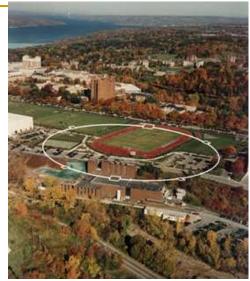
Measurements related to the ADS determination of γ at CLEO-c

Jim Libby (University of Oxford) On behalf of the CLEO-c collaboration

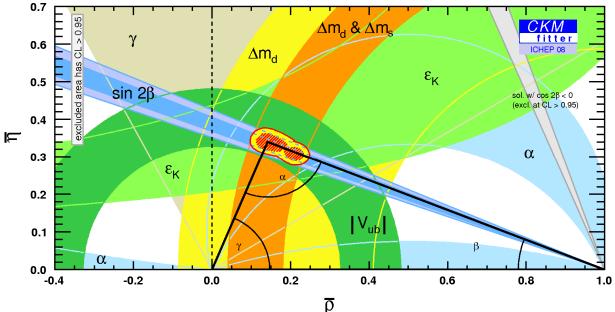
- Introduction to CLEO-c
- Measurements related to the determination of γ via ${\rm B^{\pm}} \rightarrow {\rm DK^{\pm}}$

$$D \rightarrow K^{-}\pi^{+}$$

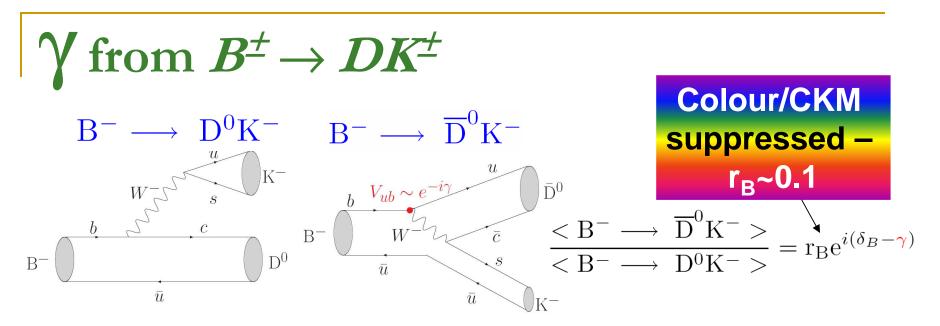
 $D \rightarrow K^- \pi^+ \pi^+ \pi^-$ and $D \rightarrow K^- \pi^+ \pi^0$


Introduction to CLEO-c

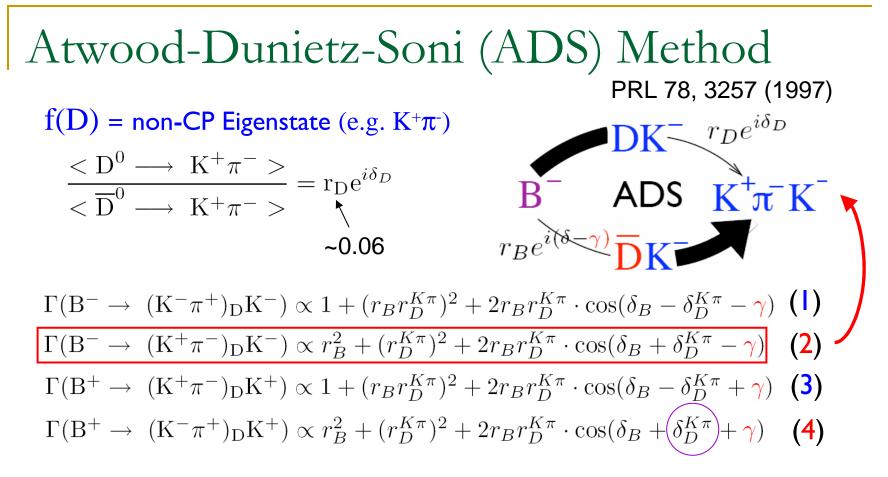
- Detector at the Cornell Electron Storage Ring (CESR)
- Operated at energies around $c\bar{c}$ threshold
- Data sets for flavour measurements:
 - $E_{CM} = 4170 \text{ MeV}$ $\mathscr{L}_{int} \sim 600 \text{ pb}^{-1}$ Determination of decay constant f_{Ds} at CLEO-c is a critical test of lattice QCD and sensitive to new physics
 - $\psi(3770)$ $\mathscr{L}_{int} = 818 \text{ pb}^{-1}$ [This talk]


