Charm Meson Decay Constants

Chul Su Park, University of Rochester (for the CLEO Collaboration)

29 May 2009

10th Conference on the Intersections of Particle and Nuclear Physics (CIPANP 2009) San Diego (LaJolla) CA, 26-31 May 2009

Introduction : Leptonic Decays

- Leptonic decays provide a clean way to probe strong interactions. Measure rates to extract decay constant *f_P*.
- Calibrate lattice calculations of decay constants, so more reliable values of |V_{td}| and |V_{ts}| can be obtained from B factories:
 - f_D at CLEO-c and $(f_B/f_D)_{LQCD} \Rightarrow f_B$ for precise $|V_{td}|$.
 - f_D/f_{D_s} checks $(f_B/f_{B_s})_{LQCD}$ for $|V_{td}|/|V_{ts}|$.

CLEO-c Open Charm Program

- Precision measurements of benchmark branching fractions of D^0 , D^+ , and D_s ., i.e., those decay modes used by B factories and hadron colliders : $D^0 \rightarrow K^- \pi^+$, $D^+ \rightarrow K^- \pi^+ \pi^+$, $D_s^+ \rightarrow K^+ K^- \pi^+$, and others.
- Measurements to test, calibrate, validate Lattice QCD calculations, other calculations of strong interaction effects: $D^+, D^+_s \rightarrow l^+ \nu_l, D \text{ exclusive semileptonic decays.}$

- CLEO-c : collected large data sets at charm threshold
 - E_{CM} near 3770MeV : 818 pb⁻¹, 3.0M $D^0 \overline{D}^0$ and 2.4M $D^+ D^-$ events.
 - E_{CM} near 4170MeV : 600 pb⁻¹, 0.6M $D_s^{*\pm}D_s^{\mp}$ events.

Experimental Technique

- DD threshold, no additional particles produced.
- Low multiplicity (4 ~ 6 tracks per event). Clean experimental environment.
- Event can be fully reconstructed, tagging D and recoiling signal, missing neutrino can be determined w/o kinematic ambiguity.
- $p_{\text{miss}} = p_{\text{CM}} (p_{\text{tag}} + p_{\ell})$
- Absolute branching fraction from N_{signal}/N_{tag}.

D Tagging – 3770 MeV

- $e^+e^- \rightarrow \psi(3770) \rightarrow D\bar{D}$ produced at threshold, no extra particles.
- $m_{\rm BC} = [E_{\rm beam}^2 \mathbf{p}_D^2]^{1/2}$
- 10% of D⁻ tagging,
 (15% of D
 ⁰ tagging)
 in clean hadronic modes.
- 818pb⁻¹, 4.6 × 10⁵ D⁻ tags in 6 modes.

$D^+ \rightarrow \mu^+ \nu_\mu$

- Cabibbo- and helicity- suppressed.
- Combine D^- tag with μ^+ candidate, $E_{cal} < 300$ MeV, minimum ionizing.
- Reject events with extra tracks or large extra calorimeter energy.
- $MM^2 = (p_{CM} p_D p_\mu)^2$
- PRD 78, 052003 (2008):
 - $B = (3.82 \pm 0.32 \pm 0.09) \times 10^{-4}$
 - $f_D = (205.8 \pm 8.5 \pm 2.5) \text{ MeV}$
- Good agreement with LQCD, PRL **100**, 062002 (2008):
 - ◆ *f*_D = (207 ± 4) MeV

D_s Tagging – 4170 MeV

- $e^+e^- \rightarrow D_s^{*+}D_s^$ produces extra γ (94.2%) or π^0 from D_s^{*+} decay.
- 6% of D_s^- tagging.
- 600pb⁻¹, 70.5k tags in 9 modes.

$D_s^+ \rightarrow \mu^+ \nu_\mu \And D_s^+ \rightarrow \tau^+ \nu_\tau \ (\tau^+ \rightarrow \pi^+ \bar{\nu}_\tau)$

- Cabibbo-favored, less helicity-suppressed (τ) .
- Combine D_s^- tag, transition γ $(D_s^* \rightarrow D_s \gamma)$, and additional track.
- Reject events with extra tracks or large extra calorimeter energy.
- $MM^2 = (p_{CM} p_{D_s} p_{\gamma} p_{track})^2$
- Two cases:
 - (i) $E_{cal} < 300$ MeV, minimum ionizing
 - (ii) $E_{cal} \ge 300$ MeV, interacting pion
- PRD **79**, 052001 (2009):
 - $B(\mu\nu) = (5.65 \pm 0.45 \pm 0.17) \times 10^{-3}$
 - $B(\tau\nu) = (6.42 \pm 0.81 \pm 0.18) \%$

 $D_{S}^{+} \rightarrow \tau^{+} \nu_{\tau} (\tau^{+} \rightarrow e^{+} \nu_{e} \bar{\nu}_{\tau})$

- Cabibbo-favored, less helicity-suppressed.
- Three cleanest tag modes are used $(D_s^- \rightarrow \phi \pi^-, K^- K^{*0}, \text{ and } K_S^0 K^-), 22k$ tagged events.
- Combine D_s^- tag with e^+ candidate.
- Reject events with extra tracks.
- Three neutrinos in the final state, use extra calorimeter energy.
- $E_{\text{extra}} < 400 \text{ MeV}.$
- $D_s^+ \rightarrow K_L^0 e^+ \nu_e$ background from measured $B(D_s^+ \rightarrow K_S^0 e^+ \nu_e)$, dominant systematic uncertainty.
- PRD 79, 052002 (2009):
 - $B(D_s \to \tau \nu) = (5.30 \pm 0.47 \pm 0.22)\%$

CLEO-c and LQCD

[1] CLEO-c: PRD 78, 052003 (2008), PRD 79, 052001 (2009), and PRD 79, 052002 (2009).
[2] LQCD (HPQCD & UKQCD): PRL 100, 062002 (2008).

Summary

- CLEO-c at charm threshold: leptonic decays of charm mesons is an excellent device to test, calibrate, and validate LQCD calculations of strong interaction effects.
 Theory and experiment are both making great strides in precision:
 - CLEO-c $\delta f_D/f_D \sim 4\%$ and $\delta f_{D_s}/f_{D_s} \sim 3\%$.
 - LQCD $\delta f_D / f_D \sim 2\%$ and $\delta f_{D_s} / f_{D_s} \sim 1\%$.
 - Allows for stringent test for LQCD.
- Prospects for charm meson decay constants at BES III : [arXiv:0809.1869], an order bigger sample on open charm
 - Independent cross check at charm threshold.
 - ~ 1% precision on f_D and f_{D_s} .