Measurements of f_D+ and f_{Ds}

Jim Libby (University of Oxford)

With thanks to S. Stone, L. Zhang and D. Asner

Outline

- Introduction and motivation
- f_D+ determination at CLEO-c
- f_{Ds} determinations at:
 CLEO-c with D_s→µν and D_s→τ(πν)ν
 CLEO-c with D_s→τ(evv)ν
 Belle with D_s→µν
 BABAR with D_s→µν

Conclusions and outlook

Leptonic Decays: D $\!\rightarrow\!\ell^+\!\nu$

c and \overline{q} can annihilate, probability is proportional to wave function overlap

Calculate, or measure f_D if V_{Qq} is known, here take $V_{cd} = V_{us} = 0.2256$, $V_{cs} = V_{ud} = 0.9742$

Relationship to CKM

- Only a few measurements are independent of strong interaction calculations
 - CP violation where we interfere one decay diagram with a mixing diagram (B° \rightarrow J/ ψ K°)
- Many important quantities measured in CKM are combinations of strong and weak parameters
 - Interpreting B and B_s mixing in terms of CKM parameters requires knowledge of f_{B_s}/f_B
 - Extracting V_{ub} requires knowledge of absolute value of form-factors for $B \rightarrow \pi(\rho) \ell \nu$ at least at one value of q²

New Unquenched Lattice Calc

- Follana et al HPQCD & UKQCD collaborations (PRL 100, 062002 (2008)) New predictions of f_D += 207±4 MeV
 - $f_{Ds} = 241 \pm 3 \text{ MeV}$
- Older unquenched from FNAL+MILC +HPQCD are: f_{D} += 201±3±17 MeV f_{Ds} = 249±3±16 MeV (Aubin et al., PRL 95, 122002 (2005))

Beyond the SM sensitivity

 Besides the obvious interest in comparing with lattice & other calculations of f_D there are NP possibilities

- CLEO's previous measurement of f_{Ds} + Belle's (see Rosner & Stone arXiv:0802.1043) give f_{Ds}=274±10 MeV as compared with 241±3 MeV 2+1 unquenched lattice QCD calculation of Follana et.al (PRL 100, 062002 (2008))
- Dobrescu & Kronfeld (arXiv:0803.0512) argue that this can well be the effect of NP, either charged Higgs (their own model) or leptoquarks
- CLEOs previous measurement of f_D+ was too inaccurate to challenge Follana et al., theory 207±4 versus 223±17 MeV (CLEO)

Situation Prior To FPCP 2008

 Experiment f_{Ds}: CLEO measures both μ⁺ν & τ⁺ν, & Belle measures μ⁺ν. Average is 3.3 σ away, could be a fluctuation

Updates to both CLEO measurements

Favoured methods at CLEO-c

- Two-body production e⁺e⁻→DDD
- Double tags at 3770 MeV:
 - fully reconstruct one D⁰ or D⁺,
 then one can either
 - fully reconstruct the other D for absolute branching ratios and quantum correlations or

- look for events with one missing particle in leptonic decays, semileptonic decays or hadronic K_Ldecays
- Similarly, double tags at 4170 MeV:
 here look for a D_s or a D_s*
- Some measurements also done using single tags

Basic Technique for $D^+ \to \mu^+ \nu$

- 1. Fully reconstruct a D[±], and count total # of tags
- 2. Seek events with only one additional oppositely charged track within $|\cos\theta| < 0.9 \&$ no additional photons > 250 MeV (to veto D⁺ $\rightarrow \pi^{+}\pi^{0}$)
- 3. Charged track must deposit only minimum energy (from ionization) in calorimeter, E < 300 MeV
 - True for 98.8% of muons
 - Rejects 45% of π's

4. Compute missing-mass squared (MM²). If close to zero then almost certainly we have a $\mu^+\nu$ decay. $MM^2 = (E_{D^+} - E_{\ell^+})^2 - (\vec{p}_{D^+} - \vec{p}_{\ell^+})^2$ We know that E