$$e^+e^- \rightarrow \psi(3770) \rightarrow D^0 \overline{D}^0 \qquad C = -1$$

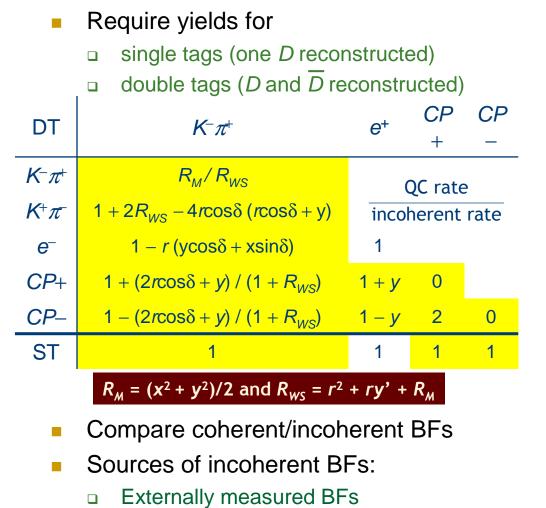
Quantum correlated state:


For example, reconstruct one *D* decay to a *CP* eigenstate uniquely identifies the other *D* to be of opposite *CP*

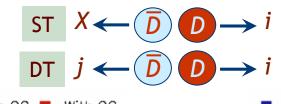
Status of direct determination of γ

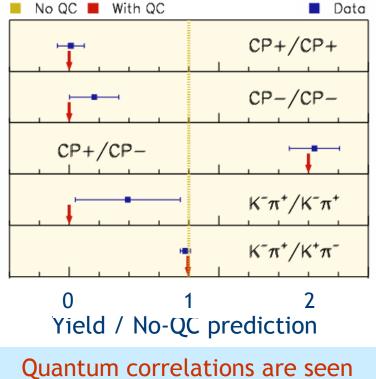

- γ is the least well determined angle of the unitarity triangle with an uncertainty of ~30° from direct measurements • $\sigma_{\beta} = 1^{\circ}$
- Comparison of measurements of γ in tree and loop processes sensitive to new physics
 - Side opposite B-mixing measurements loop only

- Extraction through interference between $b \rightarrow c$ and $b \rightarrow u$ transitions
- Require decay of D^0 and $\overline{D^0}$ to a common final state, f(D)
- A theoretically clean determination of γ
 - SM 'standard candle'


12/9/08

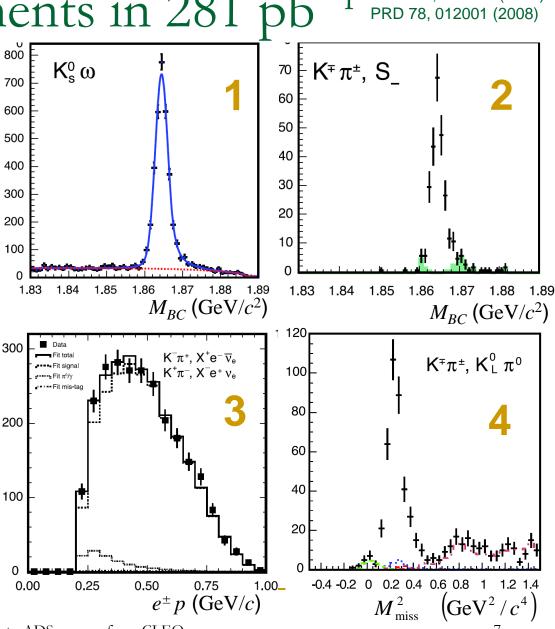
 $\lambda^{i(\delta-1)}$


- From counting these 4 rates, together with those from CP eigenstates (*KK*, $\pi\pi$), a determination of γ can be made
- Can determine δ_D from rates but **external constraints extremely helpful**


Coherent vs. Incoherent Decay

Single tags at $\psi(3770)$

D. Asnér and W. Sun, Phys. Rev. D73, 034024 (2006)



Yield measurements in 281 pb⁻¹ PRL 100, 221801 (2008) PRD 78, 012001 (2008)

