Heavy Quarkonia Results from CLEO-c

PANIC08 Particles and Nuclei International Conference Eilat, Israel

> Matthew Shepherd Indiana University

(on behalf of the CLEO Collaboration)

- Rich spectrum: physics topics are very diverse as are various experimental observables and analysis techniques
- Focus on a sample of recent highlights, primarily:
 - transitions between states
 - properties (mass, branching fractions) of states
- Notable omissions:
 - onia as a source for light meson spectroscopy (η' mass: PRL 101, 182002; rare η' decays: arXiv: 0809.2587 [hep-ex])
 - decays of onia as a probe for physics beyond the standard model (LFV: arXiv:0807.2695 [hep-ex]; light Higgs search: PRL101,151802)

INDIANA UNIVERSITY College of Arts and Sciences Bloomington

DEPARTMENT OF PHYSICS

2

$\Upsilon(nS) \rightarrow (\pi^0, \eta) \Upsilon(mS)$

- Process sensitive to the chromomagnetic moment of the b quark, rate scales like 1/mb⁴
- Scaling from $\Psi(2S) \rightarrow \eta J/\Psi$ predicts a rate for $\Upsilon(nS) \rightarrow \eta \Upsilon(mS)$ of about 7×10^{-4} ; isospin violating π^0 further suppressed
- Tag dilepton decay of Υ , use $\gamma\gamma$, $3\pi^0$, and $\pi^+\pi^-\pi^0$ decays of the η
- Results about 1/4 of what is expected from predictions based on the quark mass

Mode		B.F. [10 ⁻⁴]	
Ƴ(2S)→ηƳ(IS)		2.1 ^{+0.7} -0.6±0.3	
Ƴ(3S)→ηƳ(IS)		< 1.8	
Ƴ(2S)→π⁰Ƴ(IS)		< 1.8	
Ƴ(3S)→π⁰Ƴ(IS)		< 0.7	
Ƴ(3S)→π⁰Ƴ(2S)		< 5.1	
PRL 101, 192001 (2008)			

Ψ

DEPARTMENT OF PHYSICS

INDIANA UNIVERSITY College of Arts and Sciences Bloomington

$\Upsilon(nS) \rightarrow \pi\pi\Upsilon(mS)$

- Proceeds by emission and hadronization of soft gluons
- Experimentally important since they provide rates for most likely transitions in bottomonium (access to one Υ state from another)
- π⁺π⁻: measure inclusively or reconstruct dilepton decay of Y; π⁰π⁰: exclusive dilepton decay only

Mode	B.F. [%]	PDG B.F. [%]
Y(3S)→π⁺π⁻Y(IS)	4.46±0.01±0.13	4.48±0.21
Ƴ(3S)→π⁰π⁰Ƴ(IS)	2.24±0.09±0.11	2.06±0.28
Ƴ(3S)→π⁰π⁰Ƴ(2S)	1.82±0.09±0.12	2.00±0.32
Ƴ(2S)→π⁺π⁻Ƴ(IS)	18.02±0.02±0.61	18.8±0.6
Ƴ(2S)→π⁰π⁰Ƴ(IS)	8.43±0.16±0.42	9.0±0.8

PRD(R) 78,091103 (2008)

M. R. Shepherd PANIC08, Eilat November 11, 2008

INDIANA UNIVERSITY College of Arts and Sciences Bloomington

DEPARTMENT OF PHYSICS

4

Exclusive Xb Decays

- Very little is known about hadronic decays of the χ_b
- Theoretical interest in gluon hadronization processes
- Experimentally interesting since modes may provide hints for how to search for exclusive decays of unobserved bottomonium states
- Search 659 different exclusive modes; up to 12 particles, conserve strangness, < 5 η or π^0 , ...

Branching Fractions or 90% CL Limit [10-4]

