New CLEO Results on Charmonium Transitions

Brian Heltsley

on behalf of the CLEO Collaboration

6th International Workshop on Heavy Quarkonia Nara, Japan December 2008

Charmonium Transitions

- Transitions between $\overline{\mathrm{cc}}$ bound states provide a rich experimental landscape
- Allow comparison of many Q.CD predictions to reality
- Relativistic \& nonperturbative regimes
- Will show measurements relating to *all* of the transitions shown at right
- CLEO datasets
- ~1.5M $\psi(2 S) w / C L E O ~ I I I ~$
- ~1.5M $\psi(2 S) w / C L E O-c$
- ~24M $\psi(2 S) w / C L E O-c$

- ~21 p b^{-1} "continuum" ($\sqrt{s}=3,67 \mathrm{GeV}$)

New Results since QWG05

$O \psi(2 S) \rightarrow X J / \psi$ branching fractions

- Improved systematics
- Surprises found
o $\psi(2 S), J / \psi \rightarrow \gamma \eta_{c}(1 S)$ branching fractions
- Lineshape systematics
- Implications for η_{c} mass
- $\psi(2 S) \rightarrow \gamma \eta_{c}(2 S)$ branching fraction

NEW for QWG !
o h_{c} : Final mass, product branching fraction

$\psi(2 S) \rightarrow X J / \psi$

$\psi(2 S) \rightarrow X J / \psi$ branching fractions

- CLEO measured all exclusive \& inclusive (2S) $\rightarrow \mathrm{X} \mathrm{J} / \psi$ branching fractions in a single analysis for the $1^{\text {st }}$ time in 2005
- 3M $\psi(2 S)$ decays
- $J / \psi \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$
- Absolute BR errors dominated by 3\% sys error in $N(\psi(2 S))$
- Puzzle with $\chi_{c o}$ rate too few events to diagnose
- Why do it again?
- $8 x$ data : solve $x_{c o}$ puzzle?

$\mathrm{E}_{\gamma-\text {-ow }}(\mathrm{GeV})$
- Get another crack at reducing systematic errors

Approach

- Published as PRD 78, 011102(R) (2008)
- Use the full $27 \mathrm{M} \psi(2 S)$ sample
- Use $J / \psi \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$only for $X J / \psi$ modes relative to one another
- Use bremsstrahlung recovery
- Constrain leptons + collinear γ 's to $M(\mathrm{~J} / \psi)$
- Loose cut on χ^{2} / d of <20 for vertex \& mass fits
- Background-free; all J/ ψ cuts cancel in ratios
- Anchor relative XJ/ ψ rates to a new absolute measurement of $\left.B_{+}=B\left(\pi^{+} \pi^{-} \mathrm{J} / \psi\right)\right)$
- Count $\psi(2 S)$ inclusively \& model acceptance
- Count $\pi^{+t \pi} \mathrm{~J} / 4$ inclusively (not like 2005, not dileptons)
- Divide the two

New $B_{+-}=B\left(\pi^{+} \pi^{-} \mathrm{J} / \psi\right)$ Msmt

- Minimize systematics
- Fit $\pi^{+} \pi \pi^{-}$recoil mass for J / ψ
- Study trigger \& tracking \&'s
- Careful modeling of $J / 4, \psi(2 S)$, \& $\chi_{c J}$ decays (BRs, multiplicities)
- Accept essentially all J/4, $\psi(2 S)$ decays \& count
$>8=40 \%$ for $\pi^{+} \pi^{r} \mathrm{~J} / \mathrm{\mu}: \mathrm{N}=9.6 \mathrm{M}$ events
: Dominated by ε for wide angle $\pi^{ \pm}$ with $\rho_{T}>150 \mathrm{MeV}$
$>\mathrm{g}=7.6 \%$ for $\psi(2 \mathrm{~S})$: $\mathrm{N}=27.4 \mathrm{M}$ events
- Subtract continuum with CLEO-c continuum data sample, not MC
- Error: $\pi^{+} \pi^{-} \mathrm{J} / 4(0.7 \%), \psi(2 S)(2 \%)$
- $B_{+-}=(35.04 \pm 0.07 \pm 0.77) \%$
~4.4\% (relative)
larger than CLEO 2005
$\pm 2.2 \%$ relative total error

Modeling $X J / \psi, J / \psi \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$

- Negligible continuum bgd
- Spectacularly good data/MC agreement
\Rightarrow Tiny dependence on exact cut values

