

New CLEO Results on Charmonium Decays

Brian Heltsley

 $J/\psi \rightarrow 3\gamma \& \eta_c \rightarrow \gamma\gamma$

- Measure or limit the decay $J/\psi \rightarrow 3\gamma$ • Expect B($J/\psi \rightarrow 3 \gamma$) ~ $10^{-6} - 10^{-5}$
 - B < 5.5 × 10⁻⁵ Crystal Ball (1980)
 - No 'particle' ever observed in a 3γ decay!
 - > B($\omega \rightarrow 3 \gamma$) < 1.9 $\times 10^{-4}$
 - > B(Z \rightarrow 3 γ) < 1 \times 10⁻⁵

> However, ortho-positronium (o-Ps), the ${}^{3}S_{1} e^{+}e^{-}$ atom, decays nearly 100% to 3 γ . Also, B(o-Ps \rightarrow 5 γ) \approx 2 x 10⁻⁶

- Seek $\eta_c \rightarrow \gamma \gamma$ in radiative J/ ψ decays & measure **B**($J/\psi \rightarrow \gamma \eta_c$) × **B**($\eta_c \rightarrow \gamma \gamma$)
 - E760 & E835 have observed η_c→ γ γ in pp → γ γ
 Belle: 4.1σ evidence in B[±]→ K[±] γγ

B($\eta_c \rightarrow \gamma \gamma$) = (2.4 ^{+0.9}_{-0.8} ^{+0.7}_{-0.4}) × 10⁻⁴

[PLB 662 (2008) 323]

J/w

- Unique topology:
 - 2 tracks provide a tag of the J/ψ
 - 3 showers with no resonant substructure
- Impose
 4-momentum
 conservation
- χ² of kinematic fit a key variable
 - Suppress feeddown from other decays
- Also seek $J/\psi \rightarrow \gamma \eta_c, \eta_c \rightarrow \gamma \gamma$

Plot has χ^2 <3 cut in place Veto on masses inside 0.10-0.16, 0.50-0.60, 0.90-1.00, & >2.8 GeV 37 events remain in the data outside these regions

$J/\psi \rightarrow \gamma \pi^0 \pi^0$ feed-down

Result for $J/\psi \rightarrow 3\gamma$

Normalize γ f_i background in χ^2 =5-20 region Small non-J/ψ bgd from π⁺π⁻ recoil sidebands After normalized bgd subtraction Signal shape required to describe data at small χ^2 Net yield 24.2^{+7.2} evts • $B = (12 \pm 3 \pm 2) \times 10^{-6}$ 6σ significance

$\eta_c \rightarrow \gamma \gamma$

 2 signal events
 0.8 events bgd total
 Eff=10.9%

Sourc	e #bgd
γη	0.3
γη'	0.2
<u>3γ</u>	0.3
Total	8.0

Smallest photon pair mass

$\eta_c \rightarrow \gamma \gamma Result$

PRL 101, 101801 (2008) • B($J/\psi \rightarrow \gamma \eta_c$) x B($\eta_c \rightarrow \gamma \gamma$) = $(1.2^{+2.7}_{-1.1} \pm 0.3) \times 10^{-6}$ <5.3 x 10⁻⁶ @90%CL Οľ • Using CLEO's $B(J/\psi \rightarrow \gamma \eta_c) = (1.98 \pm 0.09 \pm 0.30)\%$, B($\eta_c \rightarrow \gamma \gamma$) =(0.6 +1.3 _0.5 ±0.1) x 10-4 < 2.6 x 10⁻⁴ @90%CL • PDG08 value = $(2.4^{+1.1}_{-0.9}) \times 10^{-4}$ >Consistent within 1.1 σ

$\psi(2S) \rightarrow \gamma_1 \chi_{cJ}, \chi_{cJ} \rightarrow \gamma \gamma$

$\psi(2S) \rightarrow \gamma_1 \chi_{cJ}, \chi_{cJ}$

- Shown@QWG5: H. Mahlke
- Striking experimental 0 signature: only 3γ !
- In $R \equiv \Gamma_2(\gamma\gamma) / \Gamma_0(\gamma\gamma)$ many theo. & exp. uncertainties will cancel
 - 1st decay-based msmt
 - Lowest order: R=0.27 \bullet
 - 1st order α_s : R=0.12

