Measurements of $f_{D}+$ and $f_{D s}$

Jim Libby (University of Oxford)

With thanks to S. Stone, L. Zhang and D. Asner

Outline

- Introduction and motivation
- $\mathrm{f}_{\mathrm{D}^{+}}$determination at CLEO- c
- $f_{D s}$ determinations at:
- CLEO-c with $\mathrm{D}_{\mathrm{s}} \rightarrow \mu \nu$ and $\mathrm{D}_{\mathrm{s}} \rightarrow \tau(\pi v) \nu$
- CLEO-c with $\mathrm{D}_{\mathrm{s}} \rightarrow \tau(\mathrm{e} v v) v$
- Belle with $\mathrm{D}_{\mathrm{s}} \rightarrow \mu \nu$
- BABAR with $\mathrm{D}_{\mathrm{s}} \rightarrow \mu \nu$
- Conclusions and outlook

Leptonic Decays: D $\rightarrow \ell^{+} \vee$

c and $\overline{\mathrm{q}}$ can annihilate, probability is proportional to wave function overlap

Standard Model decay diagram:

In general for all pseudoscalars:

$$
\Gamma\left(\mathrm{P}^{+} \rightarrow \ell^{+} v\right)=\frac{1}{8 \pi} G_{F}^{2} f_{P}^{2} m_{\ell}^{2} M_{P}\left(1-\frac{m_{\ell}^{2}}{M_{P}^{2}}\right)^{2}\left|V_{Q q}\right|^{2}
$$

Calculate, or measure f_{D} if $V_{Q q}$ is known, here take $V_{c d}=V_{u s}=0.2256$,

$$
V_{c s}=V_{u d}=0.9742
$$

Relationship to CKM

- Only a few measurements are independent of strong interaction calculations
- CP violation where we interfere one decay diagram with a mixing diagram ($\mathrm{B}^{\circ} \rightarrow \mathrm{J} / \psi \mathrm{K}^{\circ}$)
- Many important quantities measured in CKM are combinations of strong and weak parameters
- Interpreting B and B_{s} mixing in terms of CKM parameters requires knowledge of $\mathrm{f}_{\mathrm{s}} / \mathrm{f}_{\mathrm{B}}$
- Extracting V_{ub} requires knowledge of ${ }^{5}$ absolute value of form-factors for $B \rightarrow \pi(\rho) \ell v$ at least at one value of q^{2}

New Unquenched Lattice Calc

- Follana et al HPQCD \& UKQCD collaborations (PRL 100, 062002 (2008)) New predictions of $\mathrm{f}_{\mathrm{D}^{+}}=207 \pm 4 \mathrm{MeV}$ $f_{D s}=241 \pm 3 \mathrm{MeV}$
- Older unquenched from FNAL+MILC +HPQCD are: $\mathrm{f}_{\mathrm{D}^{+}}=201 \pm 3 \pm 17 \mathrm{MeV}$ $\mathrm{f}_{\mathrm{Ds}}=249 \pm 3 \pm 16 \mathrm{MeV}$ (Aubin et al., PRL 95, 122002 (2005))

Beyond the SM sensitivity

- Besides the obvious interest in comparing with lattice \& other calculations of f_{D} there are NP possibilities
- CLEO's previous measurement of $f_{\text {Ds }}+$ Belle's (see Rosner \& Stone arXiv:0802.1043) give $f_{\text {Ds }}=274 \pm 10 \mathrm{MeV}$ as compared with $241 \pm 3 \mathrm{MeV} 2+1$ unquenched lattice QCD calculation of Follana et.al (PRL 100, 062002 (2008))
- Dobrescu \& Kronfeld (arXiv:0803.0512) argue that this can well be the effect of NP, either charged Higgs (their own model) or leptoquarks
- CLEOs previous measurement of $f_{D^{+}}$was too inaccurate to challenge Follana et al., theory 207 ± 4 versus $223 \pm 17 \mathrm{MeV}$ (CLEO)

