

CLEO Bottomonium Results

Brian Heltsley on behalf of the CLEO Collaboration

6th International Workshop on Heavy Quarkonia Nara, Japan December 2008

Outline:

Transition: $\pi\pi$ – precision η / π^0 – discovery

Decay: Charm production – copious Light quark modes – many but rare

Υ(**3**,**2S**) → ππ + Υ(**2**,**1S**)

multipole picture: $2 \times E1 \Rightarrow h = \pi \pi$

Other hadronic transitions in the Y system: $\chi_{bJ}(2P) \rightarrow \omega \Upsilon(1S), \chi_{bJ}(2P) \rightarrow \pi \pi \chi_{bJ}(1P),$ other Y dipion transitions, $\Upsilon(2,3S) \rightarrow \eta/\pi^0 \Upsilon(1S)$ (later)

Substantial branching fraction, precision measurement possible and desirable

- Dipion tag often used to clean up lower-n decay samples
- Test non-perturbative, non-relativistic calculations:
 - Predictions: Y(2S)→π⁺π⁻ + π⁰π⁰ Y(1S) 50% [Yan PRD 22, 1652 (1980)]
 40.6% [Kuang hep-ph/0601044]

 $\Upsilon(nS) \rightarrow \pi\pi + \Upsilon(mS)$

Goal: <u>precision</u> rate measurement. As much statistics as possible, as little systematics as necessary.

Primary observable: $m(\pi\pi$ -recoil) = $m(\Upsilon(mS))$ $\pi\pi$: charged or neutral • two low-momentum tracks (pion hypothesis) • or $4\gamma = 2\pi^0$ and allow

one extra shower

Backgrounds:

- Inclusive:
 - Continuum: $e^+e^- \rightarrow \pi^+\pi^-X$
 - direct decay: $\Upsilon \to \pi^* \pi^* X$
- Exclusive:
 - direct Y(nS) decay
 - other hadronic transitions
 - $\pi^0\pi^0$: four-photon cascades through χ_{bJ} .

B. Heltsley QWG2008 Nara

> Exclusive selection: identify dilepton decay (two stiff tracks, no particle ID needed). Momentum conservation cut inclusive ($\pi^{\pm}\pi^{\pm}$): don't require anything (no momentum conservation cut)

> > No m(ππ–recoil) peak, can sort out through fit

Tiny rate, subtract via sidebands

- Y(2S)→ηY(1S) transition clearly seen, rate is about ¼ of expectation
 - Two-gluon hadronization picture too naïve?
 - Fundamental suppression of the chromomagnetic moment of the b quark?
- UL for others:
 - ŋ UL lower than prediction
 - π⁰ limits consistent
 - B. Heltsley QWG2008 Nara

 $\chi_{bJ}(1,2P) \rightarrow D^0 + X$

 $\frac{\Upsilon(3S)}{\Upsilon(2S)} \chi_{b}(2P)$ $\chi_{b}(1P)$ $\chi_{b}(1P)$ $\chi_{b}(1P)$ $\chi_{b}(1P)$

 $\chi_{b0,2}$: gg » gq \overline{q} χ_{b1} : gc $\overline{c} \approx 1/4$ gq \overline{q} , gg = 0

 $\Upsilon(1S) \rightarrow ggg \rightarrow D^{*+}X$: charm is suppressed Continuum e⁺e⁻ \rightarrow qq: charm is not suppressed

 $R_{J} = \frac{R_{J} \rightarrow gg, gq\overline{q} \rightarrow c\overline{c} X}{B(\chi_{bJ} \rightarrow gg, gq\overline{q} \rightarrow c\overline{c} X)}$

b

b

25% means "flavor blindness"

B. Heltsley QWG2008 Nara

$\chi_{bJ}(1,2P) \rightarrow D^0+X$: Results

Model independent

... after subtracting non-direct yields:

$B(\chi_{bJ}(nP) \rightarrow gg, gq\overline{q} \rightarrow D^{0}X, p(D^{0}) > 2.5 GeV$

State	$\mathcal{B}(\chi_{bJ}(nP) \to gg, q\bar{q}g \to D^0X) \ (\%$	5) 90% CL UL (%)
$\chi_{b0}(1P)$	$5.6 \pm 3.6 \pm 0.5$	< 10.4
$\chi_{b1}(1P)$	$12.6 \pm 1.9 \pm 1.1$	
$\chi_{b2}(1P)$	$5.4 \pm 1.9 \pm 0.5$	< 7.9
$\chi_{b0}(2P)$	$4.1 \pm 3.0 \pm 0.4$	< 8.2
$\chi_{b1}(2P)$	$8.8 \pm 1.5 \pm 0.8$	
$\chi_{b2}(2P)$	$0.2 \pm 1.4 \pm 0.1$	< 2.4