					•	• • • •	
Quantity		χ_{c0}	χ_{c2}		Beference	$\Gamma_{\rm ev}(\chi_{\rm el})$ (eV)	1
$\mathcal{B}_1 \times \mathcal{B}_2 \times 10^5$	2.17	$\pm 0.32 {\pm} 0.10$	2.68 ± 0.28	± 0.15	Barbieri [3]	$\frac{1}{930} \frac{\gamma\gamma(\chi c2)}{930}$	_
$\mathcal{B}_2 \times 10^4$	$2.31{\pm}0.$	$34 \pm 0.10 \pm 0.10$	$3.23 \pm 0.34 \pm 0.$	18 ± 0.16	Godfrey [4]	459	
$\Gamma_{\gamma\gamma}$ (keV)	$2.36{\pm}0.$	$35 \pm 0.11 \pm 0.19$	$0.66 \pm 0.07 \pm 0.0$	$04 {\pm} 0.05$	Barnes [5]	560 820 220	
$\overline{\mathcal{R}}$	CI FO	0.278 ± 0.050	$\pm 0.018 \pm 0.031$		Gupta [7]	570 ± 230	
	ULLU				Münz [8]	440 ± 140	
		$\mathcal{R}_{\text{DDC}} = 0$	$) 21 \pm 0.03$		Huang [9]	$490 {\pm} 150$	
		π PDG=0	0.21 ± 0.00		Ebert $[10]$	500	
					Schuler [11]	280	

Ţ

 \mathcal{R}

0.27

0.36

0.36 $0.12_{-0.06}^{+0.15}$

0.09 $0.32^{+0.16}_{-0.12}$

 $0.13_{-0.06}^{+0.11}$

0.17

0.11

 $\Gamma_{\gamma\gamma}(\chi_{c0})$ (eV)

3500

1290

1560

 6700 ± 2800

6380

 1390 ± 160

 3720 ± 1100 2900

2500

$J/\psi \rightarrow \gamma gg$

$J/\psi \rightarrow \gamma gg$

- $z_{\gamma} \equiv E_{\gamma} / E_{beam}$: $z_{\gamma} > 0.3$
- veto $\dot{\gamma}$'s that pair with another to form π^0
- do not veto $\eta \rightarrow \gamma \gamma$ (too much signal killed)
- Eliminate e⁺e⁻ "continuum" bgd, partly ISR, by using $\psi(2S) \rightarrow \pi^+\pi^- J/\psi$
 - > Makes analysis much simpler than $\Upsilon \rightarrow \gamma$ gg [PRD74, 012003 (2006)]
 - > Small non-J/ ψ bgd directly subtracted with $\pi^{+}\pi^{-}$ recoil mass sidebands
- Model remaining bgd in 3 systematically complementary ways
 - Two are data-driven, one MC-only
 See paper for details
 - Spread among them indicative of syst. error
- Model signal as
 - Three 2-body processes: γη, γη', γη(1440)
 - Theoretical shape validated with CLEO $\Upsilon \rightarrow \gamma$ gg measurements
 - NEW: also include z_γ-cosθ_γ correlation & shape a la Koller-Walsh^γ [NP B140, 449 (1978)].

Signal Shape

These are spectra developed for
 Υ→γgg

 Found to work adequately for J/ψ→γgg

J/ψ Direct Photon Spectrum

- Systematic error (11%) dominated by
 - Background subtraction uncertainty
 - Signal shape uncertainty
- Brodsky, Lepage, Mackenzie PRD 28, 228 (1983) predict

Also can be expressed as B(J/ψ → γ gg) = (9.0 ± 1.0) %
 Somewhat larger than Voloshin [PPNP 61, 455 (2008)] estimate of 6.7% based on α_s(m_c)=0.19 & known Γ_{ee}(J/ψ)