			<u> </u>				
X_i	J=0		J=	J=1		J=2	
	n=2	n = 3	n=2	n = 3	n = 2	n = 3	
$2\pi 2K1\pi^0$	< 1.6	< 0.3	$2.0\pm0.5\pm0.5$	$3.0\pm0.6\pm0.8$	$0.9\pm0.4\pm0.2$	< 1.1	
$3\pi 1 K 1 K_{S}^{0}$	< 0.5	< 0.5	$1.3\pm0.4\pm0.3$	$1.1\pm0.4\pm0.3$	< 1.2	< 0.9	
$3\pi 1K 1K_{S}^{0}2\pi^{0}$	< 4.7	< 2.3	< 6.1	$7.7\pm2.3\pm2.2$	$5.3\pm1.9\pm1.5$	< 6.7	
$4\pi 2\pi^0$	< 2.1	< 2.5	$7.9\pm1.4\pm2.1$	$5.9 \pm 1.2 \pm 1.6$	$3.5\pm1.1\pm0.9$	$3.9\pm1.2\pm1.1$	
$4\pi 2K$	$1.2\pm0.5\pm0.3$	< 1.5	$1.5\pm0.4\pm0.4$	$0.9\pm0.3\pm0.2$	$1.2\pm0.3\pm0.3$	$0.9\pm0.3\pm0.2$	
$4\pi 2K1\pi^0$	< 2.7	< 2.2	$3.4\pm0.8\pm0.9$	$5.5\pm1.0\pm1.5$	$2.1\pm0.7\pm0.5$	$2.4\pm0.8\pm0.7$	
$4\pi 2K 2\pi^0$	< 5.4	< 10.8	$8.6\pm2.0\pm2.4$	$9.6\pm2.3\pm2.8$	$3.9\pm1.6\pm1.1$	$4.7\pm1.8\pm1.4$	
$5\pi 1K 1K_{S}^{0}1\pi^{0}$	< 1.7	< 6.7	$9.2\pm2.3\pm2.5$	$6.7\pm1.9\pm1.9$	< 5.0	< 4.5	
6π	< 0.8	< 0.7	$1.8\pm0.4\pm0.4$	$1.2\pm0.3\pm0.3$	$0.7\pm0.3\pm0.2$	$0.9\pm0.3\pm0.2$	
$6\pi 2\pi^0$	< 5.9	< 12.3	$17.2\pm2.7\pm4.8$	$11.9\pm2.4\pm3.4$	$10.2\pm2.2\pm2.8$	$12.1\pm2.5\pm3.6$	
$6\pi 2K$	$2.4\pm0.9\pm0.7$	< 1.5	$2.6\pm0.6\pm0.7$	$2.0\pm0.6\pm0.5$	< 0.8	$1.4\pm0.5\pm0.4$	
$6\pi 2K1\pi^0$	< 9.9	< 7.3	$7.5\pm1.6\pm2.1$	$6.1\pm1.4\pm1.8$	$3.7\pm1.2\pm1.0$	$4.2\pm1.2\pm1.2$	
8π	< 0.7	< 1.7	$2.7\pm0.6\pm0.7$	$1.7\pm0.5\pm0.5$	$0.8\pm0.4\pm0.2$	$0.9\pm0.4\pm0.3$	
$8\pi 2\pi^0$	< 20.5	< 6.5	$14.0\pm3.5\pm4.3$	$19.2 \pm 3.7 \pm 6.0$	$18.5\pm4.4\pm5.6$	$12.6\pm3.5\pm4.1$	

write this down instead: arXiv:0808.0933 [hep-ex] (PRD, accepted)

INDIANA UNIVERSITY College of Arts and Sciences Bloomington

TIJ

Inclusive Xb Decays to Open Charm

- All states except $\chi_{b1}(nP)$ decay dominantly to gg; $\chi_{b1}(nP) \rightarrow qqg$
- cc production suppressed in gg hadronization, but not in qqg hadronization
- Expect (and observed) enhanced $\chi_{b1}(nP) \rightarrow D^0X$, consistent with NRQCD predictions
- Consistent with relative charm production of 25% in qqg hadronization

	in hadronization			
State	$R_J^{(c)}~(\%)$	90% CL UL (%)		
$\chi_{b0}(1P)$	$9.6 \pm 6.2 \pm 0.8 \pm 0.8$	< 17.9		
$\chi_{b1}(1P)$	$24.8 \pm 3.8 \pm 2.2 \pm 3.6$			
$\chi_{b2}(1P)$	$9.8 \pm 3.5 \pm 0.9 \pm 0.9$	< 14.6		
$\chi_{b0}(2P)$	$8.7 \pm 6.4 \pm 0.9 \pm 0.7$	< 17.7		
$\chi_{b1}(2P)$	$25.3 \pm 4.3 \pm 2.5 \pm 2.4$			
$\chi_{b2}(2P)$	$0.4 \pm 3.5 \pm 0.4 \pm 0.1$	< 6.1		
PRD 78, 092007 (2008)				

fraction of charm production

X_c(IP) Two-body Decays

INDIANA UNIVERSITY College of Arts and Sciences

Bloomington

- Variety of physics applications -- two body decays are theoretically more clean
 - role of the color octect mechanism in decay
 - probe gluon content in final state mesons
- CLEO results for two-baryon final states have also recently been published: PRD 78, 031101(R) (2008)

Branching Fractions or 90% CL UL [10-3]