Situation Prior To FPCP 2008

- Experiment $f_{D s}$: CLEO measures both $\mu^{+} v \& \tau^{+} v, ~ \& ~ B e l l e ~$ measures $\mu^{+} v$. Average is 3.3σ away, could be a fluctuation
CLEOD D }->\mp@subsup{\mu}{}{+}
CLEOD D }->\mp@subsup{\mu}{}{+}

D+ too inaccurate to say anything

- Updates to both CLEO measurements

Favoured methods at CLEO-c

- Two-body production $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{D} \overline{\mathrm{D}}$
- Double tags at 3770 MeV :
a fully reconstruct one D^{0} or D^{+}, then one can either
- fully reconstruct the other D for absolute branching ratios and quantum correlations or

- look for events with one missing particle in leptonic decays, semileptonic decays or hadronic K_{L} decays
- Similarly, double tags at 4170 MeV :
a here look for a D_{S} or a $D_{s}{ }^{*}$
- Some measurements also done using single tags

Basic Technique for $\mathrm{D}^{+} \rightarrow \mu^{+} v$

1. Fully reconstruct a $\mathrm{D}^{ \pm}$, and count total \# of tags
2. Seek events with only one additional oppositely charged track within $|\cos \theta|<0.9 \&$ no additional photons $>250 \mathrm{MeV}$ (to veto $\mathrm{D}^{+} \rightarrow \pi^{+} \pi^{\circ}$)
3. Charged track must deposit only minimum energy (from ionization) in calorimeter, $\mathrm{E}<300 \mathrm{MeV}$

- True for 98.8% of muons
- Rejects 45% of π 's

4. Compute missing-mass squared (MM^{2}). If close to zero then almost certainly we have a $\mu^{+} v$ decay.

$$
\mathrm{MM}^{2}=\left(E_{D^{+}}-E_{\ell^{+}}\right)^{2}-\left(\vec{p}_{D^{+}}-\vec{p}_{\ell^{+}}\right)^{2}
$$

We know that $\mathrm{E}_{\mathrm{D}^{+}}=\mathrm{E}_{\text {beam }}$ and $\mathrm{p}_{\mathrm{D}^{+}}=-\mathrm{p}_{\mathrm{D}^{-}}$

The MM² Distribution

MM ${ }^{2}$ Signal Shapes

$$
\mathrm{MM}^{2}=\left(E_{\text {Beam }}-E_{\ell^{+}}\right)^{2}-\left(-\vec{p}_{D^{-}}-\vec{p}_{\ell^{+}}\right)^{2}
$$

Monte Carlo Signal $\mu \nu$

Monte Carlo Signal $\tau \nu, \tau \rightarrow \pi \nu$

Model of $K^{\circ} \pi^{+}$Tail

- Use double tag D^{0} $\overline{\mathrm{D}}^{0}$ events, where both $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{\mp} \pi^{ \pm}$
- Make loose cuts on $2^{\text {nd }} \mathrm{D}^{0}$ so as not to bias distribution:
- require only 4 charged tracks in the event
- Compute MM ${ }^{2}$ ignoring $\mathrm{K}^{ \pm}$

Gives an excellent description of shape of low mass tail "Extra" 1.3 event background in signal region

Additional floating backgrounds

- Background cocktail composed of three-body modes
- τ^{+}decays: $\rho^{+} v$ and $\mu^{+} \nu v$
- Semileptonic decays: $\pi^{0} \mu^{+} \nu$ (check with e^{+})
- Hadronic decays: $\rho^{+} \pi^{0}$
- We only use the shape in MM^{2}, not the absolute number

Fit MM^{2} to sum of signal \& bkgrd

- Case(i) $\mathrm{E}<300 \mathrm{MeV}$ where $\tau^{+} v / \mu^{+} v$ is fixed to SM ratio
- $149.7 \pm 12.0 \mu \nu$ - $28.5 \mathrm{\tau v}$
- Case(i) $\mathrm{E}<300 \mathrm{MeV}$ where $\tau^{+} v / \mu^{+} v$ is allowed to float
- $153.9 \pm 13.5 \mu \mathrm{v}$
- $13.5 \pm 15.3 \mathrm{\tau v}$