Translate measurement into R_J:

	$\begin{array}{c} B(\chi_{bJ} \rightarrow gg, gq\overline{q} \rightarrow c\overline{c} X) \\ B(\chi_{bJ} \rightarrow gg, gq\overline{q}) \\ (\%) \end{array}$	(90%CL UL)	NRQCD Fit (*)
χ _{b0} (1P)	9.6±6.2±0.8=0.8	(<17.9)	6.3
χ _{b1} (1P)	24.8±3.8±2.2±3.6		23.7
χ _{b2} (1P)	9.8±3.5±0.9±0.9	(<14.6)	10.8
χ _{b0} (2P)	8.7±6.4±0.9±0.7	(<17.7)	4.9
χ _{b1} (2P)	25.3±4.3±2.5±2.4		22.1
χ _{b2} (2P)	0.4±3.5±0.4±0.1	(<6.1)	7.4

PRD 78, 092007 (2008)

Unambiguous signal seen for J=1 in 1P,2P: substantial BR!

Limits in the % range for the others.

Comparison with theory: Extrapolated experimental value depends, through efficiencies, on parameter " ρ_8 " for NRQCD calculation: Find best value, quote NRQCD prediction for it (*).

Data support general picture within errors.

Bodwin et al., PRD 51, 1125 (1995), 55, 5853(E) (1997) Bodwin et al., PRD 76, 054001 (2007)

B. Heltsley QWG2008 Nara

$\chi_{bJ} \rightarrow light hadrons$

Fully reconstructed final state: Υ (2S, 3S) $\rightarrow \gamma X_i$, X_i = final state with light mesons or protons i=1...659 Measurement: **B(\Upsilon(3S, 2S) \rightarrow \gamma \chi_{b,l}(2P, 1P))** \times B($\chi_{b,i}(2P,1P) \rightarrow X_i$) Same strategy <u>might</u> work for $\Upsilon(3S,2S,1S) \rightarrow \gamma^{M1}\eta_{h}(3S,2S,1S)$ $\chi \eta_{\rm b}(3S,2S,1S) \rightarrow X_{\rm i}$

• Results: Those with >5 σ ----- 14 new B($\chi_{bJ}(2P,1P) \rightarrow X_i$): all firsts

• UL on B($\Upsilon(3S) \rightarrow \gamma \chi_{bJ}(1P)$): constraint for theory

B. Heltsley QWG2008 Nara

j=1...14

B. Heltsley QWG2008 Nara PRD 78, 091103(R) (2008)

Backup Section

TABLE I: $\Upsilon(2S) \to \gamma \chi_{bJ}(1P)$ (J = 0, 1, 2) transition yields and $\chi_b \to gg, q\bar{q}g \to D^0 X$ rates, for $p_{D^0} > 2.5 \text{ GeV}/c$. Errors shown are statistical only.

Final state	$\chi_{b0}(1P)$	$\chi_{b1}(1P)$	$\chi_{b2}(1P)$
$N_{\chi_{bJ}}^{\text{Incl}}$	166860 ± 5988	363825 ± 6793	379457 ± 7243
$N_{\chi_{bJ}}^{D^0}$ (raw)	501 ± 303	2561 ± 346	1207 ± 360
D^0 sideband correction	11 ± 5	60 ± 6	57 ± 7
non-direct D^0	16 ± 9	191 ± 58	125 ± 34
$N_{\chi_{bJ}}^{D^0,dir}$ (direct)	474 ± 303	2310 ± 351	1025 ± 362
$\mathcal{B}(\chi_{bJ}(1P) \to gg, q\bar{q}g \to D^0X)$	$5.63\pm3.61\%$	$12.59 \pm 1.94\%$	$5.36 \pm 1.90\%$

TABLE II: $\Upsilon(3S) \to \gamma \chi_{bJ}(2P)$ (J = 0, 1, 2) transition yields and $\chi_b \to gg, q\bar{q}g \to D^0 X$ rates, for $p_{D^0} > 2.5 \text{ GeV}/c$. Errors shown are statistical only.

