixings?

Origin of Baryogenesis?

Sakharov's criteria: Baryon number violation CP violation Non-equilibrium

3 examples: Universe, kaons, beauty but Standard Model CP violation too small, need additional sources of CP violation

Connection between flavor physics & electroweak symmetry breaking?

Extensions of the Standard Model (ex: SUSY) contain flavor & CP violating couplings that should show up at some level in flavor physics, but *precision* measurements and *precision* theory are required to detect the new physics

Precision Quark Flavor Physics

CESR

Precision Quark Flavor Physics

→ measurements of absolute rates for D semileptonic & leptonic decays yield decay constants & form factors to *test* and hone QCD techniques into a *precision theory* which can be applied to the B system enabling improved determination of the apex (ρ , η)

+ Br(B \rightarrow D)~100% *absolute* D hadronic rates normalize B physics important for V_{cb} (scale of triangle) - also normalize D physics

CESR

Precision theory + charm = large impact

Theoretical errors dominate width of bands

CESR

Precision theory + charm = large impact

CESR

CLEO

Theoretical errors dominate width of bands

Few % precision QCD Calculations tested with few % *precision* charm data → theory errors of a few % on B system decay constants & semileptonic form factors

Precision theory? Lattice QCD

CLEO

CESR

Precision theory? In 2003 a breakthrough in Lattice QCD

Recent revolutionary progress in algorithms allows inclusion of QCD vacuum polarization. LQCD demonstrated it can reproduce a wide range of mass differences & decay constants. *These were postdictions*

This dramatic improvement needs validation of predictions. m(Bc) successful. *Charm* decay constants $f_{D+} \& f_{Ds}$

Charm semileptonic form factors

DPF Jul 30 2009 Charm Semileptonic Ian Shipsey

Understanding strongly coupled systems is important beyond flavor physics. LHC might discover new strongly interacting physics

Precision theory? In 2003 a breakthrough in Lattice QCD

Recent revolutionary progress in algorithms allows inclusion of QCD vacuum polarization. LQCD demonstrated it can reproduce a wide range of mass differences & decay constants. *These were postdictions*

This dramatic improvement needs validation of predictions. m(Bc) successful. Charm decay constants $f_{D+} \& f_{Ds}$

Charm semileptonic form factors

DPF Jul 30 2009 Charm Semileptonic Ian Shipsey

Understanding strongly coupled systems is important beyond flavor physics. LHC might discover new strongly interacting physics

Precision Experiment for charm?

CESR

CLEO-c: World's largest data sets at charm threshold

CLEO-c: Oct. 2003 – March 2008, CESR (10GeV) → CESR-c at 4GeV CLEO III detector →CLEO-c

CESR

Pure DD, no additional particles (E_D = E_{beam}).
σ (DD) = 6.4 nb (Y(4S)->BB ~ 1 nb)
Low multiplicity ~ 5-6 charged particles/event

→ high tag efficiency: ~20% of events Compared to ~0.1% of B's at the Y(4S)

A little luminosity goes a long way: Tagging ability: # D tags in 800 pb⁻¹ @ charm factory ~ # B tags in 1300 fb⁻¹ @ Y(4S)

 $\psi(3770) \rightarrow D^+ D^ D^+ \rightarrow K^- \pi^+ \pi^+, \ D^- \rightarrow K^+ \pi^- \pi^-$

