30 Years of the Cornell Electron Storage Ring

A survey of the accomplishments of the CLEO and CUSB physics collaborations

Started by Karl Berkelman Finished by David Cassel Laboratory for Elementary-Particle Physics Cornell University

APS, Denver, 3 May 09

Karl Berkelman

1933 -- 2009

Cornell Career

- 1955 -- 59 Graduate Student
- 1960 -- 95 Professor
- 1995 -- 06 Goldwin Smith Professor
- 2006 -- 09 Goldwin Smith Professor Emeritus
- 1985 -- 00 Director Laboratory of Nuclear Studies

Visiting Appointments at Frascati, DESY, and CERN

Member of many laboratory and agency advisory panels APS Fellow

Karl & Mary in the Bavarian Alps

Outline

- Pre-CESR Accelerators at Cornell
- CESR, CLEO, and CUSB
- Upsilon Spectroscopy
- B Mesons
- CESR & CLEO Upgrades
- Moving to Charm
- Some Conclusions

CESR Prehistory

- 1935 -- 1.5 MeV proton cyclotron
- 1949 -- 0.3 GeV electron synchrotron
- 1954 -- 1.2 GeV electron synchrotron
- 1962 -- 2.2 GeV electron synchrotron

CHRONOLOGY OF ACCELERATORS AT CORNELL

1967 – e⁻ synchrotron 12 GeV in a 1/2 mile tunnel

 1979 – CESR Cornell Electron Storage Ring 8+8 GeV e⁺e⁻

Two Detectors Initially

CLEO (south)

CUSB (north)

Severely limited space

b Physics Before CLEO

- At Fermilab Lederman *et al.* discovered the Y states
- DASP and LENA at DESY confirmed $\Upsilon(1S) \& \Upsilon(2S)$
 - demonstrated that $\Upsilon(1S) \& \Upsilon(2S)$ are narrow resonances
- $\Upsilon(2S) \Upsilon(1S)$ splitting nearly equal to $\psi(2S) J/\psi$ splitting
 - $q\overline{q}$ potential $-4\alpha_s/(3r)$ + br works well for $c\overline{c}$ and $b\overline{b}$

First Data $\Upsilon(1S), \Upsilon(2S) \& \Upsilon(3S)$

CLEO's Final $\Upsilon(1S), \Upsilon(2S) \& \Upsilon(3S)$ Results

This was the last CLEO paper with Karl as a principal author (2006).
 His deep understanding of radiative corrections was essential.

Other $b\overline{b}$ States χ_b

• CUSB discovered the $\chi_b(1P)$ states in the γ spectrum from radiative $\Upsilon(2S)$ decay

CLEO $\Upsilon(2S) \rightarrow \chi_{b}(1P)\gamma$ $\rightarrow \Upsilon(1S)\gamma\gamma$ $\rightarrow e^{+}e^{-}\gamma\gamma$

• $\chi_{\rm b}(2P)$ from $\Upsilon(3S)$ decay

11

The $\Upsilon(4S)$ Resonance

- $\Upsilon(4S) \rightarrow B\overline{B}$ 22 MeV above threshold
- $\Upsilon(4S) \rightarrow B^0 \overline{B}^0$ or B^+B^- without extra particles
- $\Upsilon(4S)$ decay is suppressed by phase space
- $e^+e^- \rightarrow \Upsilon(4S)$ 1 nb peak
- Realized our hopes for a B factory like the $\psi(3770)$ D factory

b-Quark Serendipity

- b is the fifth quark with $M(b\overline{b}) < E_{CESR}$
- t is much heavier than b
- The t quark decays without forming bound states, so the $b\overline{b}$ system is the most ideal NR $q\overline{q}$ spectroscopy
- t must decay weakly to u or c
- b is off-diagonal in the CKM matrix so the B lifetime $\tau_B = 1.6$ ps, longer than expected due to small | V_{cb} |
- Most B decays go to D mesons with $|V_{cb}| = 0.04$
- $B \rightarrow X_u \ell v$ seen yielding $|V_{ub}| = 0.004$
- $B^0\overline{B}^0$ mixing discovered by ARGUS yielding | V_{td} |, and implying a large value of m_t and the possibility of CP violation
- $B^+ = \overline{b}u$ and $B^0 = \overline{b}d$ (KB -- matches K meson quark content)

CLEO Detector Upgrades

 CLEO-II: CsI EM calorimeter, dense small-cell drift chamber, particle identification with time of flight (ToF) & ionization (dE/dx), and muon chambers