We know that $E_{D^+} = E_{beam}$ and $p_{D^+} = -p_D$ -

The MM² Distribution

11

MM² Signal Shapes

$$\mathbf{MM}^{2} = (E_{Beam} - E_{\ell^{+}})^{2} - (-\vec{p}_{D^{-}} - \vec{p}_{\ell^{+}})^{2}$$

Model of K^oπ⁺ Tail

- Use double tag D⁰ \overline{D}^0 events, where both $D^0 \rightarrow K^{\mp} \pi^{\pm}$
- Make loose cuts on 2nd D⁰ so as not to bias distribution:
 - require only 4
 charged tracks in the event
- Compute MM² ignoring K[±]

Gives an excellent description of shape of low mass tail "Extra" 1.3 event background in signal region

Additional floating backgrounds

- Background cocktail composed of three-body modes
 - \square τ^{+} decays: $\rho^{+}\nu$ and $\mu^{+}\nu\nu$
 - □ Semileptonic decays: $\pi^0\mu^+\nu$ (check with e⁺)
 - □ Hadronic decays: $\rho^+\pi^0$
- We only use the shape in MM², not the absolute number

Fit MM² to sum of signal & bkgrd

- Case(i) E< 300 MeV where τ⁺ν/μ⁺ν is fixed to SM ratio
 - 149.7±12.0 μν
 28.5 τν
- Case(i) E< 300 MeV where τ⁺ν/μ⁺ν is allowed to float
 - **□** 153.9±13.5 μν
 - 13.5±15.3 τν

Residual Backgrounds for $\mu \upsilon$

 Monte Carlo of continuum, D^o, radiative return and other D⁺ modes, in μν signal region

Mode	# of events
Continuum	0.8 ± 0.4
$\overline{K}^0 \pi^+$	1.3 ± 0.9
$D^0 \text{ modes}$	0.3 ± 0.3
Sum	$2.4{\pm}1.0$

This we subtract off the fitted yields

Background Check

Systematic Errors

Source of Error	%
Finding the μ^+ track	0.7
Minimum ionization of μ^+ in EM cal	1.0
Particle identification of μ^+	1.0
MM ² width	0.2
Extra showers in event > 250 MeV	0.4
Background	0.7
Number of single tag D+	0.6
Total	2.2

Branching Fractions & f_D+

- Fix $\tau v/\mu v$ at SM ratio of 2.65
 - □ $BF(D^+ \rightarrow \mu^+ \nu) = (3.82 \pm 0.32 \pm 0.09) \times 10^{-4}$
 - □ f_D+=(205.8±8.5±2.5) MeV
 - This is best number in context of SM
- Float τν/μυ
 - □ $BF(D^+ \rightarrow \mu^+ \nu) = (3.93 \pm 0.35 \pm 0.10) \times 10^{-4}$
 - □ f_D+=(207.6±9.3±2.5) MeV
 - This is best number for use with BSM models
- These numbers have been radiatively corrected by 1% in the branching ratio for D⁺ → γ D^{*+} → $\gamma\mu^+\nu$
- Also, limits on BF(D⁺ \rightarrow e⁺ ν), BF(D⁺ \rightarrow τ ⁺ ν) and A_{CP}(D⁺ \rightarrow μ ⁺ ν)
 - All agree with SM expectation

PRD 78, 052003 (2008)

CLEO-c's improved measurement of f_{Ds}

CLEO has two methods of measuring f_{Ds}

 Measure μ⁺ν & τ⁺ν, τ⁺→ π⁺ν using similar MM² technique used for D⁺. Update result using new analysis & 30% more data (~400 pb⁻¹)
 Updated 2008

 ■ Measure τ⁺→ e⁺vv by using missing energy. This result has not been updated (~300 pb⁻¹)
 ■ PRL 100, 161801 (2008)

Use $e^+e^- \rightarrow D_S D_S^*$ at 4170 MeV

- Presence of D_s* causes analysis changes:
 - Reconstruct D_S⁻
 - $\hfill\square$ Find the γ from the $D_S{}^*$ & compute $MM{}^{*2}$ from $D_S{}^-$ & γ

$$MM^{*2} = (E_{CM} - E_{D} - E_{\gamma})^2 - (-\vec{p}_{D} - \vec{p}_{\gamma})^2$$

