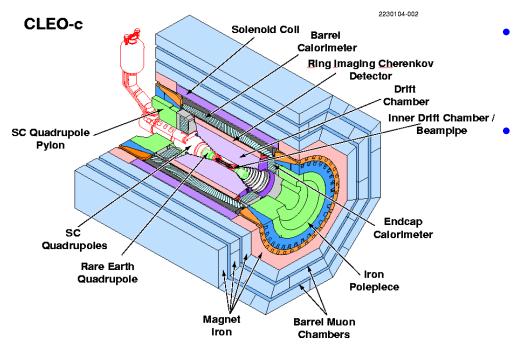


Semileptonic decays of D mesons at CLEO

Tomasz Skwarnicki for the CLEO collaboration

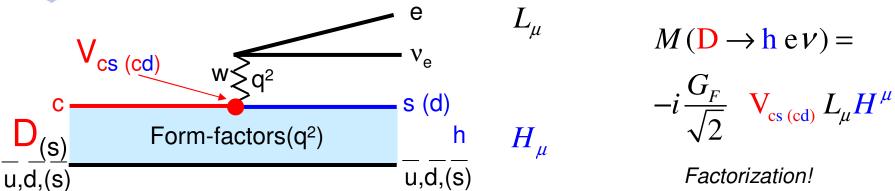


Content of the talk

- Report on two recent measurements with the CLEO-c detector:
 - Improved measurements of D meson semileptonic decays to π and K mesons [arXiv:0906.2983]
 - Study of semileptonic decay $D_s \rightarrow f_0(980)e^+\nu$ and implications for $B_s \rightarrow J/\psi f_0$ [preliminary].

Data collected at charm threshold:

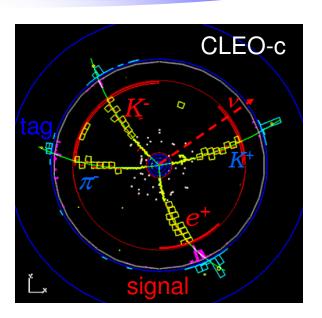
 $- e^+e^- \rightarrow \psi(3770) \rightarrow D\overline{D}$

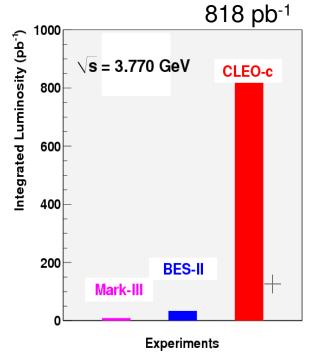

- e⁺e⁻ \rightarrow D_s*D_s at 4170 MeV

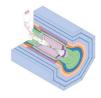
CLEO-c detector:

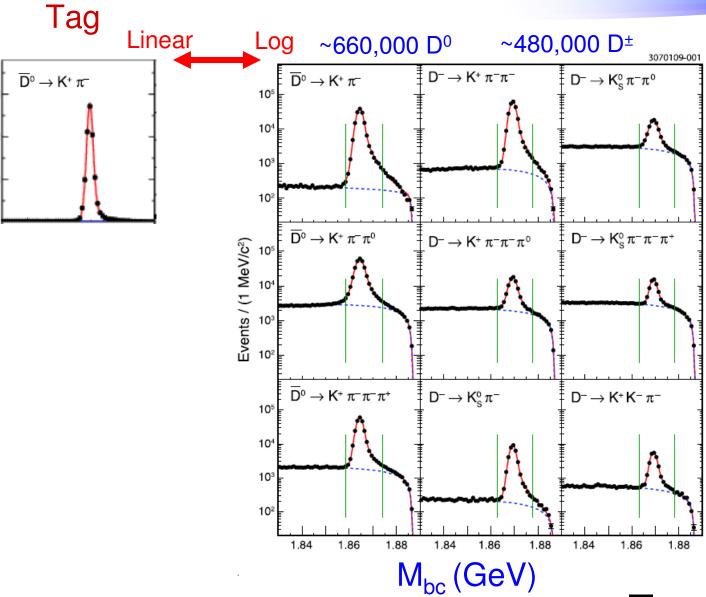
- Charged particle detection (1T): $\sigma_p/p=0.6\%$ at 1 GeV
- Photon detection: $\sigma_E/E=4.8\%$ at 100 MeV, 2.2% at 1 GeV
- Hadron ID: dE/dX+RICH (fake rates at a few % level)