Residual Backgrounds for $\mu \nu$

- Monte Carlo of continuum, D°, radiative return and other D^{+}modes, in $\mu \nu$ signal region

Mode	\# of events
Continuum	0.8 ± 0.4
$\bar{K}^{0} \pi^{+}$	1.3 ± 0.9
D^{0} modes	0.3 ± 0.3
Sum	2.4 ± 1.0

- This we subtract off the fitted yields

Background Check

- Use case (ii) E>300 MeV
- Fix $\tau v \& \mu v$ from case (i) μv.
- Consider signal region $\left|\mathrm{MM}^{2}\right|<0.05 \mathrm{GeV}^{2}$.
- Expect $1.7 \mu \nu+5.4$ $\pi^{+} \pi^{0}+4.0 \tau \nu=11.1$
- Find 11 events
- Additional background
- -0.1 ± 3.3 events

Systematic Errors

Source of Error	$\%$
Finding the μ^{+}track	0.7
Minimum ionization of μ^{+}in EM cal	1.0
Particle identification of μ^{+}	1.0
MM^{2} width	0.2
Extra showers in event > 250 MeV	0.4
Background	0.7
Number of single tag D^{+}	0.6
Total	$\mathbf{2 . 2}$

Branching Fractions \& $f_{D^{+}}$

- Fix $\tau v / \mu \nu$ at SM ratio of 2.65
- $\mathrm{BF}\left(\mathrm{D}^{+} \rightarrow \mu^{+} v\right)=(3.82 \pm 0.32 \pm 0.09) \times 10^{-4}$
- $f_{D^{+}}=(205.8 \pm 8.5 \pm 2.5) \mathrm{MeV}$
- This is best number in context of SM
- Float $\tau v / \mu v$
- $B F\left(D^{+} \rightarrow \mu^{+} v\right)=(3.93 \pm 0.35 \pm 0.10) \times 10^{-4}$
- $f_{D}+=(207.6 \pm 9.3 \pm 2.5) \mathrm{MeV}$
- This is best number for use with BSM models
- These numbers have been radiatively corrected by 1% in the branching ratio for $\mathrm{D}^{+} \rightarrow \gamma \mathrm{D}^{*+} \rightarrow \gamma \mu^{+} v$
- Also, limits on $\mathrm{BF}\left(\mathrm{D}^{+} \rightarrow \mathrm{e}^{+} v\right), \mathrm{BF}\left(\mathrm{D}^{+} \rightarrow \tau^{+} v\right)$ and $A_{C P}\left(D^{+} \rightarrow \mu^{+} v\right)$
- All agree with SM expectation

CLEO-c's improved measurement of $f_{\text {Ds }}$

- CLEO has two methods of measuring $f_{\text {Ds }}$
- Measure $\mu^{+} v$ \& $\tau^{+} v, \tau^{+} \rightarrow \pi^{+} v$ using similar MM^{2} technique used for D^{+}. Update result using new analysis \& 30\% more data ($\sim 400 \mathrm{pb}^{-1}$)
- Updated 2008
a Measure $\tau^{+} \rightarrow e^{+} v v$ by using missing energy. This result has not been updated ($\sim 300 \mathrm{pb}^{-1}$)
- PRL 100, 161801 (2008)

Use $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{D}_{\mathrm{S}} \mathrm{D}_{\mathrm{s}}{ }^{*}$ at 4170 MeV

- Presence of $D_{S}{ }^{*}$ causes analysis changes:
- Reconstruct $D_{S}{ }^{-}$
- Find the γ from the $D_{S}{ }^{*}$ \& compute $\mathrm{MM}^{* 2}$ from $\mathrm{D}_{\mathrm{S}}{ }^{-}$ \& γ

$$
M M^{* 2}=\left(E_{C M}-E_{D}-E_{\gamma}\right)^{2}-\left(-\vec{p}_{D^{-}}-\vec{p}_{\gamma}\right)^{2}
$$

