Rencontres de Moriond EW 2008 {CLEO-c Charm Leptonic & Semileptonic Decays}

Chul Su Park

University of Rochester (for the CLEO Collaboration)

March 5, 2008

Charm Leptonic and Semileptonic Decays

- Careful studies of charm leptonic and semileptonic decays calibrates theory, so more reliable values of V_{td}, V_{ub}, can be obtained from B factories.
 - Leptonic decays

CLEO-c Open Charm Program

- Precision measurements of benchmark branching fractions of D^0 , D^+ , and D_s ., i.e., those decay modes used by *B* factories and hadron colliders : $D^0 \rightarrow K^- \pi^+$, $D^+ \rightarrow K^- \pi^+ \pi^+$, $D_s^+ \rightarrow \pi^+ K^+ K^-$, and others.
- Measurements to test, calibrate, validate Lattice QCD calculations, other calculations of strong interaction effects. $D^+, D_s^+ \rightarrow l^+ \nu_l, D$ exclusive semileptonic decays.

 $D = D = 0 = 3770 \cdot 300 \text{ pb}^{-1} (30 \times 201 \text{ pb}^{-1} \text{ mmms tark}),$ $281 \text{ pb}^{-1} \sim 1.8 \times 10^6 D \overline{D}$ $D_s^* \overline{D}_s @ 4170 : 314 \text{ pb}^{-1} (\text{will double the sample})$ $314 \text{ pb}^{-1} \sim 0.3 \times 10^6 D_s^* \overline{D}_s$

CLEO-c has largest data set at 3770

Absolute Branching Fractions

Semileptonic event can be fully reconstructed (except neutrino)

$$\square \quad \mathcal{B}(D \to Xe^+ \nu_e) = \frac{N_{SL}/\epsilon_{SL}}{N_{tag}}$$

Introduction : Leptonic Decays

$$\Gamma(P_{Q\bar{q}} \to \ell^+ \nu_{\ell}) = \frac{G_F^2 |V_{Qq}|^2 f_P^2}{8\pi} m_{Q\bar{q}} m_{\ell}^2 \left(1 - \frac{m_{\ell}^2}{m_{Q\bar{q}}^2}\right)^2$$

Measure rates to extract decay constant *f_P* (*V_{Qq}*).
 Check lattice calculations of decay constants.

- f_D at CLEO-c and $(f_B/f_D)_{LQCD} \Rightarrow f_B$ for precise $|V_{td}|$.
- f_D/f_{D_s} checks $(f_B/f_{B_s})_{LQCD}$ for $|V_{td}|/|V_{ts}|$.
- Sensitive to new physics, e.g. H^+ can mediate.

$D^+ \rightarrow \mu^+ \nu_\mu$

- Use 158k D⁻ tags (281 pb⁻¹ @3770)
- Require only one additional track, μ^+
- Reject event if substantial energy in calorimeter
- Compute missing mass

- Result: Phys. Rev. Lett. 95, 251801 (2005)
 - $B(D^+ \to \mu^+ \nu_{\mu}) = (4.40 \pm 0.66^{+0.09}_{-0.12}) \times 10^{-4}$
 - $f_D = (222.6 \pm 16.7^{+2.8}_{-3.4})$ MeV (using $|V_{cd}| = 0.2238)$
- Unquenched LQCD $f_{D^+} = (201 \pm 3 \pm 17)$ MeV, Exp/Theory agree ~ to 10%.

 $D_s^+ \rightarrow \mu^+ \nu_\mu$ $D_{s}^{+} \rightarrow \tau^{+} \nu_{\tau} (\tau^{+} \rightarrow \pi^{+} \bar{\nu}_{\tau})$

Case	Region (GeV ²)	Signal	Background
Α	-0.05 <mm<sup>2 < 0.05</mm<sup>	92	3.5±1.4
В	0.05 <mm<sup>2 < 0.20</mm<sup>	31	2.5 ± 1.1
С	-0.05 <mm<sup>2 < 0.20</mm<sup>	25	3.0 ± 1.3
Sum	-0.05 <mm<sup>2 < 0.20</mm<sup>	148	9.0±2.3