Motivation for D \rightarrow K/ π e⁺ ν Measurements

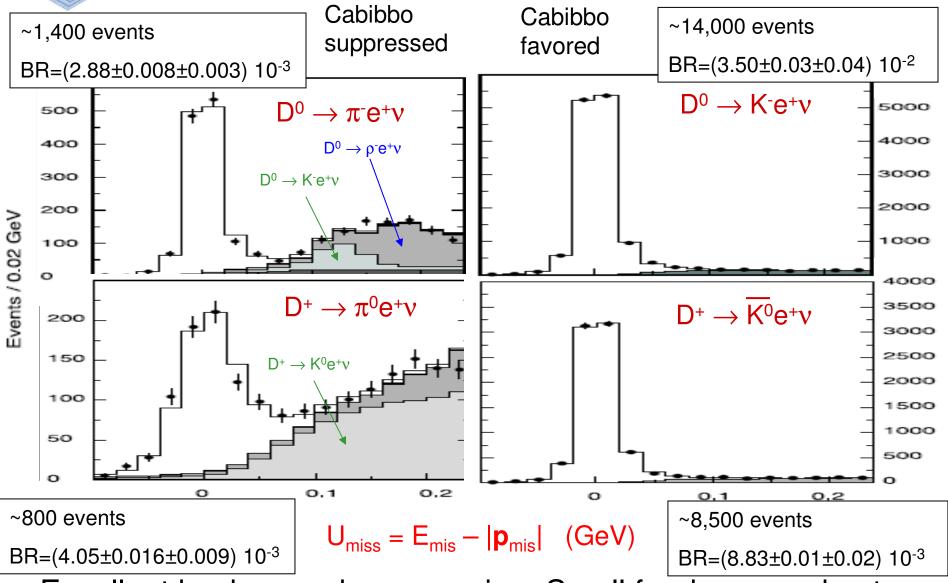


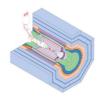

- Direct determination of |V_{cs (cd)}|.
- Theoretical (Lattice QCD) errors on the form-factor predictions dominate.
- Taking |V_{cs (cd)}|=|V_{ud (us)}| can turn data into form-factor measurements (normalization and q² dependence) to test/develop LQCD.
- Potentially, leads to improved predictions for the form-factors in semileptonic b decays and improved determination of |V_{ub}|.
- Only one form-factor in decays to pseudoscalar mesons easiest to deal with theoretically.

