SCALARS IN CHARM DECAYS

J. Rosner – University of Chicago – 2/13/08 at Scadron70 $^{1/16}$ On behalf of the CLEO Collaboration; special thanks to M. Dubrovin

Three-body charmed meson and χ_c decays will yield rich information on low-mass scalar resonances once fully analyzed

Observe $f_0(980)$, $a_0(980)$; broad S-wave amplitudes in $\pi\pi$, $K\pi$; $f_0(1370) \rightarrow \pi\pi$ in some fits

Relevant CLEO data sets:

Open charm production near 10 GeV

3 + 24.5 million $\psi(2S)$ as source of χ_c states, about 6 million tagged $\pi^+\pi^- J/\psi$ More than 800 pb⁻¹ at $\psi(3770) \Rightarrow > 5$ million very clean $D\bar{D}$ pairs Anticipate ~ 600 pb⁻¹ at 4170 MeV, $\Rightarrow ~ \sim 570$ K $D_s\bar{D}_s$ pairs

Production mechanism affects determination of resonance properties (especially for broad states)

THE CLEO-c DETECTOR

Excellent particle ID, charged/neutral momentum/energy resolution

EXAMPLES OF CHANNELS 3/16

 $D^+ \to K^- \pi^+ \pi^+$: κ ? (CLEO 281 pb⁻¹ arXiv:0707.3060; > 4× E791) $D^0 \rightarrow K_S \pi^+ \pi^-$: CLEO (9 fb⁻¹ near 10 GeV) needed no σ , κ [H. Muramatsu +, PRL 89, 251802], but BaBar [SLAC-PUB-12983], Belle [PR D 73, 112009] have $M(\sigma_1) \simeq 500$ MeV, $M(\sigma_2) \simeq 1037$ MeV $D^0 \to \pi^0 \pi^+ \pi^-$: ρ^{\pm}, ρ^0 [D. Cronin-Hennessy +, PR D **72**, 031102] $D^+ \rightarrow \pi^- \pi^+ \pi^+$: scalars important [G. Bonvicini +, PR D **76**, 012001] $D^0 \rightarrow K^+ K^- \pi^0$: $K\pi$ S-wave needed [C. Cawlfield +, PR D 74] $D^0 \to K_S \eta \pi^0$: $a_0(980)$, $K^*(892)$ seen [P. Rubin +, PRL **93**, 111801] $D^+ \rightarrow K^- K^+ \pi^+$: $K^- \pi^+$ S-wave [e.g., LASS amplitude] important; $D^0 \to K_S \pi^0 \pi^0$: $K^*(892)$, $f_0(980)$, $f_0(1370)$, $K^*(1680)$ [P. Naik, L. Zhang, and N. Lowrey, HADRON 07 (arXiv:0712.2266)] $\begin{array}{l} \chi_{c1} \rightarrow \eta \pi^+ \pi^-: \ a_0(980), \ f_2(1270), \ \sigma(500); \ K^+ K^- \pi^0, \ \pi^\pm K^\mp K_S: \\ K^*(892), \ K_0^*(1430), \ K_2^*(1430), \ a_0(980) \ [{\rm S. \ B. \ Athar \ +, \ PR \ D \ 75}] \end{array}$

CLEAN $D^+ \rightarrow K^- \pi^+ \pi^+$ SIGNAL 4/16

Select D^+ candidates in $K^-\pi^+\pi^+$ on the basis of energy conservation and beamconstrained mass: $\Delta E \equiv E_D - E_{\text{beam}}$; $m_{BC} = \sqrt{E_{\text{beam}}^2 - P_D^2}$

CLEO PRELIMINARY: CLEO-CONF 07-01, arXiv: 0707.3060

Colored events lie in "signal box"; diagonal shading indicates "background box"

Largest previous sample is from Fermilab E791 ($\sim 15,000$ events): E. M. Aitala *et al.*, PRL **89**, 121801 (2002); PR D **73**, 032004 (2006); **74**, 059901(E) (2006)

SCALAR $K\pi$ IN $D^+ \rightarrow K^-\pi^+\pi^+$ 5/16

Note enhancements on opposite sides of $K^*(892)$ for high and low $M^2(K\pi)_{high}$

These indicate interference with an amplitude of opposite parity to $K^*(892)$ (likely S-wave)