- 1. Fully-reconstructed single tags:
 - Fit beam-constrained mass distribution

 $M_{BC} = \sqrt{E_{beam}^2 - |p_D|^2}$

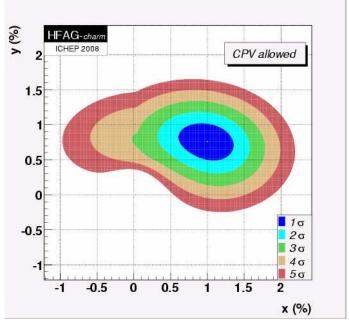
- 2. Fully-reconstructed double tags: 200
 - Two fully-reconstructed STs
- 3. Inclusive semileptonic DTs:
 - One fully-reconstructed ST
 - Plus one electron candidate
 - □ Fit e[±] momentum spectrum
- *4.* $K_{L}^{0}\pi^{0}$ double tags:
 - One fully-reconstructed ST
 - □ Plus one π^0 candidate
 - Compute missing mass²
 - Signal peaks at $M^2(K^0)$.

Inputs to ADS gamma from CLEO-c

External inputs

- External inputs improve y and $\cos \delta$ precision
- All correlations among measurements included in fit
- Standard fit includes:
 - Info on *r* needed to obtain $\cos\delta$:
 - $R_{WS} = r^2 + r y' :+ R_M$
 - $R_M = (x^2 + y^2)/2$
 - Assume $x\sin\delta = 0 \Rightarrow y' \approx y\cos\delta$
 - $K\pi$ and *CP*-eigenstate BFs
- Extended fit averages *y* and *y*':
 - \Box *CP*+ lifetimes (y)
 - $K_{S}^{0}\pi^{+}\pi^{-}$ Dalitz analysis (x, y)
 - $K\pi$ CP-conserving fits (y', r^2, R_M)

Parameter	Average (%)		
$R_{ m WS}$	$R_{\rm WS}$ 0.409 ± 0.022		
R_{M}	0.0173 ± 0.0387		
Parameter	Value $(\%)$		
$\mathcal{B}(K^-\pi^+)$	3.81 ± 0.09		
$\mathcal{B}(K^0_S \pi^0)$	1.15 ± 0.12		
$\mathcal{B}(K^0_S\eta)$	0.380 ± 0.060		
$\mathcal{B}(K^0_S\omega)$	1.30 ± 0.30		
$\mathcal{B}(K_L^0\pi^0)$	1.003 ± 0.083		
$\mathcal{B}(K^-K^+)/\mathcal{B}$	$(K^-\pi^+)$ 10.10 ± 0.16		
$\mathcal{B}(\pi^-\pi^+)/\mathcal{B}(x)$	$K^{-}\pi^{+}$) 3.588 ± 0.057		
Parameter	Value (%)		
y = 0	$.662 \pm 0.211$		
$\frac{1}{x}$	0.811 ± 0.334		
r^2 0.339 ± 0.012			
$y' = 0.34 \pm 0.30$			
x'^2	0.006 ± 0.018		


\mathbf{D} = \mathbf{D}	Parameter	Standard Fit	Extended Fit
Results	$y (10^{-3})$	$-45\pm59\pm15$	$6.5 \pm 0.2 \pm 2.1$
First	$r^{2}(10^{-3})$	$8.0 \pm 6.8 \pm 1.9$	$3.44 \pm 0.01 \pm 0.09$
	$\cos\delta$	$1.03 \pm 0.19 \pm 0.06$	$1.10 \pm 0.35 \pm 0.07$
determination	x^2 (10 ⁻³)	$-1.5 \pm 3.6 \pm 4.2$	$0.06 \pm 0.01 \pm 0.05$
with 281 pb ⁻¹	$x \sin \delta \; (10^{-3})$	0 (fixed)	$4.4 \pm 2.4 \pm 2.9$
PRL 100, 221801 (2008)	$\chi^2_{\rm fit}/{ m ndof}$	30.1/46	55.3/57
PRD 78, 012001 (2008)			

- Standard fit result important component in average of charm mixing
- Extended fit leads to measurement of:

 $\delta = \left(22^{+11+9}_{-12-11}\right)^{\circ}$

From likelihood scan of physically allowed region

- Future improvements:
 - Full $\psi(3770)$ data set 818 pb⁻¹
 - **u** WS semileptonics vs. $K\pi$
 - Additional K^0_L modes
 - *C*-even information from 4170 MeV data

Multi-body ADS

• $B \rightarrow D(K\pi\pi\pi)K$ and $B \rightarrow D(K\pi\pi^0)K$ can also be used for ADS analyses