$\psi(2S) \rightarrow \gamma gg$

B. Heltsley QWG Decays

18

- Similar approach, but...
- Must subtract spectrum from below-ψ(2S) continuum data to suppress ISR effects
- Must subtract contribution from J/ψ→γgg & its bgd
 - Use shape from dipion tags: $\psi(2S) \rightarrow \pi^+\pi^- J/\psi$
 - Correct for ε, B(any J/ψ) / B₊₋
- FSR from MC
- Model remaining backgrounds 3 different ways (both MC and datadriven methods)

Results for $\psi(2S) \rightarrow \gamma gg$

Charmonium Annihilation Summary

Many measured annihilation rates!

J/ψ

 $\eta_{c'} \chi_{c0,2}$

J/ψ, ψ(**2S)**

 $J/\psi, \psi(2S)$

- CLEO has measured several important & fundamental rates
- Various ratios can be taken to cancel out wave function terms & other common factors
- Lowest order PQCD predictions known, up to choice of the mass scale at which to evaluate α_s
- 1st order α_s corrections to these ratios are also known
 - Most are large (>~20%)
 - Some are unphysical
- Fodder for postdictions!

B. Heltsley QWG Decays

000 g

Charmonium Annihilation Γ Ratios

System	Ratio	Lowest order	L.O. Value	Msd by CLEO			
η _c	γγ / gg	(8 / 9) (α / α _S) ²	5.3 x 10 ⁻⁴	<2.6 x 10 ⁻⁴ (90%CL)			
J/ψ	γγγ / e⁺e⁻	[64(π ² -9) / (243π)] α	5.3 x 10 ⁻⁴	(2.0±0.7) x 10 ⁻⁴			
J/ψ	γγγ / γ gg	(8 / 27) (α / α _S) ²	1.8 x 10 ⁻⁴	(1.3±0.4) x 10 ⁻⁴			
J/ψ	γγγ / ggg	(128 / 135) (α / α _S) ³	1.4 x 10 ⁻⁵	(1.8±0.4) x 10 ⁻⁵			
J/ψ, ψ(2S)	γ <mark>gg /</mark> ggg	(16 / 5) (α / α _S)	0.078	0.137±0.017 0.065±0.025			
Xc0	γγ / gg	(8 / 9) (α / α _S) ²	5.3 x 10 -4	(2.3±0.4) x 10 ⁻⁴			
Xc2	γγ / gg	(8 / 9) (α / α _S) ²	5.3 x 10 ⁻⁴	(4.3±0.6) x 10 ⁻⁴			
Xc0,2	γγ ₂ / γγ ₀	4 / 15	0.27	0.28±0.06			
Kwong, et al., F	Kwong, et al., PRD 37, 3210 (1988) Using α _s =0.3 B. Heltsley OWG Decays 23						

$\chi_{cJ} \rightarrow \gamma \ (\rho^0, \ \omega, \ \phi)$

η' Properties

• CLEO has studied η ' properties via $J/\psi \rightarrow \gamma \eta$ '

- Mass error improved by factor of 5
- Limits on rare hadronic modes
- 1st observation of $\eta' \rightarrow \pi^+ \pi^- \pi^0$, $\pi^+ \pi^- e^+ e^-$

B. Heltsley QWG Decays

PRL101, 182002 (2008)

Summary & Conclusions

- CLEO has measured a large number of charmonium annihilation rates
 - $B(J/\psi \rightarrow \gamma \gamma \gamma) = (12 \pm 3 \pm 2) \times 10^{-6}$
 - B(J/ $\psi \rightarrow \gamma \eta_c$) x B($\eta_c \rightarrow \gamma \gamma$) = (1.2 ^{+2.7}_{-1.1} ± 0.3) x 10⁻⁶
 - χ_{cJ} : $\Gamma_2(\gamma\gamma)$ / $\Gamma_0(\gamma\gamma) = 0.278 \pm 0.050 \pm 0.018 \pm 0.031$
 - $J/\psi \rightarrow \gamma gg$: $R_{\gamma} = 0.137 \pm 0.001 \pm 0.016 \pm 0.004$
 - $\psi(2S) \rightarrow \gamma$ gg: $R_{\gamma} = 0.065 \pm 0.010 \pm 0.023$
- $\chi_{cJ} \rightarrow \gamma$ (ρ^0 , ω , φ) rates measured
 - $\chi_{c1} \rightarrow \gamma \ (\rho^0, \omega)$ BRs exceed prediction by factor of (15,50)