- 314 pb⁻¹ @ 4170 $e^+e^- \rightarrow D_s D_s^*$ Find a D_s (8 tag modes used), 31k tag candidates
- Now include a γ , looking for $D_s^* \rightarrow \gamma D_s$ decay γ
- Calculate mass recoiling against D_s tag + γ , to find events with detected decay γ
- Select events with only one additional track, oppositely charged, consistent with μ or π
- Reject events with energetic neutral energy clusters
- Calculate missing mass.
 - **Results**: Phys. Rev. Lett. **99**, 071802 (2007)
- A: $B(D_{S}^{+} \rightarrow \mu^{+} \nu_{\mu}) = (0.594 \pm 0.066 \pm 0.031)\%$ • B and C: $B(D_{S}^{+} \rightarrow \tau^{+} \nu_{\tau}) = (8.0 \pm 1.3 \pm 0.4)\%$ • A, B, and C: by summing all cases, w/ SM τ/μ ratio $B^{\text{eff}}(D_{S}^{+} \rightarrow \mu^{+} \nu_{\mu}) = (0.638 \pm 0.059 \pm 0.033)\%$ $f_{D_{S}} = (274 \pm 13 \pm 7) \text{ MeV} (|V_{cS}| = 0.9738)$

Rencontres de Moriond EW 2008 {CLEO-c Charm Leptonic & Semileptonic Decays}

March 5, 2008 9 / 24

$D_s^+ \rightarrow \tau^+ \nu_\tau \ (\tau^+ \rightarrow e^+ \nu_e \bar{\nu}_\tau)$

298 pb⁻¹ @ 4170 – $e^+e^- \rightarrow D_s D_s^*$

- Find a D_s (3 cleanest tag modes used), 13k tag candidates
- Find an electron on the other side
- Require no other charged tracks on the other side
- Plot the energy in the calorimeter, not due to tag side or the electron
 - $E_{\text{extra}} < 400 \text{ MeV}$ is the signal region Extrapolate background from D_s semileptonic decays (mainly $D_s^+ \rightarrow \eta e^+ \nu_e$) from region above 400 MeV
- $D_s^+ \to K_L^0 e^+ \nu_e \text{ background from}$ $D_s^+ \to K_S^0 e^+ \nu_e \text{ measurement}, B(D_s^+ \to K_S^0 e^+ \nu_e) = (0.14 \pm 0.06 \pm 0.01)\%$
- Background is ~ 21% of yield in signal region
 - **Result**: arXiv:0712.1175
- $B(D_s^+ \to \tau^+ \nu_\tau) = (6.17 \pm 0.71 \pm 0.34)\%$
- This is the most precise determination of $B(D_s^+ \rightarrow \tau^+ \nu_{\tau})$

•
$$f_{D_s} = (273 \pm 16 \pm 8) \text{ MeV} (|V_{cs}| = 0.9738)$$

$f_{D_s} \& f_{D_s}/f_D$

Combining $D_s^+ \rightarrow \mu^+ \nu_{\mu}$, $D_s^+ \rightarrow \tau^+ (\pi^+ \bar{\nu}_{\tau}) \nu_{\tau}$, and $D_s^+ \rightarrow \tau^+ (e^+ \nu_e \bar{\nu}_{\tau}) \nu_{\tau}$: Phys. Rev. Lett. **99**, 071802 (2007); arXiv:0712.1175

 $f_{D_s} = (274 \pm 10 \pm 5) \text{ MeV}$

Using $f_D = (222.6 \pm 16.7^{+2.8}_{-3.4})$ MeV

$$\frac{f_{D_s}}{f_D} = 1.23 \pm 0.10 \pm 0.03$$

CLEO-c is the most precise result to date for both f_D and f_{Ds} ([294 ± 27] MeV, PDG 2006).
 R = $\frac{\Gamma(D_s^+ \rightarrow \tau^+ \nu_{\tau})}{\Gamma(D_s^+ \rightarrow \mu^+ \nu_{\mu})}$ = 11.0 ± 1.4 ± 0.6 (consistent with lepton universality, SM 9.72).

Comparison with Theory

- CLEO f_D is consistent with LQCD calculations.
- CLEO f_{D_s} is ~ 3σ above the most recent & precise LQCD calculation (HPQCD)
 - this discrepancy needs to be studied, LQCD or Exp error?
 - conflicts with the suppression expected from a 2HDM (Phys. Rev. D 75, 075004 (2007))
 - there is new physics that interferes constructively with the SM?

Comparing measured f_{D_s}/f_D with HPQCD $M_{H^+}/\tan\beta > 2.2$ GeV at 90% C.L.

