New Charmonium Results from CLEO-c

Helmut Vogel Carnegie Mellon University (for the CLEO Collaboration) CHARM09, Leimen, Germany

One of the last CLEO-c events (taken on 3-March-2008) e⁺e⁻→D_s^{*+}D_s⁻

CLEO-c Data Sample for Charmonium Program

818/pb at $\psi(3770)$ (mostly open charm but also charmonium)

54/pb at $\psi(2S) \rightarrow 27 \text{ M} \psi(2S)$

(largest pre-BESIII world supply)

In praise of $\psi(2S)$:

 $B(\psi(2S) \rightarrow \pi^+\pi^- J/\psi = 32\% \ (\epsilon \approx 75\%)$

 $B(\psi(2S) \rightarrow \gamma \chi_{cJ} \approx 9\%$ for each of J=0,1,2

Clean, tagged, abundant J/ψ , χ_{cJ} (and h_c)!

- Decays of states (hadronic & radiative)
- Transitions between states
- Spectrum of states

Overarching theme: Use charmonium as a laboratory to test

- quarkonium potential models
- QCD, pQCD, NRQCD, LQCD

Two-Body Mesonic Decays of χ_{cJ}

- Two-body decays are theoretically "clean":
 - probe role of the color octet mechanism
 - probe gluon content of final state mesons

- Results for two-body baryonic decays have also recently been published: *CLEO PRD 78, 031101(R) (2008)*

BF or 90% CL UL (10⁻³)

Mode		χ_{c0}	χ_{c2}
$\pi^+\pi^-$	This Work	$6.37 \pm 0.08 \pm 0.29 \pm 0.32$	$1.59 \pm 0.04 \pm 0.07 \pm 0.10$
	PDG [<u>5</u>]	4.87 ± 0.40	1.42 ± 0.16
$\pi^0\pi^0$	This Work	$2.94 \pm 0.07 \pm 0.32 \pm 0.15$	$0.68 \pm 0.03 \pm 0.07 \pm 0.04$
	PDG	$2.43 \pm .20$	0.71 ± 0.08
K^+K^-	This Work	$6.47 \pm 0.08 \pm 0.33 \pm 0.32$	$1.13 \pm 0.03 \pm 0.06 \pm 0.07$
	PDG	5.5 ± 0.6	0.78 ± 0.14
$K^0_S K^0_S$	This Work	$3.49 \pm 0.08 \pm 0.17 \pm 0.17$	$0.53 \pm 0.03 \pm 0.03 \pm 0.03$
	PDG	2.77 ± 0.34	0.68 ± 0.11
$\eta\eta$	This Work	$3.18 \pm 0.13 \pm 0.31 \pm 0.16$	$0.51 \pm 0.05 \pm 0.05 \pm 0.03$
	PDG	2.4 ± 0.4	< 0.5
$\eta\eta'$	This Work	< 0.25	< 0.06
		$(0.16 \pm 0.06 \pm 0.01 \pm 0.01)$	$(0.013 \pm 0.031 \pm 0.001 \pm 0.001)$
	PDG	< 0.5	< 0.26
$\eta'\eta'$	This Work	$2.12 \pm 0.13 \pm 0.18 \pm 0.11$	< 0.10
			$(0.056 \pm 0.032 \pm 0.005 \pm 0.003)$
	PDG	1.7 ± 0.4	< 0.4

CLEO PRD 79, 072007 (2009)

Substantial improvement over current world averages in some channels!

Charm09 H. Vogel, Carnegie Mellon

Example: $\chi_{cJ} \rightarrow \eta^{(')} \eta^{(')}$

Measured BRs constrain ratio of Double-OZI to Single-OZI amplitudes

Theory: Close & Zhao, PRD 71, 094022, factorization a la Zhao, PRD 72, 074001; PLB 659, 221

Data suggest small (if any) contribution of DOZI decays in 0⁻⁺ channel.