Numerical Results

PRD 78, $011102(\mathrm{R})(2008)$

TABLE I. For each channel: the number of events observed in $J / \psi \rightarrow \mu^{+} \mu^{-}$after background subtraction and the detection efficiency ratio $r_{h}^{\mu} \equiv \epsilon\left(\psi(2 S) \rightarrow h+J / \psi^{\mu^{+} \mu^{-}}\right) / \epsilon\left(\psi(2 S) \rightarrow\right.$ any $\left.+J / \psi^{\mu^{+} \mu^{-}}\right)$; the same for $J / \psi \rightarrow e^{+} e^{-}$; the ratio of branching fractions $\mathcal{B}\left(\psi(2 S) \rightarrow h+J / \psi\right.$ and $\mathcal{B}(\psi(2 S) \rightarrow$ any $+J / \psi)$; the same with respect to \mathcal{B}_{+-}; absolute branching fractions.

Channels	N^{μ}	r_{h}^{μ}	N^{e}	r_{h}^{e}	$\mathcal{B} / \mathcal{B}_{\text {any }}(\%)$	$\mathcal{B} / \mathcal{B}_{+-}(\%)$	$\mathcal{B}(\%)$
$\pi^{+} \pi^{-} J / \psi$	302030	0.80	263372	1.01	$56.04 \pm 0.09 \pm 0.62$	$\equiv 100$	$35.04 \pm 0.07 \pm 0.77$
$\pi^{0} \pi^{0} J / \psi$	32249	0.17	28746	0.22	$28.29 \pm 0.12 \pm 0.56$	$50.47 \pm 0.22 \pm 1.02$	$17.69 \pm 0.08 \pm 0.53$
$\eta J / \psi$	9819	0.27	8590	0.33	$5.49 \pm 0.06 \pm 0.09$	$9.79 \pm 0.10 \pm 0.15$	$3.43 \pm 0.04 \pm 0.09$
$\pi^{0} J / \psi$	289	0.19	238	0.25	$0.213 \pm 0.012 \pm 0.003$	$0.380 \pm 0.022 \pm 0.005$	$0.133 \pm 0.008 \pm 0.003$
$\gamma(\gamma J / \psi)_{\chi_{c 0}}$	308	0.22	253	0.28	$0.201 \pm 0.011 \pm 0.021$	$0.358 \pm 0.020 \pm 0.037$	$0.125 \pm 0.007 \pm 0.013$
$\gamma(\gamma J / \psi)_{\chi_{c 1}}$	13244	0.34	11619	0.44	$5.70 \pm 0.04 \pm 0.15$	$10.17 \pm 0.07 \pm 0.27$	$3.56 \pm 0.03 \pm 0.12$
$\gamma(\gamma J / \psi)_{\chi_{c 2}}$	6616	0.31	5768	0.40	$3.12 \pm 0.03 \pm 0.09$	$5.56 \pm 0.05 \pm 0.16$	$1.95 \pm 0.02 \pm 0.07$
any $+J / \psi$	676889	$\equiv 1$	466153	$\equiv 1$	$\equiv 100$	$178.4 \pm 0.3 \pm 2.0$	$62.54 \pm 0.16 \pm 1.55$

Derived quantities:
 $\mathrm{B}[\psi(\mathbf{2 S}) \rightarrow \gamma \gamma \mathrm{J} / \psi$ (non-resonant) $] \leq \sim 0.1 \%$

- $B\left(\pi^{0} \mathrm{~J} / \psi\right) / B(\eta J / \psi)=(3.88 \pm 0.23 \pm 0.05) \%$
- $B\left(\chi_{c 2} \rightarrow \gamma J / \psi\right)=(24.1 \pm 0.2 \pm 0.9 \pm 1.2) \%$
- $\left.B\left(\chi_{c 1} \rightarrow \gamma J / \psi\right)\right)=(40.5 \pm 0.3 \pm 1.4 \pm 1.8) \%$
- $B\left(\chi_{c 0} \rightarrow \gamma J / \psi\right)=(1.35 \pm 0.07 \pm 0.14 \pm 0.06) \%($ was 2.0% in 2005)
- $\mathrm{B}(\psi(2 S) \rightarrow$ light hadrons $)=(15.4 \pm 1.5) \%(2.9 \sigma \geqslant$ scaled J/u rate)
- All these SUPERSEDE CLEO 2005 numbers