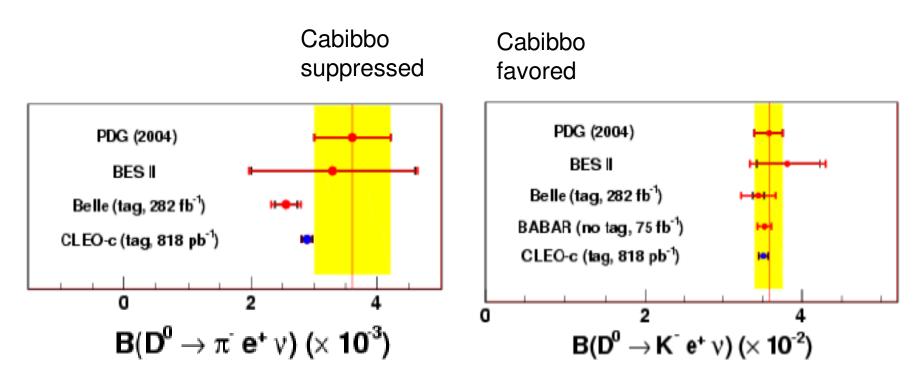


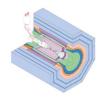

Tagging technique

- Very effective at threshold: e⁺e⁻ → DD:
 - No fragmentation particles produced
- Reconstruct one D (tag) in several clean hadronic decay modes:
 - Cut on $\Delta E = E_D E_{beam}$
 - Fit $M_{bc} = \sqrt{E_{beam}^2 p_D^2}$ to determine N_{tag}
 - The tag determines momentum of the other D:
 p_{D signal} = p_{D tag}
- Find subsample in which the rest of reconstructed particles consists of an electron (e) and desired hadron (h) from semileptonic Ddecay.
 - Calculate missing (i.e. neutrino) energy $(E_{miss} = E_{beam} E_e E_h)$ and momentum $(\mathbf{p}_{miss} = -\mathbf{p}_{D tag} \mathbf{p}_e \mathbf{p}_h)$. Fit $U_{miss} = E_{miss} |\mathbf{p}_{miss}|$ to extract N_{signal} .
 - BR = $(N_{signal}/\epsilon_{signal}) / (N_{tag}/\epsilon_{tag})$
 - Also determine differential rates in $q^2 = (E_{beam} E_h)^2 (-p_{Dtag} p_h)^2$




- CLEO-c reconstructs a tag in about ~20% of all DD events
- Compared to $\sim 0.1\%$ tagging efficiency for Y(4S) $\rightarrow B\overline{B}$


Signal – π , K (tagged)


 Excellent background suppression. Small feed-across due to threshold kinematics.

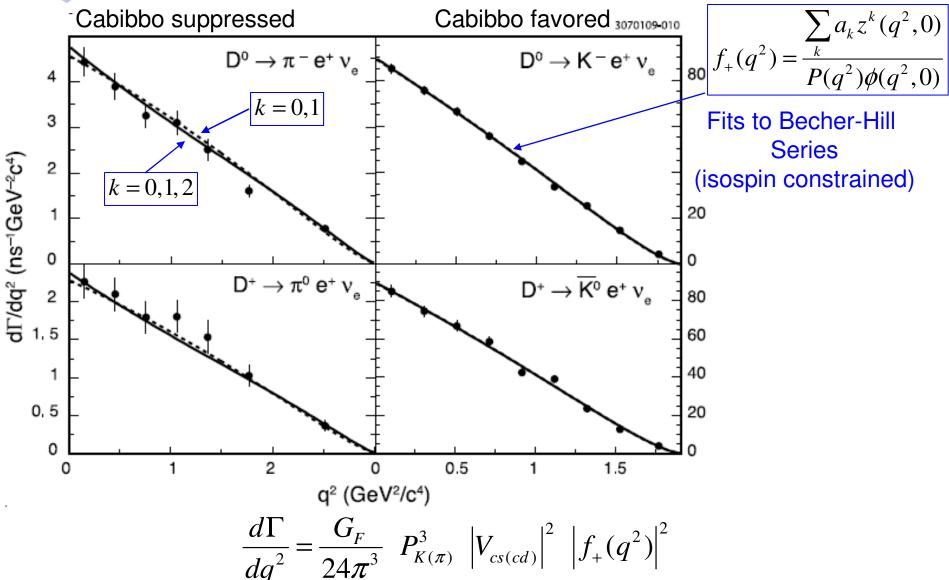
Branching Ratio Results - Comparison

 Significant improvement in precision by recent BaBar/Belle/CLEO-c measurements (CLEO-c most precise).

Form factors

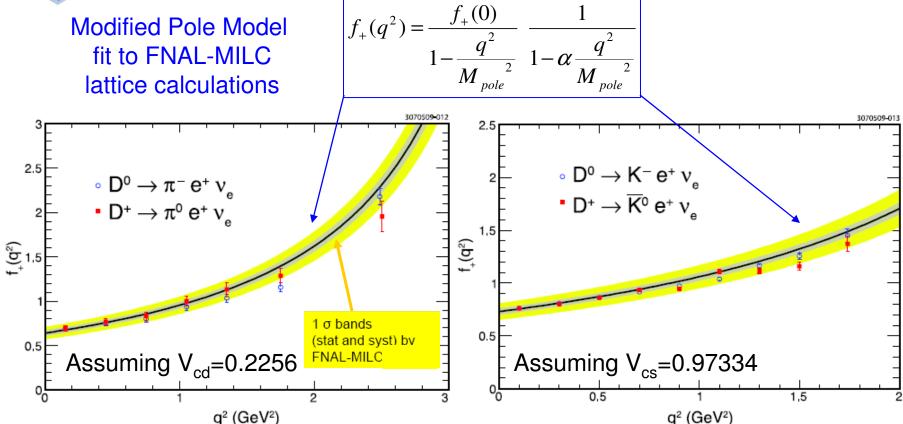
- Form factors are related to probability of forming final state hadron at given q^2 .
- Theoretical predictions for form factors needed to turn the measured rates into V_{cs (cd)} determinations.
- Theory often calculates this probability at fixed q^2 and uses parameterizations to extrapolate to full q^2 range.
- Theoretical approaches include phenomenological models, QCD sum rules, LQCD.
- Only the latter is systematically improvable.