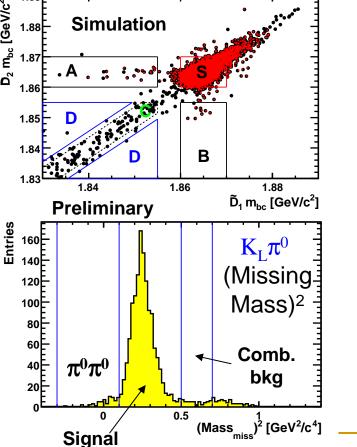
Mode	Branching Ratio		
Κπ	3.89%		
$K\pi\pi^0$	13.9%		
КЗπ	8.1%		

- Significantly larger branching fractions than $B \rightarrow D(K\pi)K$
- However, need to account for the resonant substructure
 - In principle each point in the phase space has a different strong phase associated with it
- Atwood and Soni [PRD 68 033003 (2003)] showed how to modify the usual ADS equations for this case
 - Introduce coherence parameter $R_{K3\pi}$ which dilutes interference term sensitive to γ
- $\Gamma(B^{-} \to (K^{+}\pi^{-}\pi^{-}\pi^{+})_{D}K^{-}) \propto r_{B}^{2} + (r_{D}^{K3\pi})^{2} + 2r_{B}r_{D}^{K3\pi}R_{K3\pi}\cos(\delta_{B} + \delta_{D}^{K3\pi} \gamma)$
 - $R_{K3\pi}$ ranges from
 - 1=coherent (dominated by a single mode) to
 - 0=incoherent (several significant components)

Measuring R and δ at CLEO-c

- The coherent double-tagged rates give sensitivity to combinations of R and δ

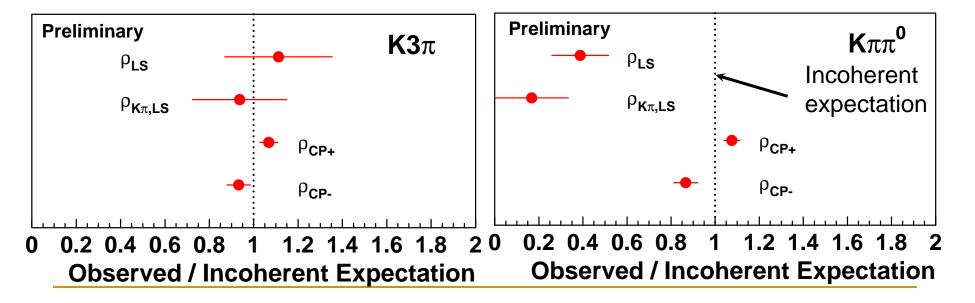
Double Tag Rate	Sensitive To
$K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$ vs. $K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$	$(\boldsymbol{R}_{K3\pi})^2$
$K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$ vs. CP	$R_{K3\pi}cos(\delta^{K3\pi})$
$K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$ vs. $K^{\pm}\pi^{\mp}$	$R_{K3\pi}cos(\delta^{K\pi}-\delta^{K3\pi})$