Charm09 H. Vogel, Carnegie Mellon

Evidence for Hadronic Decay of the h

The only previously observed decay: $\psi(2S) \rightarrow \pi^0 h_c$) x B($h_c \rightarrow \gamma \eta_c$); product BF: 4.2 ± 0.6) x 10⁻⁴ (CLEO *PRL* 101, 182003 (2008))

Godfrey & Rosner predict 73% direct hadronic decay (*PRD* 66, 014012 (2002))

Expect **odd number of pions** (negative G parity)

Measure $B(\psi(2S) \rightarrow \pi^0 h_c) \times B(h_c \rightarrow X)$ X = n($\pi^+\pi^-$) π^0 (n=1,2,3):

Mode	Product BF (10-5)	
$\pi^+\pi^-\pi^0$	< 0.2	
2(π⁺π⁻) π⁰	1.9 ± 0.5 ± 0.4	
3(π⁺π⁻) πº	< 2.4	

Charm09 H. Vogel, Carnegie Mellon

(Aside: Precision h_c Mass Measurement)

Result: M(h_c)=(3525.28±0.19±0.12) MeV

cf. $<M(\chi_{cJ})>=(3525.30\pm0.11)$ MeV (PDG)

 \rightarrow HF splitting of 1P states is negligibly small!

Charm09 H. Vogel, Carnegie Mellon

Radiative Decays and Transitions

Charm09 H. Vogel, Carnegie Mellon

$B(\psi(2S) \rightarrow \gamma gg) / B(\psi(2S) \rightarrow ggg)$

Rough expectation for ratio of rates:

 $\propto q_c^2 \alpha_{EM} / \alpha_s [1 + ...]$

Experimental challenge: subtracting backgrounds

 utilize three separate techniques; dominant systematic error

Measure $\psi' \rightarrow \gamma gg$, subtract all other known decays and transitions (87%), infer $\psi' \rightarrow ggg$

State	$B(X \rightarrow \gamma gg) / B(X \rightarrow ggg)$
J/ψ	0.137 ± 0.001 ± 0.016
ψ(2S)	0.091 ± 0.003 ± 0.027 🗲
Υ(1S)	$0.027 \pm 0.001 \pm 0.003$
Υ(2S)	$0.032 \pm 0.001 \pm 0.005$
Υ(3S)	0.027 ± 0.001 ± 0.005

CLEO PRD 74, 012003 (2006)

Charm09 H. Vogel, Carnegie Mellon

 $J/\psi,\psi(2S) \rightarrow \gamma \eta_c$

Charm09 H. Vogel, Carnegie Mellon

The η_c Lineshape

Asymmetric lineshape is expected:

$$\Gamma_{n^3 S_1 \to n'^1 S_0 \gamma} = \frac{4}{3} \alpha \, e_Q^2 \, \frac{k_\gamma^3}{m^2} \, \left| \int_0^\infty dr \, r^2 \, R_{n'0}(r) \, R_{n0}(r) \, j_0\left(\frac{k_\gamma r}{2}\right) \right|^2$$

 $j_0(k_\gamma r/2) = 1 - (k_\gamma r)^2/24 + \dots$ c.f.: Brambilla et al., PRD 73, 054005 (2006)

> $\Gamma(\psi' \rightarrow \gamma \eta_c) [n \neq n'] ∝ E_Y^7$ $\Gamma(J/\psi \rightarrow \gamma \eta_c) [n=n'] ∝ E_Y^3$

...but these factors cause total width to diverge at high ${\sf E}_{\sf Y}$

Understanding the energy dependence of the $\psi(1S,2S) \rightarrow \gamma \eta_c$ matrix element is crucial for an accurate mass measurement from radiative decays.

 η_c mass uncertainty drives experimental error on charmonium IS hyperfine splitting.

- E_γ = 48 MeV -- inclusive analysis too difficult; instead search for--
 - $\psi(2S) \rightarrow \gamma \eta_c$; $\eta_c \rightarrow X$
 - $\psi(2S) \rightarrow \gamma \eta_c$ '; $\eta_c \rightarrow \pi^+ \pi^- \eta_c$; $\eta_c \rightarrow X$
- Calibrate analysis on $\psi(2S) \rightarrow \gamma \chi_{c2}$ transition
- Using known B(η_c'→KKπ) and η_c
 branching fractions, can set 90%
 C.L. limits
- Scaling from $J/\psi \rightarrow \gamma \eta_c$ one expects $B(\psi(2S) \rightarrow \gamma \eta_c') = 4 \times 10^{-4}$ Results (*CLEO PRELIMINARY*): $B(\psi(2S) \rightarrow \gamma \eta_c') < 7.4 \times 10^{-4}$ $B(\psi(2S) \rightarrow \gamma \eta_c') \times B(\eta_c' \rightarrow \pi^+\pi^-\eta_c) < 1.4 \times 10^{-4}$
 - Charm09 H. Vogel, Carnegie Mellon