Final state	$\chi_{b0}(2P)$	$\chi_{b1}(2P)$	$\chi_{b2}(2P)$
$N^{ m Incl}_{\chi_{bJ}}$	219773 ± 5201	491818 ± 5197	524549 ± 5628
$N^{D^0}_{\chi_{bJ}}$ (raw)	565 ± 341	2757 ± 366	477 ± 370
D^0 sideband correction	39 ± 7	122 ± 7	122 ± 7
non-direct D^0	53 ± 24	392 ± 70	311 ± 50
$N_{\chi_{bJ}}^{D^0,dir}$ (direct)	473 ± 342	2243 ± 373	44 ± 373
$\mathcal{B}(\chi_{\textit{bJ}}(2P) \rightarrow gg, q\bar{q}g \rightarrow D^0X)$	$4.13\pm3.00\%$	$8.75 \pm 1.47\%$	$0.16 \pm 1.37\%$

χ_{bJ}(1,2P)→D⁰+X

With these factors in hand, we fit our data for the D^0X branching fractions with $p_{D^0} > 2.5 \text{ GeV}/c$ to the NRQCD predictions [9] and extract ρ_8 , the ratio of color-octet to colorsinglet matrix elements, in χ_{bJ} decays. Recall that both $f_{2.5}$ and $R_j^{(c)}$ depend on ρ_8 and that $f_{2.5}$ depends on fragmentation functions. For each value of ρ_8 , we may convert our directly measured branching fractions into extracted values for $R_J^{(c)}$ in the context of this NRQCD calculation (which includes the assumption that e^+e^- charm fragmentation data is representative of our charm fragmentation). The best value of ρ_8 is obtained from a fit which finds the best agreement between the predicted and extracted $R_I^{(c)}$.

TABLE VI: Summary of factors used to relate our measured D^0X branching fractions to $R_J^{(c)}$, which measures the total $c\bar{c}X$ rate. The values of $f_{2.5}$ are evaluated at the independently fitted best values of ρ_8 for each triplet.

Factor	$\chi_{b0}(1P)$	$\chi_{b1}(1P)$	$\chi_{b2}(1P)$	$\chi_{b0}(2P)$	$\chi_{b1}(2P)$	$\chi_{b2}(2P)$
$\mathcal{B}(\chi \to gg, q\bar{q}g)$	0.97 ± 0.03	0.65 ± 0.08	0.78 ± 0.04	0.93 ± 0.07	0.68 ± 0.04	0.75 ± 0.03
$f_{2.5}$	0.54	0.70	0.63	0.45	0.46	0.47
f_{D^0}	1.11 ± 0.08	1.11 ± 0.08	1.11 ± 0.08	1.11 ± 0.08	1.11 ± 0.08	1.11 ± 0.08
$1/(f_{D^0}f_{2.5}\mathcal{B})$	1.70 ± 0.13	1.97 ± 0.28	1.83 ± 0.16	2.15 ± 0.23	2.89 ± 0.28	2.56 ± 0.21

PRD 78, 092007 (2008)

B. Heltsley QWG2008 Nara

We fit separate ρ_8 values for each triplet by minimizing a χ^2 which has one term for each of the three states. Each term in the χ^2 is formed from the square of the deviation of the predicted and extracted $R_J^{(c)}$ values, normalized by the errors on the extracted value. Note that *both* the predicted and extracted $R_J^{(c)}$ values depend on ρ_8 . Correlated systematic uncertainties on the branching fractions are incorporated into the covariance matrix used to evaluate the χ^2 in our fits. We find, however, that results are insensitive to correlations due to the dominance of statistical errors. The best-fit values are $\rho_8(1P) = 0.160^{+0.071}_{-0.047}$ and $\rho_8(2P) = 0.074^{+0.010}_{-0.008}$ with $\chi^2(1P) = 0.40$ and $\chi^2(2P) = 4.71$, respectively, for 3 - 1 degrees of freedom each. The errors are larger for the 1P states primarily due to the non-linear dependence of the branching fractions on ρ_8 : for larger ρ_8 , the branching fractions are less sensitive to changes in its value.

It has been argued [21] that ρ_8 should be largely independent of radial quantum number. While we prefer not to assume such an equality, a joint fit to our branching fractions for both triplets obtains a best-fit common value of $\rho_8 = 0.086^{+0.009}_{-0.013}$, with $\chi^2 = 10.1$ for 6 - 1 degrees of freedom.