- Select combinations consistent with a missing D_S⁺ & count the number
- Find MM² from candidate muon for (i) E< 300 MeV in Ecal, (ii) E>300 MeV or (iii) e⁻ cand.

$$MM^{2} = (E_{CM} - E_{D} - E_{\gamma} - E_{\mu})^{2} - (-\vec{p}_{D} - \vec{p}_{\gamma} - \vec{p}_{\mu})^{2}$$

MM*² Distributions From $D_S^- + \gamma$

$\rm MM^2$ data for $\rm D_S$

- Total of 30848±695 tags
- 98.2% of μ⁺ν in
 E < 300 MeV
- 55%/45% split of $\frac{\sqrt{2}}{\tau^+}$, $\tau^+ \rightarrow \pi^+ \nu$ in two cases
- Small e⁻ background

Systematic Errors

Source of Error	%
Finding the μ^+ track	0.7
Particle identification of μ^+	1.0
MM ² width	0.2
Extra showers in event > 300 MeV	0.4
Background	0.5
Number of single tag D _S ⁻	3.0
Total	3.3

Branching Ratio & f_{Ds} (preliminary)

Mode	BF (%)	f _{Ds} (MeV)
(1) μν+τν (fix SM ratio)	$BF^{eff}(D_s \rightarrow \mu \nu) =$ (0.613±0.044±0.020)	268.2±9.6±4.4
(2) μν only	$BF(D_s \rightarrow \mu \nu) =$ (0.600±0.054±0.020)	265.4±11.9±4.4
(3) τv , $\tau \rightarrow \pi v$	$BF(D_s \to \tau v) =$ (6.1±0.9±0.2)	271±20±4

CLEO: $D_S^+ \rightarrow \tau^+ \nu, \tau^+ \rightarrow e^+ \nu \nu$

- BF(D_S⁺ \rightarrow τ ⁺ ν)×BF(τ ⁺ \rightarrow e⁺ ν ν)~1.3% is significant compared with expected BF(D_S⁺ \rightarrow Xe⁺ ν)~8%
- Search for events opposite a tag with one electron and very little additional energy
- Opt to use only a subset of the cleanest tags

Measuring $D_S^+ \rightarrow \tau^+ \nu, \tau^+ \rightarrow e^+ \nu \nu$

 Technique is to find events with an e⁺ opposite D_s⁻ tags & no other tracks, with Σ calorimeter energy

< 400 MeV

- No need to find γ from D_s^*
- BF(D_S⁺ $\rightarrow \tau^+ \nu$) =(6.17±0.71±0.36)%
- f_{Ds}=273±16±8 MeV

PRL 100, 161801 (2008)

Branching Ratio & f_{Ds} (preliminary)

Mode	BF (%)	f _{Ds} (MeV)
(1) μν+τν (fix SM ratio)	$\begin{array}{l} BF^{eff}\left(D_{s}\to\mu\nu\right)=\\ (0.613{\pm}0.044{\pm}0.020) \end{array}$	268.2±9.6±4.4
(2) μν only	$BF(D_{s} \rightarrow \mu\nu) = (0.600 \pm 0.054 \pm 0.020)$	265.4±11.9±4.4
(3) $\tau v, \tau \rightarrow \pi v$	$ BF(D_s \rightarrow \tau v) = (6.1 \pm 0.9 \pm 0.2) $	271±20±4
(4) τv , $\tau \rightarrow e v v$	$BF(D_{s} \to \tau v) = (6.17 \pm 0.71 \pm 0.36)$	273±16±8
CLEO Average		269.4±8.2±3.9
of (1) & (4)	Rad. corr.	267.9±8.2±3.9