 $E_D \Rightarrow E_{beam}$: $\Delta E = E_D - E_{beam}$ $M_{BC} = \sqrt{E_{beam}^2 - |\vec{p}_D|^2}$ 1D⁺ & 1D⁻ reconstructed in same event 1 D reconstructed (a tag) © Events/(0.004 GeV) $D^+ \rightarrow K^- \pi^+ \pi^+$ Events / (0.001 Ge ~80,000 VS. $D \rightarrow K \pi \pi$ $D^{-} \rightarrow K^{+} \pi^{-} \pi^{-}$ 2002 events 8000 200 Very little 6000È 4000 100 background 2000 1.83 1.88 1.85 1.86 1.87 1.89 1.83 1.84 1.86 1.87 1.84 1.85 1.88 1.89 M_{BC} (GeV) M_{BC} c (GeV) **Independent of** # $(K^+\pi^-\pi^-)$ Observed in tagged events L and cross $B(D^- \to K^+ \pi^- \pi^-) =$ section detection efficiency for $(K^+\pi^-\pi^-) \bullet \#D$ tags

281/pb

 f_{Ds} from $D_s \rightarrow \mu^+ \nu \& \tau^+ (\pi^+ \nu) \nu$

Comparison to LQCD

CLEO f_D consistent with calculations (4% test of lattice)

CLEO f_{Ds} (and Belle & BABAR) higher than most theoretical expectations

CLEO f_{Ds} is ~2.3 σ above the most recent & precise LQCD calculations

Ds leptonic decay width could be modified by new physics example: Dobrescu and Kronfeld arXiv:0803.0512

The difference between experiment HPQCD+UKQCD could be due to new physics, unlikely statistical fluctuations in experiment or lattice calculations or systematic uncertainties which are not understood in the lattice calculation or experiment. *BES III measurements are eagerly awaited*.

$\underbrace{\overset{\text{CESR}}{\bigcirc}}_{\text{Assuming theoretical}} \text{Importance of Charm Semileptonic Decays} \underbrace{V_{\text{CKM}}}_{|f(q^2)|^2} \frac{d\Gamma}{dq^2} \propto |V_{\text{cs}(d)}|^2 |f_+^{D \to (K)\pi}(q^2)|^2$

- Assuming theoretical form factors ⇒V_{cs} and V_{cd}
- 2 Assuming V_{cs} and V_{cd} known, we can check theoretical calculations of the form factors

Absolute Semileptonic Branching Fractions

CESR

 $\psi(3770) \to D^0 \overline{D^0}$ $\overline{D^0} \to K^+ \pi^-, D^0 \to K^- e^+ \nu$

Tagging creates a single D beam of known 4-momentum

The neutrino direction is determined to 1°

no kinematics ambiguity

CLEO-c semileptonic tagging analysis technique: big impact

1st Observations:

Precision Measurements:

$D \rightarrow K, \pi ev$ Branching Fractions

Precision measurements from BABAR/Belle/CLEO-c. CLEO-c most precise. Theoretical precision lags experiment.

CESR

DPF Jul 30 2009 Charm Semileptonic Ian Shipsey

CESR

0.8

0.4

f[™](0)

0.6

0.2

0

$D^0 \rightarrow \pi^- e^+ \nu$ Form Factor: test of LQC

CESR

$|V_{cs}| \& |V_{cd}|$ Results

arXiv:0906.2983 (accepted PRD Jul 22 2009)

CLEO-c: the most precise *direct* determination of V_{cs} $\sigma(|V_{cs}|)/|V_{cs}| \sim 1.1\%(expt) \oplus 10\%(theory)$ *CLEO - c* $|V_{cs}|$ (818 pb⁻¹) $0.985 \pm 0.009 \pm 0.006 \pm 0.103$ stat syst theory

CLEO-c: $\sigma(|V_{cd}|) / |V_{cd}| \sim 3.1\%(expt) \oplus 10\%(theory)$ vN remains most precise determination (*for now*)

CLEO - c $|V_{cd}|$ (818 pb⁻¹) $0.234 \pm 0.007 \pm 0.002 \pm 0.025$
statstatsyst

CLEO

$|V_{cs}| \& |V_{cd}| Results$

arXiv:0906.2983 (accepted PRD Jul 22 2009)

THEORY UNCERTAINITY REMOVED

CLEO-c: $\sigma(|V_{cd}|) / |V_{cd}| \sim 3.1\%$ (expt) $\oplus 10\%$ (theory) vN remains most precise determination (*for now*)