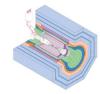
h – pseudoscalar:
$$H^{\mu} = f_+(q^2)(P_D + P_h)^{\mu} \qquad \text{(for } m_l = 0\text{)}$$


h – vector:

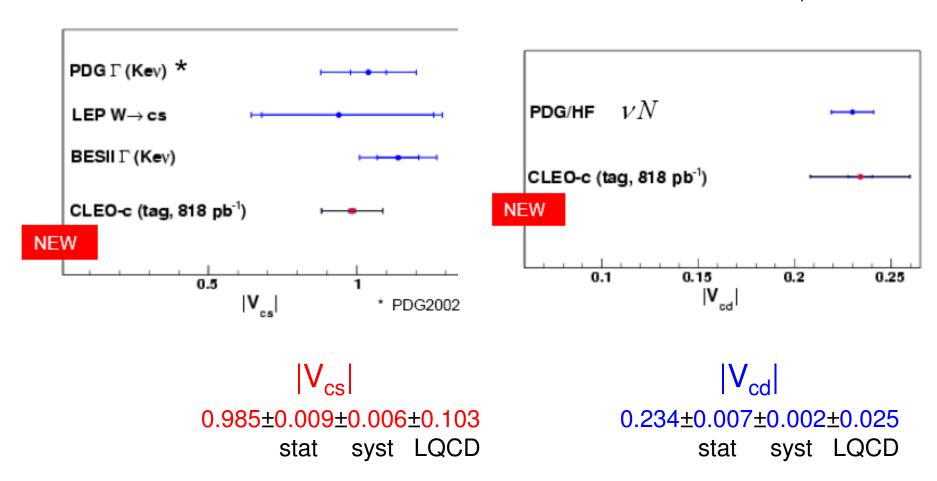
$$H^{\mu} = \frac{2i\varepsilon^{\mu\nu\alpha\beta}}{m_{D} + m_{h}} e_{\nu}^{*} P_{h\alpha} P_{D\beta} V(q^{2}) - (m_{D} + m_{h}) e^{\mu*} A_{1}(q^{2}) + \frac{e^{*\alpha} q_{\alpha}}{m_{D} + m_{h}} (P_{D} + P_{h})^{\mu} A_{2}(q^{2})$$

Simplicity favors pseudoscalar decay modes.


Pseudoscalar Form Factors


• Much of the visible variation is due to the phase-space factor (P^3) .

Comparison to LQCD

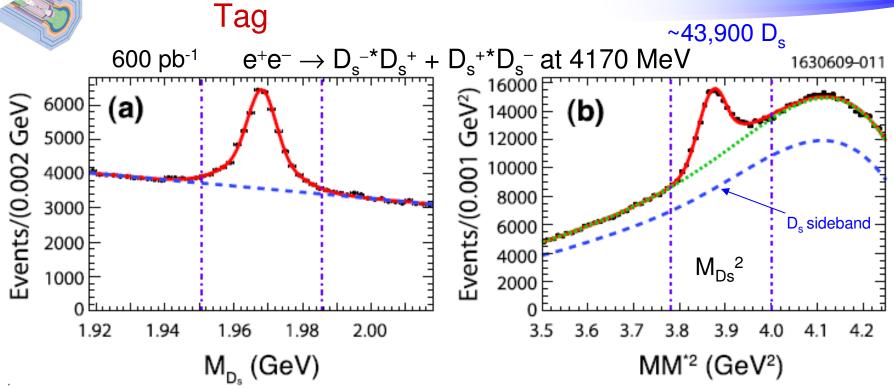


- Good agreement between the data and LQCD on $f_{+}(0)$
- Shape of q^2 dependence also consistent, though data prefer lower α .
- Lattice calculation errors (10%) much bigger than the experimental errors (2.9%,1.2%)