Result Comparisons

- B+ much larger ($\sim 7 \%$) than PDG08 fit
- $\chi_{c 1}, \chi_{c 2}$ larger than PDG08 fit
${ }^{-} \chi_{c o}$ much smaller than CLEO05 result
- Improved
precision for all

$\psi(2 S), J / \psi \rightarrow \gamma \eta_{c}(1 S)$

$\psi(2 S), J / \psi \rightarrow \gamma \eta_{c}(1 S)$ BRs

- Almost all $\eta_{c}(1 S)$ PDG BRs tied to $B\left(J / \psi \rightarrow \gamma \eta_{c}\right)$

35 The quoted branching ratios use $\mathrm{B}\left(J / \psi(1 S) \rightarrow \gamma \eta_{C}(1 S)\right)=0.0127 \pm 0.0036$.

- ...which is poorly measured: $\mathbf{\sim 3 0 \%}$ error
- Why?
$>\eta_{c}$ has large, uncertain width: [~30 MeV, lineshape?
> Just one measurement: Crystal Ball 1986
- Inclusive measurement of photon lines not easy
: especially when photons are soft: 114 MeV
- Latticé Dudek et alı, PRD73, 07450 (2006).
- $B\left(J / \psi \rightarrow \gamma \cap_{c}\right)=(2.1 \pm 0.1 \pm 0.4) \%: 1.50$ bigger than
- $\mathrm{B}\left(\psi(2 S) \rightarrow \gamma \eta_{c}(1 S)\right)=(0.30 \pm 0.05) \%$ (PDG2008)
- 2 measurements: Crystal Ball 1986 \& CLEO 2004
- CLEO is now revisiting this with a larger dataset

Approach for $\gamma \eta_{c}(1 S)$

Ryan Mitchell's 2007 QWG talk was prelim version now done: arXiv:0805.0252. Uses 24M $\psi(2 S)$ sample.

1. Isolate exclusive $J / \psi \rightarrow \gamma \eta_{c}\left(\eta_{c} \rightarrow X\right)$ decays

- Unusual lineshape found for $J / \psi \rightarrow \gamma \eta_{c}$!
- Parametrize shape $\&$ fit for all X : count signal events
- Isolate exclusive $\psi(2 S) \rightarrow \gamma \eta_{c}\left(\eta_{c} \rightarrow X\right)$ decays
- Unusual (diffierent) shape found for $\psi(2 S) \rightarrow \gamma \eta_{c}$
- Empirically extract shape for all X; count signal events

2. Use lineshape found in 2 to measure $B\left(\psi(2 S) \rightarrow \gamma \eta_{c}\right)$ from inclusive E_{γ} spectrum ($E_{\gamma} \approx 638 \mathrm{MeV}$)
3. $\quad R_{X}=B\left(J / \psi \rightarrow \gamma \eta_{c}{ }^{X}\right) / B\left(\psi(2 S) \rightarrow \gamma \eta_{c}{ }^{X}\right)$ for exclusives Many systematic error cancellations expected
4. Obtain $B\left(J / \psi \rightarrow \gamma \eta_{c}\right)$ by multiplying the result from 3 . by the result from 4 , thereby avoiding the difficulties in an inclusive analysis search for $E_{\gamma} \approx 114 \mathrm{MeV}$.

Exclusive $\eta_{c}(1 S)$ Reconstruction

- Use all known decays (except pp) + 3 new ones: 12 modes
- Full reconstruction; use dI/ddx \& RICH for $K^{ \pm}, \pi^{ \pm}$
- Tag J / ψ with $\pi^{+} \pi^{-}$
- Constrain to laboratory 4momentum w/kinematic fit
- Extract signal with E_{γ} spectrum
- Peak at $\approx 638 \mathrm{MeV}$

Exclusive shapes \& yields

Breit-Wigner lineshape does not fit either J / ψ or $\psi(2 S) \rightarrow \gamma \eta_{c}$ data!