CLEO - c $|V_{cd}|$ (818 pb⁻¹) $0.234 \pm 0.007 \pm 0.002 \pm 0.025$
statstatsyst

LQCD form factors with improved precision are eagerly awaited

Unitarity Test: Compatibility of charm & beauty sectors of CKM matrix?

arXiv:0906.2983 (accepted PRD Jul 22 2009)

 $|V_{cd}| \& |V_{cs}|$ indirect 1)K & nucleon $|\mathbf{V}_{ud}| \simeq |\mathbf{V}_{cs}| \& |\mathbf{V}_{cd}| \simeq |\mathbf{V}_{us}|$ 2) Bphysics Indirect= global CKM fit = 1+2 $|V_{cd}| \& |V_{cs}|$ direct (D semileptonic decays CLEO) CLEO-c full data set $\sigma(|V_{cd}|) / |V_{cd}| \sim 3.1\% \oplus \text{theory}$ $\sigma(|V_{cs}|)/|V_{cs}| \sim 1.1\% \oplus \text{theory}$

D semileptonic decays with comparable theory and experimental uncertainty may lead to interesting competition between direct and indirect constraints We eagerly await new precise lattice calculations

Plots by Sebastien Descortes-Genon & Ian Shipsey

See also talk by Descotres-Genon at joint BABAR-Belle-BESIII-CLEO-c Workshop 11/07, Beijing

Observe 6 Exclusive D_s Semileptonic Decays

- Similar to D_s→µv analysis: tag; reconstruct visible parts of signal; plot MM²
- First absolute branching fraction measurements for D_s SL decays

CESR

- Total width of these exclusive modes is 16% lower than the D⁰/D⁺ semileptonic widths.
- Shed light on η-η'-glueball mixing
- Observation of a semileptonic decay including a scalar meson in the final state.

arXiv:0903:0601

 $\begin{array}{c|c} \hline \text{Signal Mode} & \mathcal{B}(\%) \\ \hline D_s^+ \to \phi e^+ \nu_e & 2.29 \pm 0.37 \pm 0.11 \\ D_s^+ \to \eta e^+ \nu_e & 2.48 \pm 0.29 \pm 0.13 \\ D_s^+ \to \eta' e^+ \nu_e & 0.91 \pm 0.33 \pm 0.05 \\ D_s^+ \to K^0 e^+ \nu_e & 0.37 \pm 0.10 \pm 0.02 \\ D_s^+ \to K^{*0} e^+ \nu_e & 0.18 \pm 0.07 \pm 0.01 \\ \hline D_s^+ \to f_0 e^+ \nu_e & 0.13 \pm 0.04 \pm 0.01 \\ \hline D_s^+ \to f_0 e^+ \nu_e & 0.13 \pm 0.04 \pm 0.01 \\ \hline \end{array}$

= 310 pb⁻¹ @4170 (Half of full dataset)

 $D_s^+ \rightarrow f_0(980)e^+\nu$

Inclusive Semileptonic Decays of D⁰,D⁺, and D_s

□Use knowledge of D semileptonic decay to extrapolate below the momentum cutoff (200MeV/c) Any additional exclusive modes will have small branching ratios

$$\Gamma_{D^{+}}^{SL} / \Gamma_{D^{0}}^{SL} = 0.99 \pm 0.02 \pm 0.02$$
 Isospin symmetry
$$\Gamma_{D_{s}^{+}}^{SL} / \Gamma_{D^{0}}^{SL} = 0.81 \pm 0.05 \pm 0.03$$
 SU(3) is broken

CESR

CLEO-c hadronic D^0 , D^+ and D_s branching fractions more precise than

PDG averages: (for D^0 , $D^+2\%$ precision is syst.limited) CLEO establishes charm hadronic scale

Most precise: $f_{D^+} = (205.8 \pm 8.5 \pm 2.5)$ MeV consistent with LQCD $\rightarrow 1\%$ (2 MeV) full data

Most precise: $f_{Ds} = (259.5 \pm 6.6 \pm 3.1)$ MeV ~2.3 σ higher than LQCD.