• CLEO has studied η ' properties via $J/\psi \rightarrow \gamma \eta$ '

- Mass error improved by factor of 5
- Limits on rare hadronic modes
- 1st observation of $\eta' \rightarrow \pi^+ \pi^- \pi^0$, $\pi^+ \pi^- e^+ e^-$

 $\bullet \eta_c$ exclusive branching fractions h decays to light hadrons • $J/\psi \rightarrow \gamma$ + invisible • J/ $\psi \rightarrow$ invisible • J/ ψ , ψ (2S) $\rightarrow \gamma/\pi^0$ pp • $J/\psi, \psi(2S) \rightarrow \gamma f_J \rightarrow \gamma (\pi \pi, KK, \eta \eta)$ [gluebal] search] • J/ $\psi \rightarrow \pi\pi$, KK, pp • $J/\psi, \psi(2S) \rightarrow baryon-antibaryon$ • $\psi(4160) \rightarrow \gamma \chi_c(2P)$ search

Backup Slides

η' Properties

- Some properties of η'(958) are not so well known
 M(PDG08) = 957.66 ± 0.24 MeV
 - Best msmt <u>1974</u>: MMS 957.46 ± 0.33 MeV
 - Compare to η mass error of <u>24 keV</u>:
 - η^{\prime} is less precise by a factor of 10
- Rare BRs: many mode limits of order 1-5%
 - $B(\eta' \rightarrow \pi^+\pi^-\pi^0) < 5\%$
 - > Of interest because $B(\eta' \rightarrow \pi^+\pi^-\pi^0) \propto m_u m_d$ (or not!)
 - > Predictions vary from 0.1%-3%.
 - > Rate sensitive to level of η - η '- π^0 mixing, final state rescattering
 - $B(\eta' \rightarrow \pi^+\pi^-e^+e^-) < 0.6\%$. Predicted to be ~0.2%.
 - $\eta' \rightarrow 2(\pi^+\pi^-) \pi^0$, $\eta' \rightarrow 3(\pi^+\pi^-)$, $\eta' \rightarrow 2(\pi^+\pi^-)$ each has a B < 1%
- Turns out that we can produce many η ' mesons in $\psi(2S) \rightarrow \pi^{+}\pi^{-} J/\psi, J/\psi \rightarrow \gamma \eta$ ' : ~40K in CLEO-c data.
- Use common decay modes for mass measurement & search for some rare modes
 - Exclusive reconstruction & constrained fitting

Systematic errors

Source	Variation	Α	В	С	All
Fit mass window		11	9	31	7
$M_{\psi(2S)}$	34 keV	9	2	3	5
$M_{J/\psi}$	11 keV	3	2	2	2
Bias	$(\beta_i + \Delta \beta_i)/3$	27	51	30	27
$p_{\pi^{\pm}}$ scale	0.01%	28	17	25	15
E_{γ} scale	0.6%	13	22	28	12
$\dot{M_{\eta}}$	24 keV		23		11
Systematic sum		44	63	57	36
Statistical		87	70	208	54