Using HPQCD f_{D_s}/f_D $|V_{cd}|/|V_{cs}| = 0.217 \pm 0.19_{exp} \pm 0.002_{theory}$

ral (11), z = 2000 z = 12/24

Introduction : Semileptonic Decays

Cleanest (and simplest, both experimentally & theoretically) way to determine magnitudes of CKM elements

- Assuming theoretical form factor \Rightarrow determine $|V_{cs}|$ and $|V_{cd}|$
- Assuming $|V_{cs}|$ and $|V_{cd}|$ \Rightarrow we can check theoretical calculations of the form factors
- Test theory calculations (e.g. LQCD) of $f_+(q^2)$ in the D system and apply them to the B system, e.g. for $|V_{ub}|$.

Inclusive D Semileptonic Decays

- Historically : interesting due to the large difference in D⁰ vs D⁺ lifetimes (spectator model inadequate)
- Inclusive vs Sum of Exclusive : room for new modes?

Mode	Branching Fraction
$D^0 \rightarrow X e^+ \nu_e$	$(6.46 \pm 0.17 \pm 0.13)\%$
Sum of $\mathcal{B}_{SL}(D^0)$	$(6.1 \pm 0.2 \pm 0.2)\%$
$D^+ \rightarrow X e^+ \nu_e$	$(16.13 \pm 0.20 \pm 0.33)\%$
Sum of $\mathcal{B}_{SL}(D^+)$	$(15.1 \pm 0.5 \pm 0.5)\%$

Consistent with isospin symmetry : the lepton cannot interact strongly with the final-state hadrons and the two mesons differ only in the isospin of the light quark

$$\frac{\Gamma_{D^+}^{SL}}{\Gamma_{D^0}^{SL}} = \frac{\mathcal{B}_{D^+}^{SL}/\tau_+}{\mathcal{B}_{D^0}^{SL}/\tau_0} = 0.985 \pm 0.028 \pm 0.015$$

First Observations

(1) Tagged Analysis :

[arXiv:0712.0998] 3600307-017 $D^0 \rightarrow K^- e^+ \nu_{e}$ $D^0 \rightarrow \pi^- e^+ \nu_a$ [Preliminary] $\mathbf{D}^{\mathbf{0}} \rightarrow \pi^{-} \mathbf{e}^{+} \mathbf{v}_{\mathbf{o}}$ $D^0 \rightarrow K^- e^+ v_o$ 699 ± 28 6796 ± 84 14356 ± 132 1325 ± 48 $D^+ \rightarrow \pi^0 e^+ \nu_a$ $D^+ \rightarrow K^0_s e^+ v_e$ $\overline{\text{D}^{\text{+}} \rightarrow \text{K}_{\text{S}} \text{e}^{\text{+}} \gamma_{\text{e}}}$ $D^+ \rightarrow \pi^0 e^+ \nu_r$ 295 ± 20 2910 ± 55 5846 ± 88 447 ± 29 -0.2 0.1 0.2 -0.1 0 0.1 0.2 $U = E_{miss} - |P_{miss}| (GeV)$ 1.80 1.82 1.84 1.86 1.88 1.80 1.82 1.84 1.86 1.88 M_{bc} (GeV/c²)

(2) Untagged Analysis :

neutrino reconstruction

The untagged analysis has larger signal yields but larger backgrounds and systematic uncertainties.

Branching Fraction Summary

281 pb⁻¹ numbers are preliminary, except Xev, K⁻₁(1270)ev, and K/πev (ν-recon).
40% overlap, do not average tagged/ν-recon K/πev.

Rencontres de Moriond EW 2008 {CLEO-c Charm Leptonic & Semileptonic Decays}

March 5, 2008 17 / 24

Semileptonic Decay Form Factor

Amplitude factorizes $\mathcal{M}(D \rightarrow X \ell^+ \nu_{\ell})$ $= -i \frac{G_F}{\sqrt{2}} V^*_{cs(d)} L_{\mu} H^{\mu}$

Hadronic currents : in the limit $m_{\ell} \rightarrow 0$

- $P \rightarrow P' \ell^+ \nu_{\ell}$: single form factor, $H^{\mu} = f_+(q^2)(p_P + p_{P'})^{\mu}$ (gold-plated for both theory and experiment)
- e.g. *D* semileptonic decays to a pseudoscalar can be written as $\frac{d\Gamma(D \to Ke\nu_e)}{dq^2} = \frac{G_F^2 |V_{cs}|^2 p_K^3}{24\pi^3} |f_+(q^2)|^2.$
- The messy hadronic physics is contained in the form factor. The full test of LQCD is its ability to calculate $f(q^2)$, both the shape vs q^2 , and the absolute value.