Several fits all have prominent low- $M(K\pi)$ S-wave amplitude

Quasi-model-independent partial wave analysis (QMIPWA; cf. E791) has κ -like behavior, overall phase displacement Plot shows 281 pb⁻¹ of data at $\psi(3770)$; new analysis based

on 572 pb^{-1} appearing soon

 $K^*(892)$ \uparrow CLEO PRELIMINARY: CLEO-CONF 07-01, arXiv: 0707.3060

$D^+ \rightarrow K^- \pi^+ \pi^+ \mathbf{S} \mathbf{WAVES}$

This is from arXiv:0707.3060 (281 pb⁻¹); 572 pb⁻¹ similar 67086 candidate events; 1.1% background fraction; $> 2 \times$ soon

 κ pole position depends on Breit-Wigner width Γ : energy-dependent or fixed QMIPWA: 26 $M^2(K\pi)$ bins $(0.4-3.0 \text{ GeV}^2)$ each for S-wave amplitude and phase Resembles κ + NR amplitude Contribution from $I_{\pi\pi} = 2$ amplitude ($\pi^+\pi^+ \rightarrow \rho^+\rho^+$?) required for good fit S-wave phase does not go through 90° exactly at $M(\kappa)$

With κ (complex pole), $\kappa \pi^+$ fit fraction is $\sim 20\%$

CLEO PRELIMINARY

$K\eta'$ **THRESHOLD**

7/16

Scalar strange resonances couple much more strongly to $K\eta'$ than to *K*η: Lipkin, PRL **46**, 1307 (1981); PL B **254**, 247 (1991) Approximate mixing: $\eta \simeq (u\bar{u} + d\bar{d} - s\bar{s})/\sqrt{3}$; $\eta' \simeq (u\bar{u} + d\bar{d} + 2s\bar{s})/\sqrt{6}$ In this limit, contributions of strange and nonstrange quarks in η cancel exactly in $K_0^* \to K\eta$ while they add constructively in $K_0^* \to K\eta'$ This is the same physics that favors $B \to K \eta'$ over $B \to K \eta$ The pattern would be reversed for vector strange resonances Thus $K_0^*(1430)$ should be strongly associated with nearby $K\eta'$ threshold; $K\pi$ S wave should become inelastic only above this Expect a zero (Ramsauer-Townsend effect!) in scalar $I = 1/2 K\pi$ amplitude below $K_0^*(1430)$ if a low-mass κ exists CLEO, E791 $K_0^*(1430)$ heavier ($M \simeq 1460$ MeV), narrower ($\Gamma \simeq 175$ MeV) than PDG 2006 (1414±6 MeV, 290±21 MeV, based mainly on elastic $K\pi$ [LASS]). BES [PR D **72**, 092002, $\chi_{c0} \rightarrow \pi^+ \pi^- K^+ K^-$]: 1455±20±15 MeV, 270±45⁺³⁵₋₃₀ MeV

$D^0 \to K^+ K^- \pi^0$ (CLEO PR D 74, 031108) ^{8/16}

Opposite sign of interference between $K^{*\pm}$ and large S wave (fit fraction 20–40%) visible in Dalitz plot

This sample was based on 9.0 fb⁻¹ at 10.58 GeV (CLEO III); 735 $D^0 \rightarrow K^+ K^- \pi^0$ cands.

Opposite relative phase for $D^0 \rightarrow (K^{*+}K^-, K^{*-}K^+)$

 $K\pi$ S wave appreciable but could not tell if resonant

Could dip in $M(K\pi)$ around 1 GeV be a Ramsauer-Townsend zero between a κ and $K_0^*(1430)$?

Never did \Uparrow fit a curious dip in $M(K\pi)$ be

BaBar has > 11,000 events for 385 fb⁻¹: PR D **76**, 011102(R) (2007) (no dip)

 $D^0 \rightarrow \pi^+ \pi^- \pi^0$ dominated by ρ^{\pm}, ρ^0 intermediate states while $D^+ \rightarrow \pi^- \pi^+ \pi^+$ can have only ρ^0 , not produced by charged weak current Scalar fit fraction for D^0 decay is < 4%; for D^+ it is 40–80%

$D^0 \to K_S \pi^0 \pi^0$

CLEO PRELIMINARY: HADRON 07 (arXiv:0712:2266)

Data sample of 281 pb⁻¹ taken at $\psi(3770)$

Final sample will be $3\times$ this

Components of Dalitz plot fit (with Fit Fractions:)