CKM results

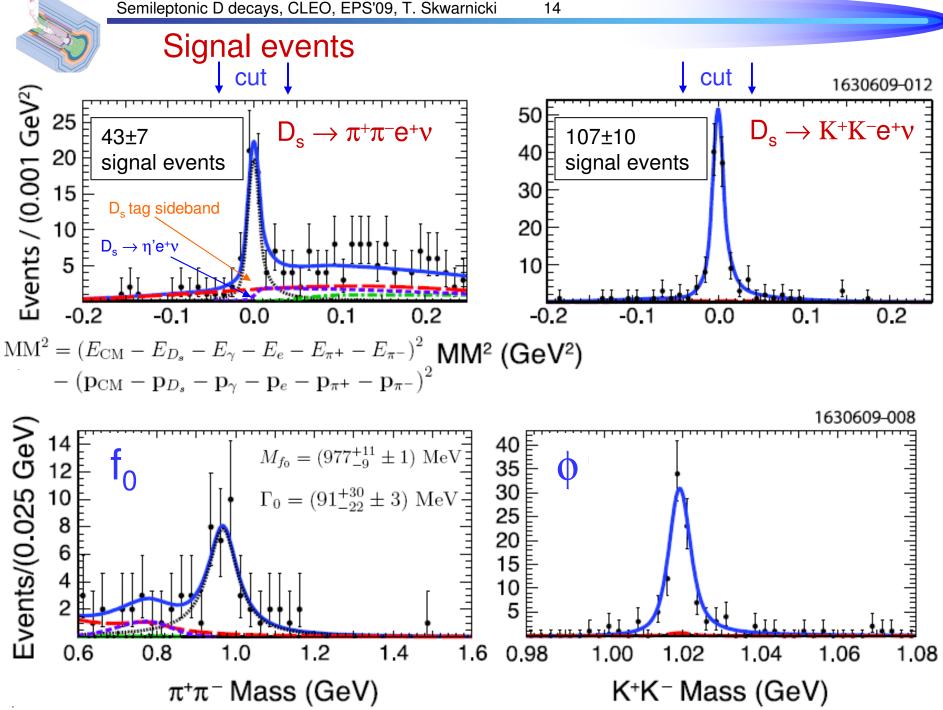
Combine measured $|V_{cx}|f_+(0)$ values (fit of Hill&Becher f.f. parameterization) with FNAL-MILC calculations for $f_+(0)$