Mode		χ_{c0}	χ_{c2}	
$\pi^+\pi^-$	This Work	$6.37 \pm 0.08 \pm 0.29 \pm 0.32$	$1.59 \pm 0.04 \pm 0.07 \pm 0.10$	
	PDG	4.87 ± 0.40	1.42 ± 0.16	
$\pi^0\pi^0$	This Work	$2.94 \pm 0.07 \pm 0.32 \pm 0.15$	$0.68 \pm 0.03 \pm 0.07 \pm 0.04$	
	PDG	$2.43 \pm .20$	0.71 ± 0.08	
K^+K^-	This Work	$6.47 \pm 0.08 \pm 0.33 \pm 0.32$	$1.13 \pm 0.03 \pm 0.06 \pm 0.07$	
	PDG	5.5 ± 0.6	0.78 ± 0.14	
$K^0_S K^0_S$	This Work	$3.49 \pm 0.08 \pm 0.17 \pm 0.17$	$0.53 \pm 0.03 \pm 0.03 \pm 0.03$	
	PDG	2.77 ± 0.34	0.68 ± 0.11	
$\eta\eta$	This Work	$3.18\pm 0.13\pm 0.31\pm 0.16$	$0.51 \pm 0.05 \pm 0.05 \pm 0.03$	
	PDG	2.4 ± 0.4	< 0.5	
$\eta\eta'$	This Work	< 0.25	< 0.06	
		$(0.16\pm 0.06\pm 0.01\pm 0.01)$	$(0.013\pm 0.031\pm 0.001\pm 0.001)$	
	PDG	< 0.5	< 0.26	
$\eta'\eta'$	This Work	$2.12\pm 0.13\pm 0.18\pm 0.11$	< 0.10	
			$(0.056\pm 0.032\pm 0.005\pm 0.003)$	
	PDG	1.7 ± 0.4	< 0.4	
arXiv:0811.0586 [hep-ex]				

(PRD, submitted)

M. R. Shepherd PANIC08, Eilat November 11, 2008

Observation of \chi_{cJ}(IP) (ρ, ω, ω)

Significant signals seen for: $\chi_{c1} \rightarrow \gamma \rho$ x_{cl}→γω

 $\mathcal{B} \times 10^6$

 $243 \pm 19 \pm 22$

Mode

 $\chi_{c0} \to \gamma \rho^0$

 $\chi_{c1} o \gamma
ho^0$

Events / 5 MeV

1.2

14

4.4

U.L. $[10^{-6}]$

< 9.6

The form of the decay is similar to $J/\psi \rightarrow \gamma f$, an important reaction for glueball searches.

pQCD, however, predicts rates an order of magnitude below the observations!

(Gao, Zhang, Chao, Chin. Phys. Lett. 23, 2376 (2006) [arXiv:hep-ph/0607278])

INDIANA UNIVERSITY College of Arts and Sciences Bloomington		
DEPARTMENT OF PHYSICS	PRL 101,	151801 (2008)
$\chi_{c2} \rightarrow \gamma \phi$	< 13	1.1
$\chi_{c1} \rightarrow \gamma \phi 12.8 \pm 7.6 \pm 1.5$	< 26	3.6
$\chi_{c0} ightarrow \gamma \phi$	< 6.4	0.46
$\chi_{c2} ightarrow \gamma \omega$	< 7.0	0.50
$\chi_{c1} \rightarrow \gamma \omega 83 \pm 15 \pm 12$		1.6
$\chi_{c0} ightarrow \gamma \omega$	< 8.8	0.13
$\chi_{c2} \rightarrow \gamma \rho^{-25} \pm 10^{+2}_{-14}$	< 50	4.4

X_cJ(IP) Two-Photon Widths

 Two-photon decays of χ_{cJ} probe relativistic and radiative corrections known to be significant in the charmonium system

 $\Gamma_{YY}(\chi_{c0}) = 2.53 \pm 0.37_{stat} \pm 0.11_{syst} \pm 0.24_{PDG} \text{ keV}$

$$\Gamma_{YY}(\chi_{c2}) = 0.60 \pm 0.06_{stat} \pm 0.03_{syst} \pm 0.05_{PDG} \text{ keV}$$

Ratio = 0.237 ± 0.043_{stat} ± 0.015_{syst} \pm 0.03_{PDG}

In pQCD quark mass and wave function uncertainties cancel, making the ratio of widths R a key quantity -- at first order in α_s :

$$\mathcal{R}_{th} = \frac{\Gamma_{\gamma\gamma}(\chi_{c2}) = 4(|\Psi'(0)|^2 \alpha_{em}^2 / m_c^4) \times [1 - 1.70\alpha_s]}{\Gamma_{\gamma\gamma}(\chi_{c0}) = 15(|\Psi'(0)|^2 \alpha_{em}^2 / m_c^4) \times [1 + 0.06\alpha_s]} = (4/15) [1 - 1.76\alpha_s] \\ \alpha_s = 0.32 \rightarrow \mathsf{R}=0.12$$

arXiv:0803.2869 [hep-ex] (PRD, accepted) new world avg.: R = 0.20 ± 0.02 higher order corrections very significant