 $K^*(892): 0.542 \pm 0.054 \pm 0.030 \pm 0.053$

 $f_0(980)$: 0.090±0.032±0.009±0.027

 $f_0(1370)$: 0.238±0.071±0.047±0.086

 $K^*(1680): 0.114 \pm 0.027 \pm 0.021 \pm 0.032$

No apparent low-mass σ

Potential source of information on $I_{\pi\pi} = 0$ resonances

$D^0 \to K_S \eta \pi^0$

Using 9.0 fb⁻¹ near $\Upsilon(4S)$ Signal yield 155 ± 22 events $a_0(980)K_S$ fit fraction $\mathcal{O}(1)$ $K^*(892)\eta$ f.f. $\simeq 30\%$ Would be interesting to compare $D^0 \to K_S a_0^0$ with $D^0 \to K^- a_0^+, D^+ \to K_S a_0^+$ Related processes might be $D^0 \to \bar{\kappa}^0 \pi^0$, $D^0 \to \kappa^- \pi^+$, $D^+ \rightarrow \bar{\kappa}^0 \pi^+$ if κ and a_0 in same SU(3) multiplet Full $\psi(3770)$ data: 1200 $K_S \pi^0 \eta$, 8000 $K^- \pi^+ \eta$, 5000 $K_S \pi^+ \eta$ events

11/16

P. Rubin et al. [CLEO], PRL 93, 111801 (2004)

THREE-BODY χ_c DECAYS ^{12/16}

S. B. Athar + [CLEO], PR D **75**, 032002 (2007): 3 M $\psi(2S) \rightarrow \gamma \chi_c$

Reconstruct exclusive final states; 24.5 M more $\psi(2S)$ under analysis

Enough χ_{c1} in these channels for Dalitz plot analyses

 $I_{\pi\pi} = 0$ in $\eta \pi^+ \pi^-$; $I_{K\bar{K}} = 1$ in $K\bar{K}\pi$ modes

No χ_{c1} polarization or interference between resonances considered

 $\chi_{c1} \to \eta \pi^+ \pi^-$

Fit fractions (%): $a_0(980)^{\pm}\pi^{\mp}$: 75.1 \pm 3.5 \pm 4.3 $f_2(1270)\eta$: 14.4 \pm 3.1 \pm 1.9 $\sigma\eta$: 10.5 \pm 2.4 \pm 1.2

 σ parametrized by complex pole at (511 \pm 28–*i*102 \pm 50) MeV

Low-mass $\pi\pi$ enhancement visible in Dalitz plot and $m^2(\pi^+\pi^-)$ projection

Flavor SU(3) would imply that $\chi_{c1} \rightarrow \kappa \bar{K}$ should be visible if $\chi_{c1} \rightarrow a_0 \pi$ is so prominent

 $\chi_{c1} \to K^+ K^- \pi^0$ 14/16

Fit fractions (%): $K^*(892)\bar{K}: 31.2\pm2.2\pm1.7$ $K_0^*(1430)\bar{K}$: 30.4±3.5±3.7 $K_2^*(1430)\bar{K}$: 23.1±3.4±7.1 $a_0(980)\pi$: 15.1±2.7±1.5 $K^+K^-\pi^0$, $K_SK^\pm\pi^\mp$ channels are related by isospin and have been combined κ or nonresonant $K\pi$ S-wave doesn't improve fit quality Interference might show low-mass $K\pi$ S wave as in $D^+ \rightarrow K^- \pi^+ e^+ \nu_e$ (CLEO, PR D 74, 052004 (2006)

$\chi_{c1} \to K_S K^{\pm} \pi^{\mp}$

Expect twice as many events as in $K^+K^-\pi^0$ (neglecting efficiency differences)

Complete analysis of full $\psi(2S)$ data set should account for χ_{c1} polarization, interference between resonances

Expect ~ 2000 $\chi_{c1} \rightarrow \eta \pi^+ \pi^-$; should permit good determination of " σ " properties

Many other three-body χ_{cJ} final states reconstructed in full $\psi(2S)$ radiative decay sample

15/16

CONCLUSIONS

Charmed meson and charmonium decays can be a rich source of information on scalar resonances between pairs of pseudoscalar mesons

- Data from the CLEO III (with silicon) and CLEO-c (with inner drift chamber) detectors show the potential of these channels
- The $a_0(980)$ and $f_0(980)$ are without question in CLEO data; $\kappa(800)$ and $\sigma(600)$ make sporadic appearances

 σ,κ inferred M,Γ depend on production channels, line shape models

Bose statistics make σ $(I_{\pi\pi} = 0)$ easier to isolate than κ $(I_{K\pi} = 1/2)$

CLEO needs a σ in describing $\tau \to \pi \pi^0 \pi^0 \nu$: PR D **61**, 012002

Tests of whether the $a_0(980)$ and $f_0(980)$ belong to a nonet with $\kappa(800)$ and $\sigma(600)$ are available in charmonium (e.g., χ_{c1}) decays