\square Select combinations consistent with a missing $\mathrm{D}_{\mathrm{s}}{ }^{+}$ \& count the number

- Find MM^{2} from candidate muon for (i) $\mathrm{E}<300 \mathrm{MeV}$ in Ecal, (ii) $\mathrm{E}>300 \mathrm{MeV}$ or (iii) e^{-}cand.

$$
M M^{2}=\left(E_{C M}-E_{D}-E_{\gamma}-E_{\mu}\right)^{2}-\left(-\vec{p}_{D^{-}}-\vec{p}_{\gamma}-\vec{p}_{\mu}\right)^{2}
$$

$\mathrm{D}_{\mathrm{S}}{ }^{-}$Tags: Invariant Mass

MM ${ }^{* 2}$ Distributions From $D_{S}{ }^{-}+\gamma$

MM^{2} data for D_{S}

- Total of 30848 ± 695 tags
- 98.2\% of $\mu^{+} v$ in $\mathrm{E}<300 \mathrm{MeV}$
- $55 \% / 45 \%$ split of $\tau^{+} v, \tau^{+} \rightarrow \pi^{+} v$ in two cases
- Small e background

Fit to signal \& background

Systematic Errors

Source of Error	$\%$
Finding the μ^{+}track	0.7
Particle identification of μ^{+}	1.0
MM^{2} width	0.2
Extra showers in event $>300 \mathrm{MeV}$	0.4
Background	3.0
Number of single tag $\mathrm{D}_{\mathrm{S}^{-}}$	3.3
Total	

Branching Ratio \& $\mathrm{f}_{\text {Ds }}$ (preliminary)

Mode	$\mathrm{BF}(\%)$	$\mathrm{f}_{\mathrm{D}_{\mathrm{s}}}(\mathrm{MeV})$
$(1) \mu \nu+\tau v$ (fix SM ratio)	BF eff $\left(\mathrm{D}_{\mathrm{s}} \rightarrow \mu v\right)=$ $(0.613 \pm 0.044 \pm 0.020)$	$268.2 \pm 9.6 \pm 4.4$
(2) $\mu \nu$ only	$\mathrm{BF}\left(\mathrm{D}_{\mathrm{s}} \rightarrow \mu \nu\right)=$ $(0.600 \pm 0.054 \pm 0.020)$	$265.4 \pm 11.9 \pm 4.4$
(3) $\tau v, \tau \rightarrow \pi v$	$\mathrm{BF}\left(\mathrm{D}_{\mathrm{s}} \rightarrow \tau v\right)=$ $(6.1 \pm 0.9 \pm 0.2)$	$271 \pm 20 \pm 4$

CLEO: $\mathrm{D}_{S^{+} \rightarrow \tau^{+} \nu, \tau^{+} \rightarrow \mathrm{e}^{+} \nu v}$

- $\mathrm{BF}\left(\mathrm{D}_{\mathrm{S}^{+}} \rightarrow \tau^{+} \mathrm{v}\right) \times \mathrm{BF}\left(\tau^{+} \rightarrow \mathrm{e}^{+} v v\right) \sim 1.3 \%$ is significant compared with expected $\mathrm{BF}\left(\mathrm{D}_{\mathrm{s}^{+} \rightarrow \mathrm{Xe}}{ }^{+} \mathrm{v}\right) \sim 8 \%$
- Search for events opposite a tag with one electron and very little additional energy
- Opt to use only a subset of the cleanest tags

Measuring $\mathrm{D}_{S^{+} \rightarrow \tau^{+} v, \tau^{+} \rightarrow \mathrm{e}^{+} v \nu}$

Technique is to find events with an e^{+} opposite $\mathrm{D}_{\mathrm{s}}{ }^{-}$tags \& no other tracks, with Σ calorimeter energy
$<400 \mathrm{MeV}$

- No need to find γ from $\mathrm{D}_{\mathrm{s}}{ }^{*}$
- $\mathrm{BF}\left(\mathrm{D}_{\mathrm{S}}{ }^{+} \rightarrow \tau^{+} v\right)$
$=(6.17 \pm 0.71 \pm 0.36) \%$
- $f_{D s}=273 \pm 16 \pm 8 \mathrm{MeV}$