DEPARTMENT OF PHYSICS INDIANA UNIVERSITY College of Arts and Sciences

Bloomington

- $J/\psi \rightarrow \gamma\gamma\gamma$
- This is the quarkonium analogue of ortho-positronium.
- Tag J/ ψ with $\psi(2S) \rightarrow \pi^+\pi^- J/\psi$.
- 37 events are inconsistent with $\gamma\pi^0/\eta/\eta^{\,\prime}/\eta_c.$
- 24.2 events remain after subtracting backgrounds (dominantly $\gamma \pi^0 \pi^0$).
- $B(J/\psi \rightarrow \gamma \gamma \gamma) = (1.2 \pm 0.3 \pm 0.2) \times 10^{-5}$.
- Agrees with leading order QED prediction, but NLO correction takes rate negative! (Higher order corrections very significant.)
- A search for $J/\psi \rightarrow \gamma \eta_c$; $\eta_c \rightarrow \gamma \gamma$ leads to upper limits on $B(\eta_c \rightarrow \gamma \gamma)$: $B(\eta_c \rightarrow \gamma \gamma) < 3 \times 10^{-4}$ at 90% C.L. (PDG: $B(\eta_c \rightarrow \gamma \gamma) = (2.7 \pm 0.9) \times 10^{-4}$)

INDIANA UNIVERSITY College of Arts and Sciences Bloomington

DEPARTMENT OF PHYSICS

10

M. R. Shepherd PANIC08, Eilat November 11, 2008

$J/\psi,\psi' \rightarrow \gamma \eta_c$

Three Measurements of MI Transitions:

A. $B(\psi(2S) \rightarrow \gamma \eta_c) = (4.32 \pm 0.16 \pm 0.60) \times 10^{-3}$ from inclusive η_c decays. B. $B(J/\psi \rightarrow \gamma \eta_c) / B(\psi(2S) \rightarrow \gamma \eta_c)$ using exclusive η_c decays. C. $B(J/\psi \rightarrow \gamma \eta_c) = (1.98 \pm 0.09 \pm 0.30)\%$ taking A×B.

X

$$= B(J/\psi \rightarrow \gamma \eta_c)$$

One "surprise" was the non-trivial line-shape of the $\eta_{\rm c}.$

Recent Lattice QCD Results (Dudek et al, PRD73,07450(2006)) predict $\Gamma_{\gamma\eta c} = (2.0 \pm 0.1 \pm 0.4) \text{ keV}$ $\Rightarrow B(J/\psi \rightarrow \gamma \eta_c) = (2.1 \pm 0.1 \pm 0.4)\%$

DEPARTMENT OF PHYSICSINDIANA UNIVERSITY
College of Arts and Sciences
Bloomington

arXiv:0805.0252 [hep-ex] (submitted to PRL)

M. R. Shepherd PANIC08, Eilat November 11, 2008

The $\eta_c(IS)$ Mass

PDG 2006 Mass

<u>From CLEO fits to $J/\psi \rightarrow \gamma \eta_c$ (previous slide):</u> $M(\eta_c) = 2976.7 \pm 0.6 \text{ MeV/c}^2$ (unmodified BW) $M(\eta_c) = 2982.2 \pm 0.6 \text{ MeV/c}^2$ (BW modified by energy dependence in the matrix element). (statistical errors only!)

> <u>Recent Belle γγ measurements:</u> η_c→4-body (EPJ,C53:1-14(2008)): M(η_c) = 2986.1 ± 1.0 ± 2.5 MeV/c² η_c→K_SKπ (photon 2007): M(η_c) = 2981.4 ± 0.5 ± 0.4 MeV/c²

Understanding the energy dependence of the $\psi(IS,2S) \rightarrow \gamma \eta_c$ matrix element is crucial for an accurate mass measurement from radiative decays.

η_c mass uncertainty drives experimental error on 1S hyperfine splitting.

INDIANA UNIVERSITY College of Arts and Sciences Bloomington

DEPARTMENT OF PHYSICS

The h_c(IP) Mass

 $\psi(2S) \rightarrow \pi^0 h_c(1P); h_c(1P) \rightarrow \gamma \eta_c$

(factor of 9 more data than previous measurement)

DEPARTMENT OF PHYSICS

INDIANA UNIVERSITY College of Arts and Sciences

Bloomington

Summary

- Diverse range of QCD physics is accessible by studying the heavy quarkonia systems -- only a small sample presented here:
 - gluon hadronization
 - quark and wave function structure
 - qq interactions: hyperfine splitting, radiative and relativistic effects
- Experimental outlook is promising
 - CLEO-c data collection is complete, final analysis underway
 - BaBar and Belle are exploring the bottomonia states
 - BES III will acquire an enormous data sample in the charmonium region