- CLEO-II.V: silicon vertex detector (SVX)
- CLEO III: replaced
 ToF with a Ring
 Imaging Cherenkov
 detector (RICH)
- CLEO-c: replaced SVX with a vertex drift chamber

CESR Luminosity Improvements

- Multibunch pretzel orbits
- Superconducting RF cavities
- "μβ" IR focusing
- Single IR (no CUSB)

Discovery of $b \rightarrow u \ell \nu$ decays

• Search for $b \rightarrow u\ell v$ decays beyond the endpoint of $b \rightarrow c\ell v$ decays in the inclusive lepton momentum spectrum.

Discovery of Radiative Penguin Decays

Inclusive $\mathcal{B}(B \to X_s \gamma)$

Charmed Baryons

Some Early CLEO* and CUSB* Results

1980	*	*	Υ(3S)	Potential models
	*	*	Υ(4S)	Wide so it is above the $B\overline{B}$ threshold
			$B^0 \& B^+$	Inclusive leptons at the $\Upsilon(4S)$
1982		*	$\chi_{\rm b}(1{\rm P})$	Confirmed Υ s are $b\overline{b}$
1983	*		D_s	Found in $\mathrm{D}^{\scriptscriptstyle +}_{\scriptscriptstyle \mathrm{s}} o arphi \pi^{\scriptscriptstyle +}$ at the right mass
	*		$b \rightarrow c \ell v$	Measure $ V_{cb} $ and $b \rightarrow c$ dominance
1984	*	*	$\Upsilon(5S)\&\Upsilon(6S)$	Sources of $B_{_{s}}$ and $\Lambda_{_{b}}$
1985		*	B^*	Found in $B^* \rightarrow B\gamma$
1988	*		$\Xi_{\rm c}^0$	Initiated charmed baryon program
	*		$B \rightarrow \psi K_S^0$	Golden CP violation channel
1989	*		$B \rightarrow X_u \ell v$	IV _{ub} I determination
1993	*		$B \rightarrow K^* \gamma$	Verified existence of penguin processes
1995	*		$b \rightarrow s\gamma$	Sensitive to Higgs & SUSY

CLEO & CUSB B Physics Accomplishments

- $b\overline{b}$ spectroscopy fits the same potential as $c\overline{c}$
 - QCD $q\overline{q}$ coupling is flavor independent

 $\alpha_{s}(s)$ at $s = M_{y^{2}}$ determined

- B and B* mesons discovered
 - $-m_{b}$ determined
- Many B hadronic and semileptonic decay modes measured
- Discovered $b \rightarrow u \ell v \text{ sol } V_{ub} \neq 0$
- Discovered $B \rightarrow K^* \gamma$ and $b \rightarrow s \gamma$ penguins
- $|V_{cb}|$, $|V_{ub}|$, $|V_{td}|$ measured & A, ρ , η determined

Open CKM triangle implies CP violation

CLEO Moves to the $c\overline{c}$ Threshold Region

- CLEO eclipsed at $b\overline{b}$ energies by PEP-2 and KEK-B
 - CESR optimized for the charm threshold region
 - Inserted wigglers to increase luminosity
 - Much higher luminosity than previous charm experiments
 - CLEO-c detector superior to previous charm detectors
- Principal motivations for the CLEO-c program include:
 - Precise D and D_s hadronic branching fractions They are required for $B \rightarrow D_{(s)}X$ branching fractions
 - Validate Lattice QCD where V_{cs} and V_{cd} are known: Determine the decay constants $f_{D_{(s)}}$ from $D_{(s)} \rightarrow \ell \nu$ decay. Determine branching fractions and form factors for exclusive semileptonic D and D_s decays.
 - Obtain strong phases from $D\overline{D}$ quantum correlations to understand $D^0\overline{D}^0$ mixing and measure the CKM angle γ / φ_3
 - Improve understanding of $c\overline{c}\,$ spectroscopy and decay