 $\chi_{cJ} \rightarrow \gamma(\rho, \omega, \phi)$

Look for: $\psi(2S) \rightarrow \gamma_{(low)}\chi_{cJ}$ $\chi_{cJ} \rightarrow \gamma_{(high)}(\rho, \omega, \phi)$

Significant signals observed in:

 $\chi_{c1} \rightarrow \gamma \rho$ $\chi_{c1} \rightarrow \gamma \omega$

<u>CLEO PRL 101, 151801 (2008)</u>

Mode	$\mathcal{B} imes 10^6$	U.L. $[10^{-6}]$	$pQCD [10^{-6}]$
$\chi_{c0} o \gamma ho^0$		< 9.6	1.2
$\chi_{c1} o \gamma ho^0$	$243 \pm 19 \pm 22$		14
$\chi_{c2} o \gamma ho^0$	$25\pm10^{+8}_{-14}$	< 50	4.4
$\chi_{c0} ightarrow \gamma \omega$		< 8.8	0.13
$\chi_{c1} ightarrow \gamma \omega$	$83\pm15\pm12$		1.6
$\chi_{c2} ightarrow \gamma \omega$		< 7.0	0.50
$\chi_{c0} o \gamma \phi$		< 6.4	0.46
$\chi_{c1} ightarrow \gamma \phi$	$12.8\pm7.6\pm1.5$	< 26	3.6
$\chi_{c2} ightarrow \gamma \phi$		< 13	1.1

Expect process to be analogous to that of glueball production, e.g., in $J/\psi{\longrightarrow}\gamma f_{\text{J}}$

pQCD predicts rates an order of magnitude lower than observed! (Gao, Zhang, Chao, Chin.Phys.Lett. 23, 2376 (2006) [arXiv:hep-ph/0607278])

Charm09 H. Vogel, Carnegie Mellon

$\chi_{\text{cJ}} \to \gamma \gamma$

Two-photon widths of χ_{cJ} probe relativistic and radiative corrections known to be significant in charmonium.

Results:

 $\Gamma_{\gamma\gamma}(\chi_{c2}) = 0.66 \pm 0.07_{stat} \pm 0.04_{syst} \pm 0.05_{PDG} \text{ keV}$

 $\Gamma_{\gamma\gamma}(\chi_{c0}) = 2.36 \pm 0.35_{stat} \pm 0.11_{syst} \pm 0.19_{PDG} \text{ keV}$ Ratio = 0.278 ± 0.050_{stat} ± 0.018_{syst} ± 0.031_{PDG}

In pQCD, uncertainties due to quark mass and wave function cancel, making the ratio of widths, R, a key quantity. To first order in α_{1} :

$$R = \frac{\Gamma_{YY}(\chi_{c2}) = 4(|\Psi'(0)|^2 \alpha_{E^{M}}/m_c^4) \times [1 - 1.70\alpha_{S} + ...]}{\Gamma_{YY}(\chi_{c0}) = 15(|\Psi'(0)|^2 \alpha_{E^{M}}/m_c^4) \times [1 + 0.06\alpha_{S} + ...]} = (4/15) [1 - 1.76\alpha_{S} + ...]$$

$$prediction:$$

$$\alpha_{s} = 0.32 \rightarrow R=0.12$$

New world avg.: $R = 0.22 \pm 0.03$ higher order corrections very significant CLEO PRD 78, 091501 (2008)

 $J/\psi \rightarrow 3\gamma$

This is the quarkonium analogue of orthopositronium decay.

Tag via $\psi(2S) \rightarrow \pi^+\pi^- J/\psi$ (eliminates QED background!)

Veto resonances π^0 , η , η' , η_c

Main remaining background: $J/\psi \rightarrow \gamma \pi^0 \pi^0$

Tagging gives very clean J/ψ sample!

Charm09 H. Vogel, Carnegie Mellon

$J/\psi \rightarrow 3\gamma$

Perform kinematic fit; **Signal peaks at low** χ^2 /dof **Background rises away from zero** (and is independent of $\pi^0\pi^0$ substructure!)

Result (CLEO *PRL* 101, 101801 (2008)): **B** = (1.2 ± 0.3 ± 0.2) x 10⁻⁵ (6 σ) First observed 3 γ decay of any hadron!