 $\chi_{bJ} \rightarrow X_i$ Branching Fraction

All in 10⁻⁴

X_i	J=	=0	.J=	-1	.J=	=2
	2S→1P	3S→2P	2S→1P	3S→2P	2S→1P	3S→2P
$2\pi 2K1\pi^0$	< 1.6	< 0.3	$2.0 \pm 0.5 \pm 0.5$	$3.0\pm0.6\pm0.8$	$0.9\pm0.4\pm0.2$	< 1.1
$3\pi 1K1K_S^0$	< 0.5	< 0.5	$1.3\pm0.4\pm0.3$	$1.1\pm0.4\pm0.3$	< 1.2	< 0.9
$3\pi 1K1K^0_S2\pi^0$	< 4.7	< 2.3	< 6.1	$7.7\pm2.3\pm2.2$	$5.3\pm1.9\pm1.5$	< 6.7
$4\pi 2\pi^0$	< 2.1	< 2.5	$7.9\pm1.4\pm2.1$	$5.9\pm1.2\pm1.6$	$3.5\pm1.1\pm0.9$	$3.9\pm1.2\pm1.1$
$4\pi 2K$	$1.2\pm0.5\pm0.3$	< 1.5	$1.5\pm0.4\pm0.4$	$0.9\pm0.3\pm0.2$	$1.2\pm0.3\pm0.3$	$0.9\pm0.3\pm0.2$
$4\pi 2K1\pi^0$	< 2.7	< 2.2	$3.4\pm0.8\pm0.9$	$5.5\pm1.0\pm1.5$	$2.1\pm0.7\pm0.5$	$2.4\pm0.8\pm0.7$
$4\pi 2K2\pi^0$	< 5.4	< 10.8	$8.6\pm2.0\pm2.4$	$9.6\pm2.3\pm2.8$	$3.9\pm1.6\pm1.1$	$4.7\pm1.8\pm1.4$
$5\pi 1K1K^0_S1\pi^0$	< 1.7	< 6.7	$9.2\pm2.3\pm2.5$	$6.7\pm1.9\pm1.9$	< 5.0	< 4.5
6π	< 0.8	< 0.7	$1.8\pm0.4\pm0.4$	$1.2\pm0.3\pm0.3$	$0.7\pm0.3\pm0.2$	$0.9\pm0.3\pm0.2$
$6\pi 2\pi^0$	< 5.9	< 12.3	$17.2 \pm 2.7 \pm 4.8$	$11.9\pm2.4\pm3.4$	$10.2\pm2.2\pm2.8$	$12.1 \pm 2.5 \pm 3.6$
$6\pi 2K$	$2.4\pm0.9\pm0.7$	< 1.5	$2.6\pm0.6\pm0.7$	$2.0\pm0.6\pm0.5$	< 0.8	$1.4\pm0.5\pm0.4$
$6\pi 2K1\pi^0$	< 9.9	< 7.3	$7.5\pm1.6\pm2.1$	$6.1\pm1.4\pm1.8$	$3.7\pm1.2\pm1.0$	$4.2\pm1.2\pm1.2$
8π	< 0.7	< 1.7	$2.7\pm0.6\pm0.7$	$1.7\pm0.5\pm0.5$	$0.8\pm0.4\pm0.2$	$0.9\pm0.4\pm0.3$
$8\pi 2\pi^0$	< 20.5	< 6.5	$14.0 \pm 3.5 \pm 4.3$	$19.2\pm3.7\pm6.0$	$18.5\pm4.4\pm5.6$	$12.6\pm3.5\pm4.1$

Notice:

 $6\pi 2\pi^0$ and $8\pi 2\pi^0$ are largest; about 10× larger than 6π and 8π . Comparing same number of pions – $4\pi 2\pi^0 > 6\pi$, $6\pi 2\pi^0 > 8\pi$. Less than a percent of the $\chi_{b,l}$ width is reconstructed.

 $\chi_{bJ} \rightarrow \text{light hadrons}$

Comparison of Hindered E1 UL's to Theory

	J = 0	J = 1	J=2
Inclusive expt. [4]	61 ± 22	-	-
Exclusive expt. (this work)	< 186	< 38	< 413
Moxhay–Rosner (1983)	25	25	150
Grotch <i>et al.</i> (1984) (a)	114	3.4	194
Grotch <i>et al.</i> (1984) (b)	130	0.3	430
Daghighian–Silverman (1987)	16	100	6 50
Fulcher (1990)	10	20	30
Lähde (2003)	150	110	40
Ebert <i>et al.</i> (2003)	27	67	97

(a) Confining potential is purely scalar.

(b) Confining potential is purely vector.

Rules out several calculations

Summary - in words

Bottomonium provides a unique QCD laboratory:

- Transitions: non-perturbative, non-relativistic
- Decay: charm and light quark production
- Four CLEO bottomonium results:
 - Transitions:
 - > Dipion transitions: precision
 - $> \eta/\pi^0$ transitions: discovery
 - Decay:
 - > Open charm copiously produced
 - > Many small light hadron modes
- Experimental and theoretical progress is encouraging, but we're not done yet!