PRL 100, 161801 (2008)

Branching Ratio \& f_{Ds} (preliminary)

Mode	$\mathrm{BF}(\%)$	$\mathrm{f}_{\mathrm{D}_{\mathrm{s}}}(\mathrm{MeV})$
$(1) \mu \nu+\tau \nu($ fix SM ratio)	BF eff $\left(\mathrm{D}_{\mathrm{s}} \rightarrow \mu \nu\right)=$ $(0.613 \pm 0.044 \pm 0.020)$	$268.2 \pm 9.6 \pm 4.4$
$(2) \mu \nu$ only	$\mathrm{BF}\left(\mathrm{D}_{\mathrm{s}} \rightarrow \mu v\right)=$	
$(0.600 \pm 0.054 \pm 0.020)$	$265.4 \pm 11.9 \pm 4.4$	
$(3) \tau \nu, \tau \rightarrow \pi \nu$	$\mathrm{BF}\left(\mathrm{D}_{\mathrm{s}} \rightarrow \tau v\right)=$	$271 \pm 20 \pm 4$
	$(6.1 \pm 0.9 \pm 0.2)$	
$(4) \tau \nu, \tau \rightarrow e v \nu$	$\mathrm{BF}\left(\mathrm{D}_{\mathrm{s}} \rightarrow \tau v\right)=$	$273 \pm 16 \pm 8$
$(6.17 \pm 0.71 \pm 0.36)$		
CLEO Average of $(1) \&(4)$ Rad. corr.	$269.4 \pm 8.2 \pm 3.9$	

Belle: $\mathrm{D}_{\mathrm{s}^{+} \rightarrow \mu^{+} v}$

- Look for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{DKX} \mathrm{\gamma}\left(\mathrm{D}_{\mathrm{S}}\right)$, where $\mathrm{X}=\mathrm{n} \pi$ \& the D_{S} is not observed but inferred from calculating the MM
- Then add a candidate μ^{+}and compute MM^{2}
- $\mathrm{BF}\left(\mathrm{D}_{\mathrm{S}^{+}} \rightarrow \mu^{+} \mathrm{v}\right)=$ (0.644 $\pm 0.076 \pm 0.057$)\%
- $f_{D s}=275 \pm 16 \pm 12 \mathrm{MeV}$
- Results stable as a function of final state multiplicity

PRL 100, 241801 (2008)

BABAR: $D_{S}^{+} \longrightarrow \mu^{+} V \quad$ PrL 98, 141801 (2007)

- Look for events with a tag $\mathrm{D}^{0}, \mathrm{D}^{ \pm}$, D^{*} or D_{s} with both a μ and a γ consitant to be from $\mathrm{D}_{\mathrm{s}}{ }^{*}$ decay in the rest of the event
- Approximate neutrino 4-mom to ($\mathrm{E}_{\text {miss }}, \mathbf{p}_{\text {miss }}$)
- Compute

$$
\Delta M=M(\mu \nu \gamma)-M(\mu \nu)
$$

- Subtract background using sidebands and electron sample
- Remaining background from misIDed muons in ccbar and misreconstructed signal
- Fit $\Delta \mathrm{M}$ distribution to extract signal

$$
f_{D s}=\left(283 \pm 17(\text { stat }) \pm 7(\text { syst }) \pm 14\left(D_{s} \rightarrow \phi \pi\right)\right) \mathrm{MeV}
$$

$$
\mathrm{f}_{\mathrm{D}_{\mathrm{s}}} \& \mathrm{f}_{\mathrm{D}_{\mathrm{s}}} / \mathrm{f}_{\mathrm{D}^{+}}
$$

- Weighted Average of absolute measurements from CLEO + Belle:
$\square \mathrm{f}_{\mathrm{Ds}}=270.4 \pm 7.3 \pm 3.7 \mathrm{MeV}$,
a the systematic uncertainty is uncorrelated between the measurements
- Using $f_{D}+=(205.8 \pm 8.5 \pm 2.5) \mathrm{MeV}$
$\square f_{D s} / f_{D}+=1.31 \pm 0.06 \pm 0.02$
- larger than LQCD predictions