Belle: $D_S^+ \rightarrow \mu^+ \nu$

- Look for e⁺e⁻→DKXγ(D_s), where X=nπ & the D_s is not < observed but inferred from calculating the MM
- Then add a candidate μ^+ and \smallsetminus compute MM^2
- BF(D_S⁺ $\rightarrow \mu^+\nu$) = (0.644±0.076±0.057)%
- f_{Ds}=275±16±12 MeV
- Results stable as a function of final state multiplicity

PRL 100, 241801 (2008)

BABAR: $D_S^+ \rightarrow \mu^+ \nu$

- Look for events with a tag D⁰, D[±], D^{*} or D_s with both a μ and a γ consitant to be from D_s^{*} decay in the rest of the event
- Approximate neutrino 4-mom to (E_{miss}, p_{miss})
- Compute

 $\Delta M = M(\mu\nu\gamma) - M(\mu\nu)$

- Subtract background using sidebands and electron sample
 - Remaining background from mis-IDed muons in ccbar and misreconstructed signal
- Fit ΔM distribution to extract signal

PRL 98, 141801 (2007)

 $f_{Ds}=(283\pm17(stat)\pm7(syst)\pm14(D_s\rightarrow\phi\pi)) \text{ MeV}$

$f_{D_s} \& f_{D_s} / f_{D^+}$

- Weighted Average of absolute measurements from CLEO + Belle:
 - □ f_{Ds}=270.4±7.3±3.7 MeV,
 - the systematic uncertainty is uncorrelated between the measurements
- Using f_D+ = (205.8±8.5±2.5) MeV
 - $\Box f_{Ds}/f_{D} + = 1.31 \pm 0.06 \pm 0.02$
 - Iarger than LQCD predictions
- $\Gamma(D_S^+ \rightarrow \tau^+ \nu) / \Gamma(D_S^+ \rightarrow \mu^+ \nu) = 10.3 \pm 1.1$ • SM=9.72

Consistent with lepton universality

Future datasets

- CLEO will further update f_{Ds} using at total of ~600 pb⁻¹
 - 50% increase in data for $\mu\nu$
 - □ 100% increase in data for $\tau v, \tau \rightarrow evv$
 - □ Improved D_s tag systematic to 3%→2%
- f_D+ will not see any major improvements until BES
 - Also for f_{Ds} can run at 4030 MeV for $D_s D_s$ production only
 - Reduce tag yield systematic < 1%</p>
- B-factories plans:
 - BABAR: absolute measurement with full set
 - Belle: update with final 0.9-1.0 ab⁻¹ data set

Backup

Case(i) With $\tau^+\nu/\mu^+\nu$ Floating

- Fixed
 149.7±12.0 μυ
 - 28.5 τν
- Floating
 - **□** 153.9±13.5 μυ
 - 13.5±15.3 τν

Upper limits on $\tau^+\nu$ & e⁺v

 10^{3} Fit both case(i) 10² & case(ii) constraining 10 the relative τv yield to the pion acceptance ratio 10 10 55:45.

Find

□ BF(D⁺ $\rightarrow \tau^+ \nu$)

□ BF(D⁺ $\rightarrow \tau^+ \nu)/2.65$ BF(D⁺ $\rightarrow \mu^+ \nu) < 1.2 @ 90\%$ c. l.

Also BF(D⁺ \rightarrow e⁺v)< 8.8x10⁻⁶, @ 90% c.l.

CP Violation

- D+ tags 228,945±551
- D⁻ tags 231,107±552
- μ¬ν events 64.8±8.1
- μ⁺ν events 76.0±8.6

$$A_{CP} \equiv \frac{\Gamma(D^+ \to \mu^+ \nu) - \Gamma(D^- \to \mu^- \nu)}{\Gamma(D^+ \to \mu^+ \nu) + \Gamma(D^- \to \mu^- \nu)} = 0.08 \pm 0.08$$

■ -0.05<A_{CP}<0.21 @ 90% c. l.