Form Factor : parametrizations

In general :
$$f_+(q^2) = \frac{f_+(0)}{1-\alpha} \frac{1}{1-q^2/m_{\text{pole}}^2} + \sum_{k=1}^N \frac{\rho_k}{1-\frac{1}{\gamma_k} \frac{q^2}{m_{\text{pole}}^2}}$$

- Single pole : $f_+(q^2) = \frac{f_+(0)}{1 q^2/m_{\text{pole}}^2}$
- Modified pole : $f_+(q^2) = \frac{f_+(0)}{(1-q^2/m_{pole}^2)(1-\alpha q^2/m_{pole}^2)}$ (allows for additional poles).
- Series expansion : [T. Becher and R. J. Hill, Phys. Lett. B **633**, 61 (2006)] $f_{+}(q^{2}) = \frac{1}{P(q^{2})\phi(q^{2} t_{0})} \sum_{k=0}^{\infty} a_{k}(t_{0})[z(q^{2}, t_{0})]^{k},$

with $z(q^2, t_0) = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}}$, $t_{\pm} \equiv (M_D \pm m_P)^2$, and $P(q^2) \equiv 1$ $(D \to \pi)$ or $z(q^2, M_{D_s^*}^2)$ $(D \to K)$. With current CLEO-c data we only resolve the first 2–3 terms

in the series expansion.

Experiment probes both the form factor magnitude & parametrization.

$D \rightarrow Kev$: high statistics test of shape & absolute normalization of $f_+(q^2)$

Form Factor : $D \rightarrow Pev$ which parametrization?

We use the model independent Becher-Hill series parametrization for V_{cx} (determine $f_+(0)|V_{cx}|$ then use theory value of $f_+(0)$).

|V_{cs}| & |V_{cd}| Results

Combined measured $|V_{cx}|f_+(0)$ values using Becher-Hill parameterization with FNAL/MILC/HPQCD for $f_+(0)$.

♦ CLEO-c : the most precise direct determination of $|V_{cs}|$ ♦ $\sigma(|V_{cs}|)/|V_{cs}| \sim 1.5\%$ (exp) ⊕ 10% (theory)

CLEO-c	$ V_{cs} $
(tagged) (untagged)	$\begin{array}{c} 1.014 \pm 0.013 \pm 0.009 \pm 0.106 \\ 1.015 \pm 0.010 \pm 0.011 \pm 0.106 \end{array}$
	stat syst theory

♦ CLEO-c : $\sigma(|V_{cd}|)/|V_{cd}| \sim 4.5\%$ (exp) ⊕ 10% (theory) ♦ νN remains most precise determination (for now).

CLEO-c	V _{cd}
(tagged)	$0.234 \pm 0.010 \pm 0.004 \pm 0.024$
(untagged)	$0.217 \pm 0.009 \pm 0.004 \pm 0.023$
	stat syst theory

• Tagged and untagged are consistent.

- 40% overlap, DO NOT AVERAGE.
- CLEO-c (tag) Preliminary
- CLEO-c (no tag) arXiv:0712.0998

Summary

D Leptonic :

- f_D measured to $\pm 7.6\%$, statistical error dominates.
- f_{D_s} measured to ±4.1%, statistical error dominates.
- $B(D_s^+ \to \tau^+ \nu_{\tau})/B(D_s^+ \to \mu^+ \nu_{\mu})$ consistent with theory.
- For f_{D_s} , a suggestion of a disagreement with LQCD ~ 3σ .

D Semileptonic :

- Inclusive D^0 , D^+ semileptonic widths ~ equal.
- Sum of measured exclusives almost saturates inclusives.
- $D \rightarrow Kev$, πev form factors in general agreement with LQCD.
- With CLEO-c full data : 800 pb^{-1} @3770 & 600 pb^{-1} @4170
 - Expect errors in $f_D \& f_{D_s}$ decreased to a few % level.
 - More stringent tests of theory for $D \rightarrow K(\pi)e^+\nu_e$ form factor $f_+(0)$ & shape.