- $\mathrm{SM}=9.72$
- Consistent with lepton universality

Conclusions

Future datasets

- CLEO will further update f_{Ds} using at total of ~ 600 pb^{-1}
- 50% increase in data for $\mu \nu$
- 100% increase in data for $\tau v, \tau \rightarrow e v v$
- Improved D_{s} tag systematic to $3 \% \rightarrow 2 \%$
- $f_{D^{+}}$will not see any major improvements until BES
- Also for f_{Ds} can run at 4030 MeV for $\mathrm{D}_{\mathrm{s}} \mathrm{D}_{\mathrm{s}}$ production only
- Reduce tag yield systematic < 1%
- B-factories plans:
- BABAR: absolute measurement with full set
- Belle: update with final 0.9-1.0 ab^{-1} data set

Backup

Case(i) With $\tau^{+} v / \mu^{+} v$ Floating

- Fixed
- $149.7 \pm 12.0 \mu v$
- $28.5 \mathrm{\tau v}$
- Floating
- $153.9 \pm 13.5 \mu \mathrm{v}$
- $13.5 \pm 15.3 \mathrm{\tau v}$

Upper limits on $\tau^{+} \vee \& e^{+} \vee$

- Fit both case(i) \& case(ii) constraining the relative τv yield to the pion acceptance ratio 55:45.
- Find
- $\mathrm{BF}\left(\mathrm{D}^{+} \rightarrow \tau^{+} v\right)$
< 1.2x10-3, @ 90\% c.l.

- BF $\left(\mathrm{D}^{+} \rightarrow \tau^{+} v\right) / 2.65 \mathrm{BF}\left(\mathrm{D}^{+} \rightarrow \mu^{+} v\right)<1.2 @ 90 \%$ c. l .
- Also $\mathrm{BF}\left(\mathrm{D}^{+} \rightarrow \mathrm{e}^{+} \mathrm{v}\right)<8.8 \times 10^{-6}$, @ 90\% c.l.

CP Violation

- D^{+}tags 228,945 ± 551
- D- tags 231,107 ± 552
- $\mu^{-} v$ events 64.8 ± 8.1
- $\mu^{+} v$ events 76.0 ± 8.6
$A_{C P} \equiv \frac{\Gamma\left(D^{+} \rightarrow \mu^{+} v\right)-\Gamma\left(D^{-} \rightarrow \mu^{-} v\right)}{\Gamma\left(D^{+} \rightarrow \mu^{+} v\right)+\Gamma\left(D^{-} \rightarrow \mu^{-} v\right)}=0.08 \pm 0.08$
$-0.05<\mathrm{A}_{\mathrm{CP}}<0.21$ @ 90\% c. I.
- Consistent with SM expectation of no direct CP violation

$\mu \nu$ Signal Shape Checked

- Data $\sigma=0.0247 \pm 0.0012 \mathrm{GeV}^{2}$
- MC $\sigma=0.0235 \pm 0.0007 \mathrm{GeV}^{2}$
- Both average of double Gaussians

Other Non-absolute Measurements

Exp. mode BF
$\mathrm{BF}\left(\mathrm{D}_{\mathrm{S}} \rightarrow \phi \pi\right) \quad \mathrm{f}_{\mathrm{Ds}}(\mathrm{MeV})$
(\%)