Charmonium Physics Opportunities

Bound state spectroscopy $-\eta_{c}(^{1}S), \eta_{c}(^{1}S), h_{c}(^{1}P), \chi_{c}(^{3}P)$ Many new decay modes Resonances above DD threshold are sources of $D_{(s)}D_{(s)}$ events $\psi(3770) \rightarrow DD$ 5.3 M $- \psi(4170) \rightarrow D_s \overline{D}_s^* \rightarrow D_s \overline{D}_s \gamma \qquad 0.57 \text{ M}$ 0.9 nb peak in $\sigma(e^+e^- \rightarrow D_s \overline{D}_s^*)$ 900 30 900 E_{cm} = 4170 MeV ψ(2S) ψ(3770) 800 800 25 700 700 (ind) 600 Integrated Luminosity (pb-1) 00 00 00 00 00 20 Million Events Integrated Luminosity 500 400 300 200 200 5 100 100 0 0 BESII CLEO-c MARKIII BESI CLEO-c MARKII BESI CLEO-c

•

Double Tagging

- Reconstruct one $D_{(s)}$ in $\psi(3770) \rightarrow D\overline{D}$ or $\psi(3770) \rightarrow D_s \overline{D}_s \gamma$ to get a clean sample of the partner $D_{(s)}$ decays
- Enables accurate, absolute branching fraction measurements
- Technique pioneered by Mark III

D^- Single Tags for $D^+ o \mu^+ u^-(f_{D^+})$

Absolute D Branching Fractions

• Using double tags, measured absolute branching fractions for 3 $D^{\rm 0},$ 6 $D^{\rm +}\!\!,$ and 8 $D_{\rm s}$ modes

Absolute D_s^+ Branching Fractions

- First measurement of absolute D_s^+ branching fractions
 - $\mathcal{B}(D_s^+ \rightarrow \phi \pi^+)$ poorly defined due to interfering scalar contribution
 - Replace with $\mathcal{B}_{\Delta M}(D_s^+ o K^+ K^- \pi^+)$ within a mass window ΔM (MeV)
 - For example, $\mathcal{B}_{10}(D_s^+ \to K^+ K^- \pi^+) = (1.99 \pm 0.10 \pm 0.05)\%$

$D \rightarrow \pi e \nu$ Decays

• Same motivation as $D \rightarrow Kev$ decays

$f_{D^+} { m and} \, f_{D_s}$

$D\overline{D}$ Quantum Correlations

- A strong phase δ rotates the $D^0 \overline{D}^0$ mixing parameters x and y.
- CLEO measures δ by comparing quantum correlated yields with uncorrelated branching fractions
- Using about 35% of the $\psi(3770)$ data, CLEO finds

 $\cos \delta = 1.10 \pm 0.35 \pm 0.07$ $x \sin \delta = (4.4^{+2.7}_{-1.8} \pm 2.9) \times 10^{-3}$

Exclusive hc Events

- The h_c was the last $c\overline{c}$ bound state to be observed – Seen by E760 in $p\overline{p} \rightarrow J/\psi \pi^0$
- CLEO reconstructed $\psi(2S) \rightarrow \pi^0 h_c, h_c \rightarrow \gamma \eta_c, \eta_c \rightarrow hadrons$
- Hyperfine mass splitting $\langle M(\chi_{cJ})
 angle M(h_c) = +0.02\pm 0.19\pm 0.13$ MeV

Dalitz analyses of 3-body decays

- Interfering 2-body resonances in Dalitz plot analyses of D_(s) decays to 3 hadrons.
- Strong phases determined from quantum correlations used in measurements of the CKM angle γ / φ_3

CESR & CLEO Accomplishments

- 498 papers, 225 CLEO & 32 CESR PhD theses
- 6-quark Standard Model works well
 - 3x3 CKM matrix is apparently unitary A, ρ , η measured
 - Measured $|V_{ij}|$ imply CP violation in B decays
- Gluon exchange works well for $c\overline{c}$ and $b\overline{b}$ binding
 - $\alpha_{s}(s)$ varies smoothly, as expected
 - Lattice QCD works well
- No evidence for physics beyond the Standard Model
 Many limits on forbidden processes
- CESR luminosity tricks have benefited other facilities
 - Multibunch pretzel orbits, crossing angle, microbeta focusing,
 - superconducting RF cavities, wigglers

34

CLEO-c Physics Observations f_{D^+} Confirmations $h_c(1P)$ $\eta_c(2S)$ $\Upsilon(4260)$ Precision $f_{D_{s}} \& f_{D^{+}}$ $M_{D^0}, M_{\eta}, \& M_{\eta'}$ Absolute *B* $\eta \& \eta'$ $J/\psi \rightarrow \gamma \gamma \gamma$ Hadronic & Semileptonic $D^{0}, D^{+}, \& D_{s}$