Consistent with SM expectation of no direct CP violation

μν Signal Shape Checked

- Data σ=0.0247±0.0012 GeV²
- MC σ=0.0235±0.0007 GeV²
- Both average of double Gaussians

Other Non-absolute Measurements

Exp.	mode	BF B	BF(D _S →¢⊅	τ) f _{Ds} (MeV)
			(%)	
CLEO $[11]$	$\mu^+ \nu$	$(6.2 \pm 0.8 \pm 1.3 \pm 1.6) \cdot 10^{-3}$	$3.6{\pm}0.9$	$273 \pm 19 \pm 27 \pm 33$
BEATRICE	$[12] \ \mu^+ \nu$	$(8.3 \pm 2.3 \pm 0.6 \pm 2.1) \cdot 10^{-3}$	$3.6{\pm}0.9$	$312 \pm 43 \pm 12 \pm 39$
ALEPH $[13]$	$\mu^+ \nu$	$(6.8 \pm 1.1 \pm 1.8) \cdot 10^{-3}$	$3.6{\pm}0.9$	$282\pm19\pm40$
ALEPH $[13]$	$\tau^+\nu$	$(5.8 \pm 0.8 \pm 1.8) \cdot 10^{-2}$		
L3 $[14]$	$\tau^+\nu$	$(7.4 \pm 2.8 \pm 1.6 \pm 1.8) \cdot 10^{-2}$		$299 \pm 57 \pm 32 \pm 37$
OPAL [15]	$\tau^+\nu$	$(7.0 \pm 2.1 \pm 2.0) \cdot 10^{-2}$		$283\pm44\pm41$
BaBar $[16]$	$\mu^+ \nu$	$(6.74 \pm 0.83 \pm 0.26 \pm 0.66) \cdot 10^{-3}$	$4.71{\pm}0.46$	$283\pm17\pm7\pm14$

See arXiv:0802.1043 for references

Possibilities

- Pick your favorite of the three:
 - Experiment will eventually converge on SM predicted value
 - If LQCD predictions of f_{Ds}/f_D+ do not agree with the data, why should we believe f_{Bs}/f_B from theory? What does this do to the CKM fits?
 - □ If there is New Physics affecting leptonic D_S decays, how does it affect B_S mixing and other B_S decays? (See A. Kundu & S. Nandi, "R-parity violating supersymmetry, B_S mixing, & D_S⁺ → $\ell^+\nu$ " [arXiv:0803.1898])

If there is a Shift ...

- If increases the radius of the ∆m_d/∆m_s constraint increases
- Red arrow indicates a shift of ~10% in f_{Bs}/f_B

New Physics Possibilities

Ratio of leptonic decays could be modified e.g. in Standard Model

$$\frac{\Gamma(\mathbf{P}^+ \to \tau^+ \nu)}{\Gamma(\mathbf{P}^+ \to \mu^+ \nu)} = m_{\tau}^2 \left(1 - \frac{m_{\tau}^2}{M_P^2} \right)^2 / m_{\mu}^2 \left(1 - \frac{m_{\mu}^2}{M_P^2} \right)^2$$

• If H[±] couple proportional to $M^2 \Rightarrow$ no effect

See Hewett [hepph/9505246] & Hou, PRD 48, 2342 (1993).

New Physics Possibilities III

- Leptonic decay rate is modified by H[±]
- Can calculate in SUSY as function of m_a/m_c,
- In 2HDM predicted decay width is x by $r_{q} = \left| 1 - M_{D}^{2} \left(\frac{\tan \beta}{M_{H^{\pm}}} \right)^{2} \left(\frac{m_{q}}{m_{c} + m_{q}} \right)^{2} \right|^{2} \quad \text{See Akeryod} \quad [\text{hep-ph/0308260}]$ 0.06 $\mathbf{r}_{s} = \text{meas rate/SM rate}$ Corrected $r_q = \left| 1 + \left(\frac{M_D^2}{m_c + m_q} \right) \left(\frac{1}{M_{\mu^{\pm}}} \right)^2 \left(m_c - m_q \tan^2 \beta \right) \right|^2$ $m_s/m_c=0.1$ Since m_d is ~0, effect From Akeroyd can be seen only in D_{S} $\begin{array}{c} 0.1 \\ tan \beta/M_{\rm H} \end{array}$ 0.8 0.3 0.4