CLEO [11]	$\mu^{+} \nu$	$(6.2 \pm 0.8 \pm 1.3 \pm 1.6) \cdot 10^{-3}$	3.6 ± 0.9	$273 \pm 19 \pm 27 \pm 33$
BEATRICE [12]	$\mu^{+} \nu$	$(8.3 \pm 2.3 \pm 0.6 \pm 2.1) \cdot 10^{-3}$	3.6 ± 0.9	$312 \pm 43 \pm 12 \pm 39$
ALEPH [13]	$\mu^{+} \nu$	$(6.8 \pm 1.1 \pm 1.8) \cdot 10^{-3}$	3.6 ± 0.9	$282 \pm 19 \pm 40$
ALEPH [13]	$\tau^{+} \nu$	$(5.8 \pm 0.8 \pm 1.8) \cdot 10^{-2}$		
L3 [14]	$\tau^{+} \nu$	$(7.4 \pm 2.8 \pm 1.6 \pm 1.8) \cdot 10^{-2}$		$299 \pm 57 \pm 32 \pm 37$
OPAL [15]	$\tau^{+} \nu$	$(7.0 \pm 2.1 \pm 2.0) \cdot 10^{-2}$		$283 \pm 44 \pm 41$
BaBar [16]	$\mu^{+} \nu$	$(6.74 \pm 0.83 \pm 0.26 \pm 0.66) \cdot 10^{-3}$	4.71 ± 0.46	$283 \pm 17 \pm 7 \pm 14$

See arXiv:0802.1043 for references

Possibilities

- Pick your favorite of the three:
- Experiment will eventually converge on SM predicted value
- If LQCD predictions of $f_{D s} / f_{D^{+}}$do not agree with the data, why should we believe $\mathrm{f}_{\mathrm{BS}} / f_{\mathrm{B}}$ from theory? What does this do to the CKM fits?
- If there is New Physics affecting leptonic D_{S} decays, how does it affect B_{S} mixing and other B_{S} decays? (See A. Kundu \& S. Nandi, "R-parity violating supersymmetry, B_{S} mixing, \& $\mathrm{D}_{\mathrm{S}^{+}} \rightarrow \ell^{+} \mathrm{v}^{\prime \prime}$ [arXiv:0803.1898])

If there is a Shift ..

- If increases the radius of the $\Delta \mathrm{m}_{\mathrm{d}} / \Delta \mathrm{m}_{\mathrm{s}}$ constraint increases
- Red arrow indicates a shift of $\sim 10 \%$ in $f_{B s} / f_{B}$

New Physics Possibilities

- Ratio of leptonic decays could be modified e.g. in Standard Model

$$
\frac{\Gamma\left(\mathrm{P}^{+} \rightarrow \tau^{+} v\right)}{\Gamma\left(\mathrm{P}^{+} \rightarrow \mu^{+} v\right)}=m_{\tau}^{2}\left(1-\frac{m_{\tau}^{2}}{M_{P}^{2}}\right)^{2} / m_{\mu}^{2}\left(1-\frac{m_{\mu}^{2}}{M_{P}^{2}}\right)^{2}
$$

- If $\mathrm{H}^{ \pm}$couple proportional to $\mathrm{M}^{2} \Rightarrow$ no effect

$$
\begin{aligned}
& \text { See Hewett [hep- } \\
& \text { ph/9505246] \& Hou, } \\
& \text { PRD 48, 2342 } \\
& (1993) .
\end{aligned}
$$

New Physics Possibilities III

- Leptonic decay rate is modified by $\mathrm{H}^{ \pm}$
- Can calculate in SUSY as function of $\mathrm{m}_{\mathrm{q}} / \mathrm{m}_{\mathrm{c}}$,
- In 2HDM predicted decay width is x by
$r_{q}=\left[1-M_{D}^{2}\left(\frac{\tan \beta}{M_{u^{ \pm}}}\right)^{2}\left(\frac{m_{q}}{m_{c}+m_{q}}\right)\right]^{2}$
- Corrected
$r_{q}=\left[1+\left(\frac{M_{D}^{2}}{m_{c}+m_{q}}\right)\left(\frac{1}{M_{M^{*}}}\right)^{2}\left(m_{c}-m_{q} \tan ^{2} \beta\right)\right]^{2}$
- Since m_{d} is ~ 0, effect can be seen only in D_{S} $r_{s}=$ meas rate/SM rate

$$
\mathrm{m}_{\mathrm{s}} / \mathrm{m}_{\mathrm{c}}=0.15
$$

From Akeroyd