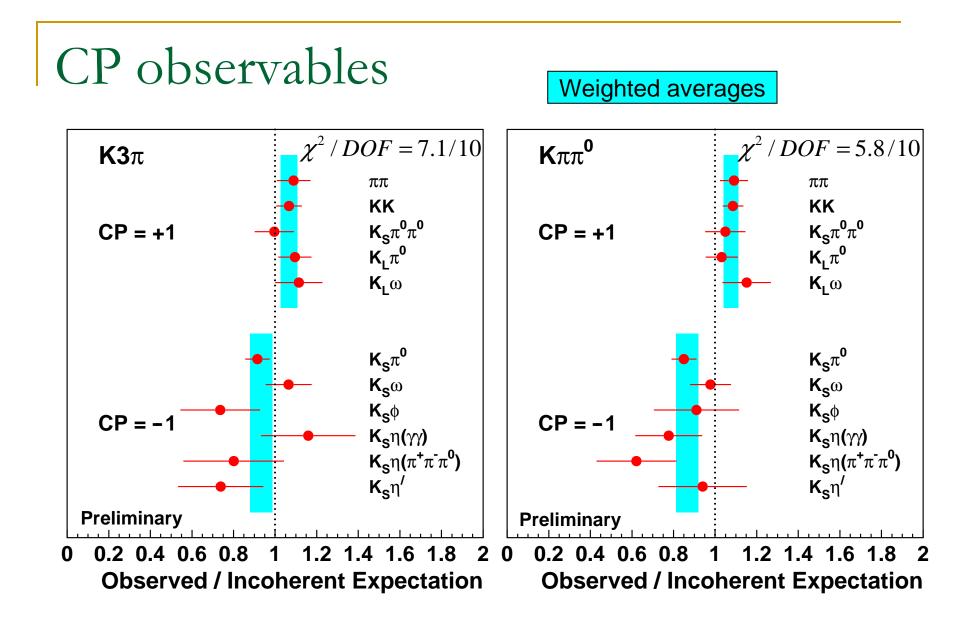

- We perform selections of these double-tags
- In addition, it is also necessary to perform selections of the opposite sign *K*[±] modes to determine normalisation factors
- Also some CP tags are normalised to $K\pi vs$ CP-tag to reduce dependence on poorly measured BFs

Event selection

- Selections performed over all $\psi(3770)$ data, corresponding to 818 pb⁻¹.
- Consider 10 different CP tags:

Assess flat background from m_{bc}
 sidebands and peaking from MC:

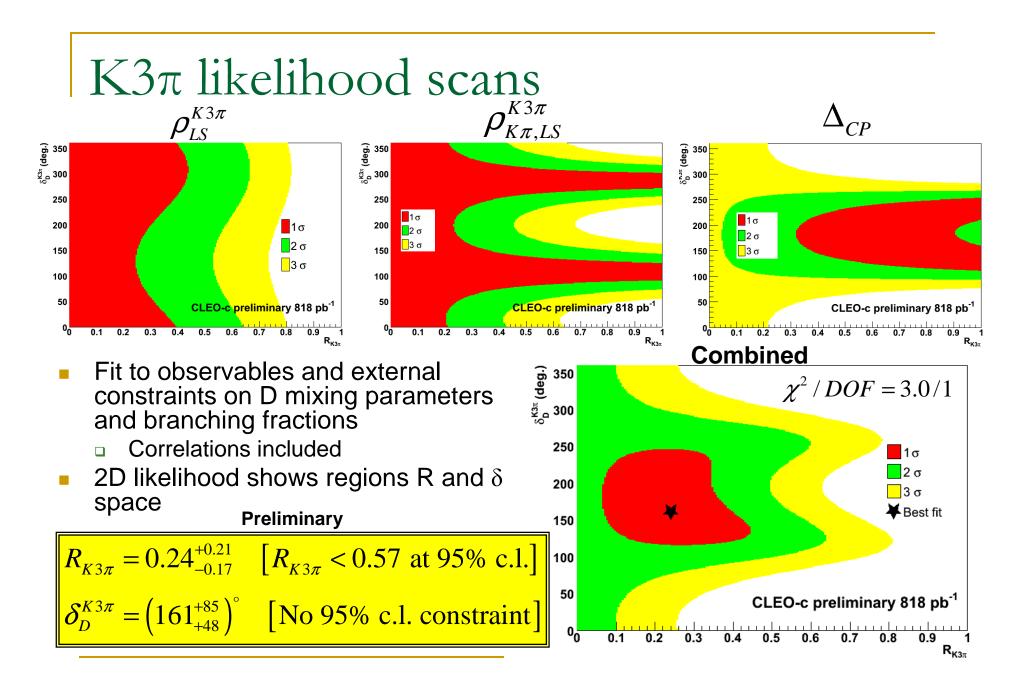

CP Tag	K3 π yield	$K\pi\pi^0$ yield	
ΚΚ, ππ	782	1100	م م ب ق 1.88 Simu 1.87 م
$K_{S}\pi^{0}$	705	891	
$K_{S}\omega(\pi^{+}\pi^{-}\pi^{0})$	319	389	1.85 D
$K_{S}\pi^{0}\pi^{0}$	283	406	1.84
$K_{S}\phi(K^{+}K^{-})$	53	91	1.83
$K_{S}\eta(\{\gamma\gamma, \pi^{+}\pi^{-}\pi^{0}\})$	164	153	Prelimiı « F
$K_{s}\eta'(\pi^{+}\pi^{-}\eta)$	36	61	3 160 U 140 U 140 U
$K_L \pi^0$	695	1234	120
$K_{L}^{-}\omega(\pi^{+}\pi^{-}\pi^{0})$	296	449	80
Total	3465	4774	$\frac{60}{40}$
<i>CP</i> = 1, <i>CP</i> = -1			