- Steeper rise on low side; longer tail on high side
- Shapes are different from each other
$\mathrm{J} / \psi \rightarrow \gamma \eta_{c}$
- MC: bgd has 2 smooth shapes
- spurious showers (fakes)
- non-signal γ^{\prime} s from $\pi^{01} s$
- Matrix element expectations motivate
$B W \times E_{\gamma}^{3} \times \exp \left(E_{\gamma}^{2} / 8 \beta^{2}\right)$
$\psi(2 S) \rightarrow \gamma \eta_{c}$
- MC predicts LJNEAR bgd
- Expect BW \times E $_{7}^{7} \times$ (cutoff?)
- Count (Data - Linear Bgd) as signal

Inclusive $\psi(2 S) \rightarrow \gamma \eta_{c}(1 S)$

Exclusives w/4C fit w/NO/4C fit | 1200

- Cannot use shape from exclusives-4C-fit constrained E_{γ} for inclusives because inclusive distribution cannot be constrained
- Note that linear background in exclusives is identical if the unconstrained E_{γ} is used
- Fit inclusive E_{γ} to polynomial bgd + floating signal shape from bgd-subtracted exclusive distribution

e Ratio, Number by Channel

Weighted ε-ratio of $\sim 65 \%$ is basically the efficiency of detecting the transition dipion in $\psi(2 S) \rightarrow \pi^{+} \pi^{-} J / \psi$, many other systematic errors nearly cancel

Compute BRs for $\psi(2 S), \mathrm{J} / \psi \rightarrow \gamma \eta_{c}(1 S)$

$$
\begin{aligned}
& \mathrm{B}\left(\psi(2 S) \rightarrow \gamma \eta_{c}\right)=(4.32 \pm 0.16 \pm 0.60) \times 10^{-3} \\
& \mathrm{~B}\left(\mathrm{~J} / \psi \rightarrow \gamma \eta_{c}\right) \\
& \mathrm{B}\left(\psi(2 S) \rightarrow \gamma \eta_{c}\right)=4.59 \pm 0.23 \pm 0.64 \\
& \mathrm{~B}\left(\mathrm{~J} / \psi \rightarrow \gamma \eta_{c}\right)=(1.98 \pm 0.09 \pm 0.30) \%
\end{aligned}
$$

arXiv:0805.0252

B. Heltisley QWG Transitions
~15\% sys err mainly from varying signal \& bgd shapes \& modeling unknown η_{c} decay modes

Lineshape effects on M, Γ

- Values of M \& I from M1 transitions bias the world average values
- Effect of lineshape distortion w.r.t. simple BW

$$
\psi(2 S) \rightarrow \gamma \eta_{c}(2 S)
$$

$\psi(2 S) \rightarrow \gamma \eta_{c}(2 S)$

- Not yet observed
- 1982 Crystal Ball sighting (M=3592 MeV, B=0.2-1.3\%) discredited $>$ CLEO put limit (at CB mass): B[$\left.\psi(2 S) \rightarrow \gamma \eta_{c}(2 S)\right]<0.2 \%$
- Too littile is known about $\eta_{\mathrm{c}}(2 S)$:

Experiment	$M[\mathrm{MeV}]$	$\Gamma[\mathrm{MeV}]$	Process
Belle [1]	$3654 \pm 6 \pm 8$	-	$B^{ \pm} \rightarrow K^{ \pm} \eta_{c}(2 S), \eta_{c}(2 S) \rightarrow K_{S} K^{ \pm} \pi^{\top}$
CLEO [2]	$3642.9 \pm 3.1 \pm 1.5$	$6.3 \pm 12.4 \pm 4.0$	$\gamma \gamma \rightarrow \eta_{c}(2 S) \rightarrow K_{S} K^{ \pm} \pi^{\mp}$
BaBar [3]	$3630.8 \pm 3.4 \pm 1.0$	$17.0 \pm 8.3 \pm 2.5$	$\gamma \gamma \rightarrow \eta_{c}(2 S) \rightarrow K_{S} K^{ \pm} \pi^{\mp}$
BaBar [4]	$3645.0 \pm 5.5_{-7.8}^{+4.9}$	-	$e^{+} e^{-} \rightarrow J / \psi c \bar{c}$
PDG [5]	3638 ± 4	14 ± 7	-

- Mass $\Rightarrow E_{\gamma}=48 \mathrm{MeV}$, where $\sigma_{\mathrm{E}} \approx 5 \mathrm{MeV}<\Gamma$
- Too soft, widith too uncertain for pure inclusive observation
- Try exclusive modes - similar to $\eta_{c}(1 S)$
- Use $26 \mathrm{M} \psi(2 S)$ sample
- Avoid modes with more than one π^{0} due to larger bgds
- Validate on copious $\chi_{c 2}$ decays: $E_{\gamma} \approx 128 \mathrm{MeV}$
- Also seek $\eta_{c}(2 S) \rightarrow \pi^{+} \pi^{2} \eta_{c}(1 S)$