Improvements in LQCD calculations are needed

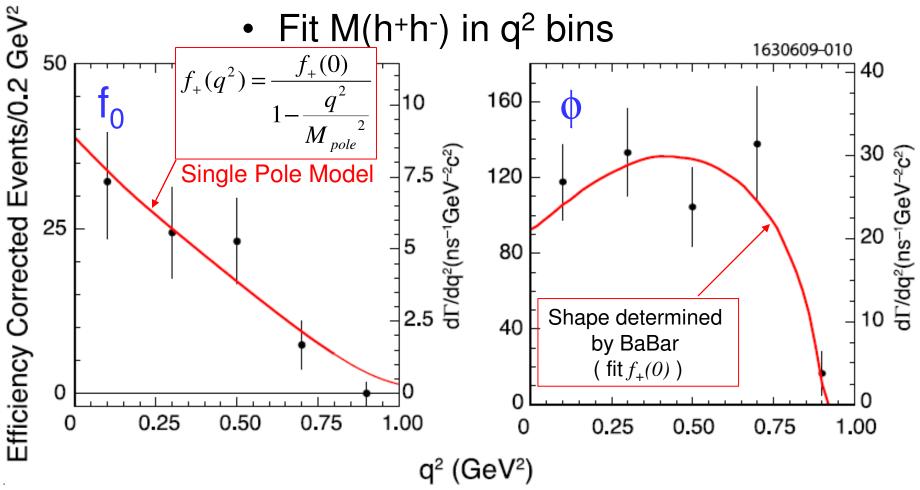


Motivation for $D_s \rightarrow f_0 e^+v$ Measurement

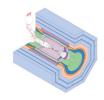
- CP violating phase of $B_s \overline{B_s}$ oscillations (ϕ_s) is very small in SM. Sensitive to NP contributions.
- Present approach (CDF+D0) is to use $B_s \to J/\psi \phi$:
 - Simultaneous fit of CP asymmetry to time and angular distributions (to disentangle CP-odd and -even amplitudes)
 - CDF+D0 results ~2.2σ away from the SM prediction!
- Stone&Zhang [PRD79,074024] suggested $B_s \to J/\psi f_0$ as useful alternative:
 - CP-eigenstate. No angular analysis is needed.
 - BR not know at present. Can be predicted from $D_s \rightarrow f_0 e^+\nu$ rate at $q^2=0$.


$$\frac{\Gamma(B_{s} \to J/\psi \ f_{0}(980), f_{0} \to \pi^{+}\pi^{-})}{\Gamma(B_{s} \to J/\psi \ \phi, \phi \to K^{+}K^{-})} \approx \frac{\Gamma(D_{s} \to e^{+}v \ f_{0}(980), f_{0} \to \pi^{+}\pi^{-})}{\Gamma(D_{s} \to e^{+}v \ \phi, \phi \to K^{+}K^{-})}\bigg|_{q^{2}=0}$$

 Can study properties of f₀ (poorly known!) in clean environment.


 Additional step needed due to presence of photon from D_s^{*} → γ D_s

$$\mathbf{MM}^{*2} = (E_{CM} - E_{D_s} - E_{\gamma})^2 - (\vec{p}_{CM} - \vec{p}_{D_s} - \vec{p}_{\gamma})^2$$

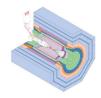


Form factors and BR

From the sum of efficiency corrected yield in all q² bins:

$$BR(D_s \to f_0(980)e^+v, f_0 \to \pi^+\pi^-) = (0.20 \pm 0.03 \pm 0.01)\%$$

 $BR(D_s \to \phi e^+v) = (2.36 \pm 0.23 \pm 0.13)\%$


From fits of $f_{+}(0)$

$$R_{f/\phi} \equiv \frac{\Gamma(D_s \to e^+ \nu f_0(980), f_0 \to \pi^+ \pi^-)}{\Gamma(D_s \to e^+ \nu \phi, \phi \to K^+ K^-)} \bigg|_{q^2 = 0} = (42 \pm 11)\%$$
Preliminary

Assuming

$$R_{f/\phi} = \frac{\Gamma(B_s \to J/\psi f_0(980), f_0 \to \pi^+ \pi^-)}{\Gamma(B_s \to J/\psi \phi, \phi \to K^+ K^-)}$$

- Since no angular analysis needed expect $B_s \to J/\psi \ f_0$ to provide a complementary way to $B_s \to J/\psi \ \phi$ of measuring CP-violating phase ϕ_s
- Need explicit measurement of BR for $B_s \to J/\psi \; f_0$ to confirm

Summary

- Our knowledge of semileptonic D-decays and related parameters has been significantly improved thanks to high luminosities at B-factories (BaBar, Belle) and data taken at the charm threshold (CLEO-c). CLEO-c most precise.
 - BR(D → Kev) 6% error \rightarrow 1.4%
 - combined with LQCD calculations (10% errors) leads to best direct determination of V_{cs}
 - − BR(D \rightarrow πeV) 45% error \rightarrow 3%
 - Potential for best direct determination of V_{cd} if LQCD errors are improved
- From preliminary result

$$R_{f/\phi} = \frac{\Gamma(D_s \to e^+ v f_0(980), f_0 \to \pi^+ \pi^-)}{\Gamma(D_s \to e^+ v \phi, \phi \to K^+ K^-)} \bigg|_{q^2 = 0} = (42 \pm 11)\%$$

predict $B_s\to J/\psi$ f_0 can provide a complementary way to $B_s\to J/\psi$ ϕ of measuring CP-violating phase ϕ_s