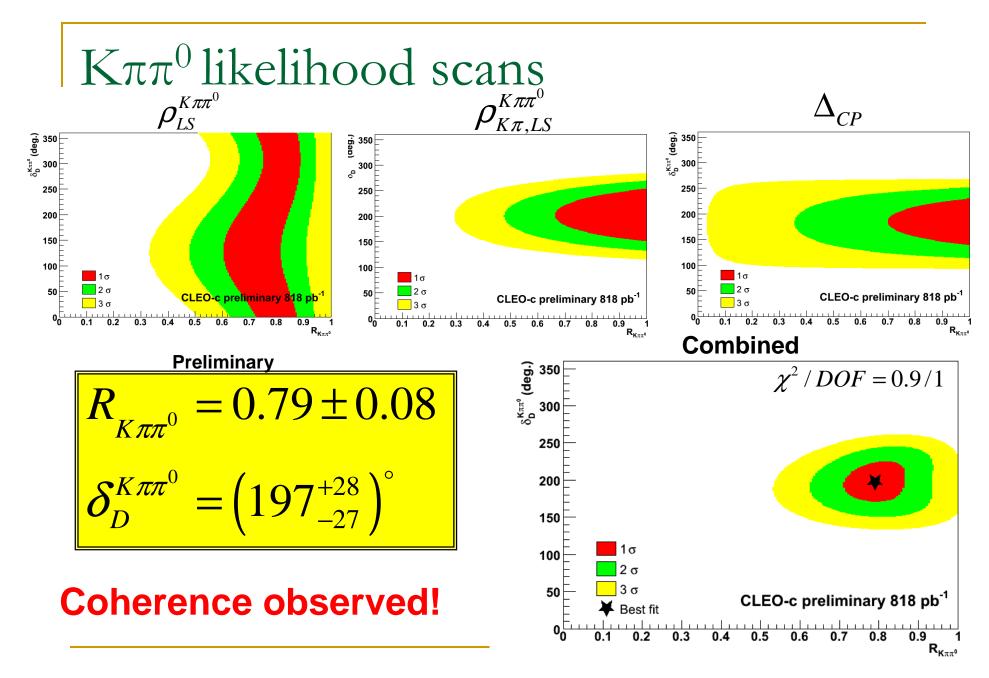


Observables

- Define observables which are the measured rates normalised to the incoherent expectation
 - Dependence on *D* mixing parameters and $\delta_D^{K\pi}$

$$\rho_{LS}^{K3\pi} \cong \frac{1 - R_{K3\pi}^2}{1 + \frac{x^2 + y^2}{2(r_D^{K3\pi})^2} - \frac{R_{K3\pi}}{r_D^{K3\pi}} (y \cos \delta_D^{K3\pi} - x \sin \delta_D^{K3\pi})} \\
\rho_{K\pi,LS}^{K3\pi} \propto \frac{1 + \left(\frac{r_D^{K3\pi}}{r_D^{K\pi}}\right)^2 - 2\frac{r_D^{K3\pi}}{r_D^{K\pi}} R_{K3\pi} \cos \delta_D^{K3\pi}}{1 + \frac{x^2 + y^2}{2(r_D^{K\pi})^2} - \frac{1}{r_D^{K\pi}} (y \cos \delta_D^{K\pi} - x \sin \delta_D^{K\pi})} \\
\rho_{CP\pm}^{K3\pi} \cong 1 \pm \Delta_{CP}^{K3\pi} \text{ where } \Delta_{CP}^{K3\pi} = y - r_D^{K3\pi} R_{K3\pi} \cos \delta_D^{K3\pi}$$