$\psi(2 S) \rightarrow \gamma \chi_{c 2}$ Exclusive Decays

- Good agreement with previously measured BR's \& E value
- Find 4 previously unseen decay modes, 3 of them of substantial BR!
- Validates code \& signal normalization
- Does not test bgd modeling as these signals are very large
- For $\gamma \eta_{c}(2 S)$ fitis use fixed shape, floating normalization MC of "generic" $\psi(2 S)$ decays - bgd is dominated by fakes

$\eta_{c}(2 S)$ Exclusive Decays

- No signals seen in any mode!
- K_{K} is key
- Only one for which an absolute BR is known:
- BaBar: $\mathrm{B}\left[\eta_{\mathrm{c}}(2 S) \rightarrow K \bar{K} \pi\right]=(1.9 \pm 0.4 \pm 0.5 \pm 1.0) \%$
- PDG08: $B\left[\eta_{c}(1 S) \rightarrow K \bar{K} \pi\right]=(7.0 \pm 1.2) \%$

$\psi(2 \mathrm{~S}) \rightarrow \gamma \eta_{c}(2 \mathrm{~S})$ Results

Mode	$N_{\text {sig }}$ $(90 \%$ C.L. $)$	Efficiency $(\%)$	Systematic Uncertainty (\%)	$B_{1} \times B_{2}$ $\left(10^{-6}\right)$
$2\left(\pi^{+} \pi^{-}\right)$	<64.8	20.49 ± 0.16	14.3	<14.0
$3\left(\pi^{+} \pi^{-}\right)$	<36.6	14.22 ± 0.14	29.4	<12.9
$K^{+} K^{-} \pi^{+} \pi^{-}$	<35.2	19.49 ± 0.15	36.5	<9.5
$K^{+} K^{-} \pi^{0}$	<16.0	17.76 ± 0.14	47.2	<5.2
$K_{S} K^{ \pm} \pi^{\mp}$	<11.0	20.40 ± 0.15	24.7	<3.8
$K K \pi$	<21.9	7.63 ± 0.04	26.9	<14.1
$\pi^{+} \pi^{-} \eta$	<4.3	5.68 ± 0.05	48.0	<4.3
$\pi^{+} \pi^{-} \eta^{\prime}$	<4.1	8.14 ± 0.10	28.1	<14.2
$K^{+} K^{-} \eta$	<7.5	6.47 ± 0.05	32.1	<5.8
$K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}$	<65.4	8.74 ± 0.11	37.4	<40.2
$K^{+} K^{-} 2\left(\pi^{+} \pi^{-}\right)$	<20.6	9.93 ± 0.11	14.0	<9.1
$K_{S} K^{ \pm} \pi^{\mp} \pi^{+} \pi^{-}$	<23.9	11.39 ± 0.13	23.4	<14.4

$\mathcal{B}\left(\psi(2 S) \rightarrow \gamma \eta_{c}(2 S)\right) \mathcal{B}\left(\eta_{c}(2 S) \rightarrow \pi^{+} \pi^{-} \eta_{c}(1 S)\right)<1.4 \times 10^{-4}(90 \%$ C.L.)

- From $K K \pi, B\left[\psi(2 S) \rightarrow \gamma \eta_{c}(2 S)\right]<7.4 \times 10^{-4} @ 90 \% C L$
- We expect for B: estimate by scaling from $J / \psi \rightarrow \gamma \eta_{c}$ case: $\mathrm{B} \approx(48 / 114)^{3} \times \Gamma\left[\mathrm{J} / \psi \rightarrow \gamma \eta_{\mathrm{C}}(1 \mathrm{~S})\right] / \Gamma_{\text {tot }}[\psi(2 \mathrm{~S})]=4 \times 10^{-4}$
- Measurement falls factor of 2 short of expected branching fraction

h_{c}

$h_{c}: M \& B\left(\psi(2 S) \rightarrow \pi^{0} h_{c}\right) \times B\left(h_{c} \rightarrow \gamma \eta_{c}\right)$

$M\left(h_{c}\right)_{\mathrm{AVG}}=3525.20 \pm 0.18 \pm 0.12 \mathrm{MeV}$, Also averaging in CLEO 3M result

$$
\left(\mathcal{B}_{1} \times \mathcal{B}_{2}\right)_{\mathrm{AVG}}=(4.16 \pm 0.30 \pm 0.37) \times 10^{-4}
$$