To interpret as "prosaic" or "exciting": requires more data (BES III)

Most precise measurement of form factors magnitudes in D \rightarrow K/ π ev Most precise $|V_{cs}|=0.985\pm0.009\pm0.006\pm0.103_{theory}$

 $|V_{cd}| = 0.234 \pm 0.007 \pm 0.002 \pm 0.025_{\text{theory}}$

Most precise determination from semileptonic decay

6 exclusive D_ssemileptonic decays & measurement of form factor

in $D_s \rightarrow f_0(980)e^+\nu.SU(3)$ is broken in $D \rightarrow Xe\nu$ decays

~90 CLEO-c papers now published or submitted, & many more analyses to come. Longer term the charm factory mantle passes to BES III

Precision theory + charm = large impact

CESR

Additional Material

Semileptonic Decay Form Factors

- \square Form factors relate to the probability of forming final state at given q^2 .
- Theoretical predictions for form factors are needed to turn the measured rates into $|V_{cx}|$ determinations.
- Theory often calculates this probability at fixed q^2 and uses parameterizations to extrapolate to full q^2 range.
- Theoretical approaches include phenomenological models, QCD sum rules, and LQCD.
- □LQCD is systematically improvable and aims for several percent precision (we focus on this)

Assuming zero lepton mass:

h – pseudoscalar:
$$H^{\mu} = (f_+(q^2)(P_D + P_h)^{\mu})$$

$$\frac{d\Gamma}{dq^{2}} = \frac{G_{F}^{2}}{24\pi^{3}} P_{K}^{3} \left| f_{+}(q^{2}) \right|^{2} \left| V_{cs} \right|^{2}$$

CESR

z is small and converges quickly, linear or quadratic is sufficient to describe the data

Becher & Hill, Phys. Lett. B 633, 61 (2006)

Measure a_0 , $r_1 = a_1/a_0$, and $r_2 = a_2/a_0$

Measuring the form factor in $D \rightarrow K/\pi ev$

CESR

$D \rightarrow \rho ev$ (tagged, 281/pb)

CESR

CLEO

B(D⁰ $\rightarrow \rho^{-}e^{+}\nu)=(1.56\pm0.16\pm0.09)\times10^{-3}$ B(D⁺ $\rightarrow \rho^{0}e^{+}\nu)=(2.32\pm0.20\pm0.12)\times10^{-3}$ Isospin average: $\Gamma(D^{0} \rightarrow \rho^{-}e^{+}\nu)=(0.41\pm0.03\pm0.02)\times10^{-2} \text{ ps}^{-1}$

 $\begin{array}{ll} \mbox{Simultaneous fit to} & D^+ \rightarrow \rho^0 e\nu \ , \ D^0 \rightarrow \rho^- e\nu \\ \mbox{R_ν} = 1.40 \pm 0.25 \pm 0.03 \\ \mbox{R_2} = 0.57 \pm 0.18 \pm 0.06 \\ \end{array}$

Update to full data set soon

D_s⁺ Exclusive Semileptonic Decays

- Candidate events are selected by reconstructing a D_s in several hadronic modes
- □ The tag is then combined with a well reconstructed γ , The missing mass squared against the γ -tag pair

9 D_s tag modes: N(tag)=70514<u>+</u>963 N(tag+ γ)=43859<u>+</u>936 reconstructed from ~5.5 x 10⁵ D_s* D_s events

> arXiv: 0907.3201 (submitted to PRD Jul 18 2009) 600 pb⁻¹ @4170

000 pb⁻¹ @4170

(CLEO-c full dataset)

CESR