Rare n' Decays

Results for $J/\psi \rightarrow n\gamma$

	2γ	3γ	4γ	5γ	$\gamma \eta_c, \gamma \eta_c \rightarrow \gamma \gamma$
Signal candidates (events)	9	37	5	0	2
Background (events)					
J/ψ backgrounds	6.2	11.9	3.2	0.5	0.8
Non- J/ψ backgrounds	0.9	0.9	0.5	0	0
Background sum (events)	7.1	12.8	3.7	0.5	0.8
Statistical significance (σ)	1.1	6.3	1.0	0.0	1.0
Net yield (68% C.L. interval) (events)	$1.9^{+4.7}_{-1.6}$	$24.2^{+7.2}_{-6.0}$	$1.3^{+2.4}_{-1.3}$	$0^{+1.2}_{-0}$	$1.2^{+2.8}_{-1.1}$
UL @ 90% C.L.	<7.7	<33.5	< 6.0	<2.3	<4.7
Efficiency (%)	19.2	21.8	8.71	1.90	10.9
Systematic errors (%)					
Matrix element	0	15	15	15	15
J/ψ background	15	5	10	0	15
$\pi^+\pi^- J/\psi$ counting	0.7	0.7	0.7	0.7	0.7
Detector modeling	4.5	6.4	8.3	10	6.4
$\Gamma(\eta_c)$	0	0	0	0	12
Quadrature sum (%)	16	17	20	18	25
$\mathcal{B}(J/\psi \to X) \ [10^{-6}]$		$12 \pm 3 \pm 2$			$1.2^{+2.7}_{-1.1} \pm 0.3$
UL on $\mathcal{B}(J/\psi \rightarrow X)$ @ 90% C.L. [10 ⁻⁶]	<5	<19	<9	<15	<6

Lowest order for ortho-positronium 3γ decay: Ore & Powell, Phys. Rev. 75, 1696 (1949).

$$<|M|^2> = (512/3) \pi^2 \alpha^6 \sum_{i=1}^3 [(1 - x_i)/(x_i x_k)]^2$$

where x_i= 2 E_i* / M_{J/ψ}, E_i=c.o.m. γ_i energy, i≠j, k
 Weight the phase space events by this factor to sculpt the distributions

Is a very gentle sculpting

Makes (0.2 ± 0.1)% relative difference in efficiency compared to pure phase space

B($\eta_c \rightarrow \gamma \gamma$) = (2.4 +0.9 -0.8 +0.7 -0.4) × 10⁻⁴

0, XcJ

TABLE I. Summary of the fitted yield, efficiency, and branching fraction (\mathcal{B}) or upper limit (U.L.) at 90% confidence level for each of the $\chi_{cJ} \rightarrow \gamma V$ transitions. Also listed is the total systematic error and the portion of the systematic error due to uncertainty in the backgrounds that might bias the signal yield. The efficiencies include the vector meson branching fractions [5] and the probability of detecting the $\psi(2S) \rightarrow \gamma \chi_{cJ}$ transition photon. Finally, we list the pQCD predictions of Ref. [1].

Mode	Yield [Events]	Efficiency [%]	Bias Uncert. [%]	Syst. Error [%]	$\mathcal{B} imes 10^6$	U.L. [10 ⁻⁶]	pQCD [10 ⁻⁶]
$\chi_{c0} \rightarrow \gamma \rho^0$	1.2 ± 4.5	30		±10		<9.6	1.2
$\chi_{c1} \rightarrow \gamma \rho^0$	186 ± 15	32	±2	± 9	$243 \pm 19 \pm 22$		14
$\chi_{c2} \rightarrow \gamma \rho^0$	17.2 ± 6.8	31	-50 + 20	-57	$25 \pm 10^{+8}_{-14}$	<50	4.4
$\chi_{c0} \rightarrow \gamma \omega$	0.0 ± 2.8	17	+20	± 16	14	<8.8	0.13
$\chi_{c1} \rightarrow \gamma \omega$	39.2 ± 7.1	20	± 8	±15	$83\pm15\pm12$		1.6
$\chi_{c2} \rightarrow \gamma \omega$	0.0 ± 1.8	18		± 16		<7.0	0.50
$\chi_{c0} \rightarrow \gamma \phi$	0.1 ± 1.6	15		± 12		<6.4	0.46
$\chi_{c1} \rightarrow \gamma \phi$	5.2 ± 3.1	17		± 12	$12.8 \pm 7.6 \pm 1.5$	<26	3.6
$\chi_{c2} \rightarrow \gamma \phi$	1.3 ± 2.5	16	• • •	± 12		<13	1.1

1010108-00