PRL 101, 182003 (2008)

Hyperfine splitting: $\Delta M_{h f}(1 P)=+0.08 \pm 0.18$ (stat.) ± 0.12 (syst.) MeV
B. Heltisley QWG Transitions

Summary \& Conclusions

- $\psi(2 S) \rightarrow X J / \psi$ BRs
- Key statistical \& systematic gains made
- $B\left(\psi(2 S) \rightarrow \pi^{+}+\pi J / \psi\right)=(35.04 \pm 0.07 \pm 0.77) \%$
- $B\left(\chi_{c 0} \rightarrow \gamma \mathrm{~J} / \psi\right) \quad=(1.35 \pm 0.07 \pm 0.14 \pm 0.06) \%$
- $\psi(2 S), J / \psi \rightarrow \gamma \eta_{c}(1 S)$
- Clever approach coupled exclusive \& inclusive decays
- Found interesting \& (naively) unexpected lineshape
- BR's moved a lot
- Lineshape seems to resolve η_{c} mass $\&$ width discrepancies
- $\psi(2 S) \rightarrow \gamma \eta_{c}(2 S) B R$
- Small exclusive rates trump largest dataset, modern detector, analysis expertise; improve upper limit: $\mathrm{B}\left[\psi(2 S) \rightarrow \gamma \eta_{c}(2 S)\right]<7.4 \times 10^{-4}$
- h_{c}
- Hyperfine mass splitting challenges theory: consistent with "0"
- Even the most studied channels in charmonium transitions still, in 2008, are yielding new \& more precise results
- Improvements not always in small increments
- Bodes well for a lively BES III era ...

Backup Slides

Transition analyses underway at CLEO

- Partial wave analysis of $\psi(2 S) \rightarrow \pi \pi \tau$ - M2 / E1 in $\chi_{\text {cu }}$ radiative transitions

XJ/ ψ Internal Cross-check

Dependence of $\eta_{c}(2 S) \mathrm{BxB}$ on Γ

- CLEO results have been parametrized as a fon of $\Gamma\left[\eta_{c}(25)\right]$ so they can still be useful as the value of Γ is refined.
- Dependence of upper limits is linear in Γ.

The y-intercept and slope variables a and b are determined by $B_{1} \times B_{2}<a+b * \Gamma\left(\eta_{c}(2 S)\right)$.

Mode	$\Gamma\left(\eta_{c}(2 S)\right)=7 \mathrm{MeV}$			$\Gamma\left(\eta_{c}(2 S)\right)=21 \mathrm{MeV}$		a	b	
	$N_{\text {sig }}$	$\epsilon(\%)$	$B_{1} \times B_{2}$	$N_{\text {sig }}$	$\epsilon(\%)$	$B_{1} \times B_{2}$		$\left(10^{-6} \mathrm{MeV}^{-1}\right)$
4π	<53.1	22.06	<10.6	<77.5	19.41	<17.7	7.04	0.505
6π	<26.4	14.71	<9.0	<49.8	13.03	<19.1	3.88	0.727
$K K \pi \pi$	<25.6	20.44	<6.6	<45.7	17.72	<13.6	3.10	0.500
$K K \pi^{0}$	<12.0	19.15	<3.6	<19.5	16.88	<6.6	2.08	0.217
$K_{S} K \pi$	<9.7	21.78	<3.1	<12.4	19.53	<4.4	2.43	0.095
$K K \pi$	<17.2	8.21^{*}	<11.2	<26.7	7.31^{*}	<19.4	7.05	0.587
$\pi \pi \eta$	<4.3	6.79^{*}	<3.6	<4.3	4.97^{*}	<4.9	2.95	0.095
$\pi \pi \eta^{\prime}$	<4.1	9.46	<12.3	<4.1	6.98	<16.6	10.1	0.309
$K K \eta$	<7.5	7.72^{*}	<5.0	<7.5	5.68^{*}	<6.7	4.08	0.127
$K K \pi \pi \pi^{0}$	<49.4	9.47	<28.0	<83.9	8.16	<55.2	14.4	1.95
$K K 4 \pi$	<17.0	10.50	<7.1	<24.6	9.37	<11.6	4.91	0.317
$K_{S} K 3 \pi$	<20.2	12.00	<11.6	<27.4	10.23	<18.4	8.19	0.486

$\eta_{c}(2 S)$ Exclusives

$\chi_{c J} \rightarrow$ Exclusives Cross-check