Theory: in QED, $B(3\gamma)/B(3g) \approx (\alpha/\alpha_s)^3$ and $B(3\gamma \approx (\alpha/14)B_{\mu\mu} \approx 3 \times 10^{-5}$ But NLO QCD corrections give negative rate! (Higher order corrections very significant)

As "byproduct" we obtain upper limit on $\eta_c \rightarrow \gamma \gamma$: B($\eta_c \rightarrow \gamma \gamma$) < 3×10⁻⁴ (90% CL), PDG: (2.7+0.9)×10⁻⁴

Charm09 H. Vogel, Carnegie Mellon

Summary of CLEO-c Charmonium Results

- Precision measurement of hadronic two-body decays of χ_{cJ}
- First evidence for hadronic h_c decay (and precision measurement of the h_c mass)
- First measurement of B(ψ(2S)→γgg) / B(ψ(2S)→ggg);
 completes set for heavy vector states
- New measurements for M1 transitions $J/\psi, \psi(2S) \rightarrow \gamma \eta_c$ Understanding of lineshape crucial for η_c mass and BF measurements
- New limit on $\psi(2S) \rightarrow \gamma \eta_c$ '
- Study of J/ ψ , ψ (2S) $\rightarrow \gamma(\pi^{0},\eta,\eta')$; surprising suppression of ψ (2S) $\rightarrow \gamma\eta$
- First observation of $\chi_{cJ} \rightarrow \gamma(\rho, \omega, \varphi)$; rates much larger than predicted
- Precision measurement of two-photon widths of $\chi_{c(0,2)}$
- First observation of the 3-photon decay of a meson: $J/\psi \boldsymbol{\rightarrow} \boldsymbol{\gamma}$

Concluding Remarks

- Rich program of hadronic physics at CLEO-c (too extensive to cover it all here) --
 - precision measurements of the mass of η (*PRL 99, 122002 (2007)*), and η' (*PRL 101, 182002 (2008)*)
 - most precise single measurement of all dominant η B.F.'s (*PRL 99, 122001 (2008)*), η' B.F.'s (arXiv: 0904.1394), and rare η' decays (*PRL 102, 061801 (2008)*)
 - precision branching fractions for $\psi' \rightarrow X J/\psi$ (*PRD 78, 011102(R) (2008)*)
- ...and several analyses still in the pipeline --
 - M2/E1 in χ_{cJ} transitions
 - analysis of $\psi' \rightarrow \pi \pi J/\psi$ matrix elements
 - $(J/\psi, \psi') \rightarrow (\gamma, \pi^0) pp; \chi_{cJ} \rightarrow Xpp$
 - search for invisible (radiative) decays of J/ψ
 - spectroscopy in hadronic χ_{cJ} decay
- CLEO-c has been laying a solid foundation for BESIII to build on.

Charm09 H. Vogel, Carnegie Mellon

Backup Slides

η Mass

CLEO: M(n) =547.785 ± 0.017 ± 0.057 MeV PRL 99, 122002 (2007) (arXiv:0707.1810)

KLOE: $M(\eta) = 547.873 \pm 0.007 \pm 0.031 \text{ MeV}$ arXiv:0707.4616 (LP07 contribution)

η' Mass

Agrees with ϕ_P from BFs: flavor symm' breaking small?

$$\tan^2 \phi_P = \frac{(M_{\eta'}^2 - 2M_K^2 + M_\pi^2)(M_\eta^2 - M_\pi^2)}{(2M_K^2 - M_\pi^2 - M_\eta^2)(M_{\eta'}^2 - M_\pi^2)}$$

η branching fractions

Fully reconstruct five final states: $\gamma\gamma + 3\pi^0 + \pi^+\pi^-\pi^0 + \pi^+\pi^-\gamma + e^+e^-\gamma$ 38.5 34.0 22.6 4.0 0.9%

Follow PDG procedure: sum of the above five modes is ~ 100% ⇒ build absolute Br's from ratios

 $\pi^+\pi^-\gamma$ and $e^+e^-\gamma$: 3σ deviation

CLEO, PRL 99, 122001 (2007) or arXiv:0707.1601

structure in the decay $\chi_{c1}(1P) \rightarrow \gamma(\rho, \omega)$ The ρ decay exhibits exhibits longitudinal

 Statistics are less precise for ω, but it is also consistent with longitudinal polarization

polarization

 This parallels that measured for a₁→γρ by VES (Z. Phys. C 66, 71 (1995))

M. R. Shepherd GHP Workshop, Denver April 29, 2009