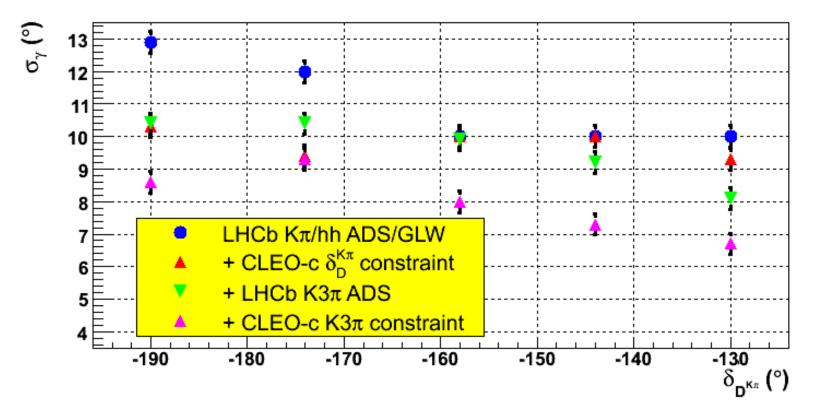



12/9/08

CLEO-c preliminary results

Observable	КЗπ	$K\pi\pi^0$	
$ ho_{LS}^{ ext{mode}}$	1.112±0.226±0.088	0.388±0.127±0.026	
$ ho^{ ext{mode}}_{ extsf{K}\pi, extsf{LS}}$	0.937±0.176±0.120	0.167±0.099±0.134	
Δ_{CP}	0.073±0.018±0.024	0.098±0.015±0.025	

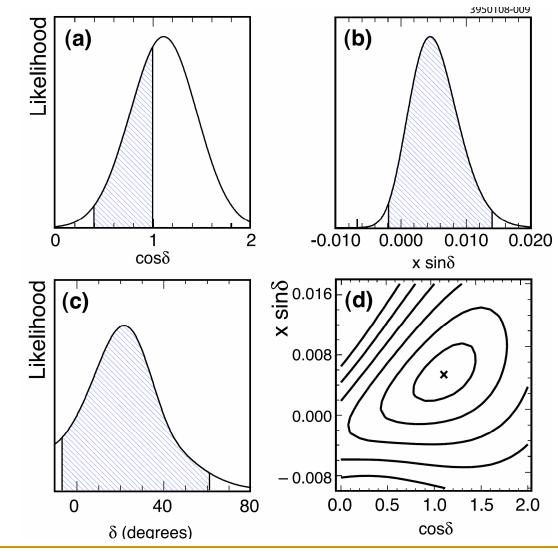
- Dominant systematic uncertainties:
 - ρ_{LS} : DCS branching fraction
 - $\Box \ \rho_{K\pi, LS}: K^{-}\pi^{+} \longrightarrow K^{+}\pi^{-} \text{ mis-ID rate}$
 - Δ_{CP} : statistics of normalisation to K π vs. *CP*-tag yields
 - Smaller uncertainty than using PDG branching fractions
 - Some reconstruction uncertainties cancel



Impact of CLEO-c at LHCb

From prelim. result arXiv:0805.1722

- These $D \rightarrow K3\pi$ measurements have been input to ADS simulation studies by LHCb
 - Estimated yields documented in LHCb-2006-066 and LHCb-2007-004
- One nominal year of running results see significant improvement with the addition of $B \rightarrow D(K3\pi)K$ and the CLEO-c constraints



Conclusion

- CLEO-c data vital for γ extraction strategies with $B^{\pm} \rightarrow DK^{\pm}$
- First determination of strong phase difference for D→Kπ
 □ PRL 100, 221801 (2008) and PRD 78, 012001 (2008)
- Preliminary results for the *D* → *K*πππ and *D* → *K*ππ⁰ coherence factor, *R*, and the average strong phase, δ_D
 D → *K*ππ⁰ very coherent acts almost like *D* → *K*π
 - □ $D \rightarrow K3\pi$ not v. coherent but gives a powerful constraint on r_B

Backup

TQCA extended fit likelihoods

Systematics

$ ho_{LS}^{K\pi\pi0}$	$ ho_{K\pi,LS}^{K\pi\pi0}$	$\Delta_{CP}^{K\pi\pi0}$
0.005	0.005	0.003
0.014	0.006	0.011
0.021	0.009	< 0.001
/	0.004	0.001
/	0.013	0.002
/	/	0.005
/	/	0.006
/	/	0.017
/	/	0.012
/	/	0.006
/	0.133	/
0.026	0.134	0.026
	0.005 0.014 0.021 / / / / / / / /	$\begin{array}{c cccc} \rho_{LS} & \rho_{K\pi,LS} \\ \hline 0.005 & 0.005 \\ \hline 0.014 & 0.006 \\ \hline 0.021 & 0.009 \\ \hline / & 0.004 \\ \hline / & 0.013 \\ \hline / & / \\ \hline / & 0.133 \\ \end{array}$