The Decay of Open Charm - or -D-physics – a (very) Selective Review

Topics

- Rare Charm Processes as probes of New Physics
 - Charm Impact on Precision CKM

Canada's Capital University

David Asner (Carleton University) CLEO Collaboration

Rare Charm Processes

-Charm provides constraints on beyond SM physics that is distinct from B and K sectors

-Only now are experiments reaching "interesting" sensitivity

- Rare Decays = Search for New Physics
- Charm Mixing → Constraints on New Physics
- CP Violation = Search for New Physics
 - In mixing
 - In decay

Search for New Physics (NP) in Charm Sector

Very low SM rates $(BF(c \rightarrow ull) \sim 10^{-8})$ for loop processes provide unique window to observe NP in rare charm processes

Rare Decays, D⁰-D⁰ oscillations & CP Violation NP can introduce new particles into loop

New particles appearing on-shell at LHC must appear in virtual loops & affect amplitudes in K, B and Charm

Particles and couplings in rare charm processes are NOT the same as in rare B and K processes

Rare Charm Decay Rates Modified by NP

- Radiative D→(γ , ϕ ,K*) γ SM 10⁻⁴ -10⁻⁶
 - □ CLEO D→γγ < 2.6 x 10⁻⁵ @90% C.L.
 - BABAR D→φγ (2.73±0.30±0.36) x 10⁻⁵ (new)
 - BABAR D→K*γ (3.22±0.20±0.27)x 10⁻⁴ (new)
- Leptonic D→ $\mu\mu$ SM<10⁻¹³ RPV SUSY~10⁻⁷

□ CDF < 4.3x10⁻⁷ @90% C.L. (new)

- GIM Suppressed D $\rightarrow \pi II$ SM~10⁻⁶
 - Distinguish NP from SM with dilepton invariant mass, FB asymmetries
 - **D0** D→πμμ < 3.9x10⁻⁶
 - CLEO-c D→πee < 4.7x10⁻⁶
- Lepton Flavor Violation BABAR @90% C.L.
 - □ $D \rightarrow e^{+}\mu^{-} < 8.1x10^{-7} D^{+} \rightarrow K^{+}e^{-}\mu^{+} < 3.7x10^{-6}$
 - □ $D_s^+ \rightarrow K^+ e^- \mu^+ < 3.6 \times 10^{-6} \Lambda_c^+ \rightarrow p e^- \mu^+ < 7.5 \times 10^{-6}$
- Lepton Number Violation $D^+ \rightarrow \pi^- e^+ e^+$

□ CLEO-c < 3.6 x 10⁻⁶ @90% C.L

Rare Charm Decays: New Results

Numerous recent, exciting results on charm mixing

- 'Wrong sign' K^(*)ev (R_M)
 BELLE PRD 77 (2008) 112003
 BaBar PRD 76 (2007) 014018
- 'Wrong sign' Kπ (x'², y')
 BELLE PRL 96 (2006) 151801
 BaBar PRL 98 (2007) 211802
 CDF PRL 100 (2008) 121802
- Eigenstate lifetime analyses: y_{CP} BaBar arXiv:0712.2249 BELLE PRL 98 (2007) 211803
- K_Sπ⁺π⁻ Dalitz analyses: x,y
 BELLE PRL 99 (2007) 131803
- Quantum Correlation: δ_{Kπ}
 CLEO-c PRL 100 (2008) 221801

New ICHEP08 Belle: $y_{CP} D^0 \rightarrow K_S K^+ K^-$ (see talk by Brian Meadows) BABAR: 'wrong-sign' $D^0 \rightarrow K^+ \pi^- \pi^0$ arXiV:0807.4544

New HFAG Average for ICHEP08

http://www.slac.stanford.edu/xorg/hfag/charm/index.html

Previous measurements all from $D^0 \rightarrow KK, \pi\pi$ (CP+)

New Belle result uses Dalitz plot analysis of $D^0 \rightarrow K_S K^+ K^-$, dominated by $D^0 \rightarrow K_S \phi$ (CP-)

Open Charm Decays - David Asner ICHEP 2008, Philadelphia

 D^0 - D^0 Mixing:

D^0 - \overline{D}^0 Mixing Interpretation: Assume NP saturates x_D				
	Model	Approximate Constraint		
	Fourth Generation	$ V_{ub'}V_{cb'} \cdot m_{b'} < 0.5 \; (\text{GeV})$		
Extra Fermions	Q = -1/3 Singlet Quark	$s_2 \cdot m_S < 0.27 \; (\text{GeV})$		
	Q = +2/3 Singlet Quark	$ \lambda_{uc} < 2.4 \cdot 10^{-4}$		
	Little Higgs	Tree: See entry for $Q = -1/3$ Singlet Quark		
		Box: Parameter space can reach observed x_{Γ}		
Extra Gauge Bosons	Generic Z'	$M_{Z^\prime}/C>2.2\cdot10^3~{ m TeV}$		
	Family Symmetries	$m_1/f > 1.2 \cdot 10^3 \text{ TeV} \text{ (with } m_1/m_2 = 0.5)$		
	Left-Right Symmetric	No constraint		
	Alternate Left-Right Symmetric	$M_R > 1.2 \text{ TeV} (m_{D_1} = 0.5 \text{ TeV})$		
		$(\Delta m/m_{D_1})/M_R > 0.4 \text{ TeV}^{-1}$		
	Vector Leptoquark Bosons	$M_{VLO} > 55(\lambda_{PP}/0.1)$ TeV		
	Flavor Conserving Two-Higgs-Doublet	No constraint		
Extra Scalars	Flavor Changing Neutral Higgs	$m_H/C > 2.4 \cdot 10^3 \text{ TeV}$		
	FC Neutral Higgs (Cheng-Sher)	$m_H/ \Delta_{uc} > 600 \text{ GeV}$		
	Scalar Leptoquark Bosons	See entry for RPV SUSY		
	Higgsless	$M > 100 { m TeV}$		
Extra Dimensions	Universal Extra Dimensions	No constraint		
	Split Fermion	$M/ \Delta y > (6 \cdot 10^2 \text{ GeV})$		
	Warped Geometries	$M_1 > 3.5 \text{ TeV}$		
	MSSM	$ (\delta_{12}^u)_{\rm LR,RL} < 3.5 \cdot 10^{-2}$ for $m \sim 1$ TeV		
Extra Symmetry		$ (\delta_{12}^u)_{\mathrm{LL,RR}} < .25$ for $m \sim 1$ TeV		
	SUSY Alignment	m > 2 TeV		
	Supersymmetry with RPV	$\lambda_{12k} \lambda_{11k} / m_{\tilde{d}_{R,k}} < 1.8 \cdot 10^{-5} / 100 ~{ m GeV}$		
	Split Supersymmetry	No constraint		

Open Charm Decays - David Asner ICHEP 2008, Philadelphia Golowich, Hewett, Pakvasa and Petrov, PRL 98 (2007) 181801

Direct CPV

CF & DCS decay: Direct CPV requires New Physics • Exception: interference between CF & DCS amplitudes to $D^{\pm} \rightarrow K_{S,L}\pi^{\pm}$ • SM contribution due to K⁰ mixing is $A_S = [+]_S - [-]_S \sim -3.3 \times 10^{-3}; A_S = -A_L$ • Experimental limits currently % level

Singly Cabibbo Suppressed (SCS) decays

Interference between tree & penguin can generate direct CP asymmetries which:

- Could reach ~10⁻³ in SM may be observable!
- In NP models effects of ~10⁻² possible (Grossman, Kagan, Nir, PRD 75 (2007) 036008)

 D^0

CPV searches in $D^0 \rightarrow KK$, $\pi\pi$

Measure asymmetry in time integrated rates:

$$A_{CP} = \frac{\Gamma(D^0 \to KK(\pi\pi)) - \Gamma(\overline{D}^0 \to KK(\pi\pi))}{\Gamma(D^0 \to KK(\pi\pi)) + \Gamma(\overline{D}^0 \to KK(\pi\pi))}$$

Distinguish D flavor from 'slow pion' charge in $D^* \rightarrow D^0 \pi$

10000

5000

1.8

2.75 MeV

Cand./

 \mathbf{D}_0

BaBar, PRD 100 (2008) 061803 386 fb⁻¹, ~130k KK events

1.9

Use $K\pi$ events to calibrate out asymmetries in slow π reconstruction.

Form CP asymmetry in bins of θ to account for EW (y-Z) FB asymmetries.

1.9

1.8

1.85

 $m(K^+K^-)$ [GeV/ c^2]

Cand./2.75 MeV/ c^2

10000

5000

 D^0

Open Charm Decays - David Asner ICHEP 2008, Philadelphia

1.85

 $m(K^+K^-)$ [GeV/ c^2]

Entering interesting territory !

D decays and the CKM unitarity triangle

- 1) Charm impact on measurements of sin2 β with b \rightarrow sg
- 2) Charm impact on measurements of γ with B \rightarrow DK
- 3) Lattice QCD tests in Charm sector & the 'mixing side'
- 4) Lattice QCD tests in Charm sector & the 'V_{ub} side'

The Unitarity Triangle and D decays

Classical unitarity triangle is constrained by quantities measured in B decays

But *key* measurements have high dependence (direct & indirect) on D decays:

- Tree-level measurements of angle γ in B→ DK
 Uncertainties in D Decay will dominate uncertainty at LHCb
- 'Vub side' LQCD errors dominate
 D→π form factors (normalization & q² dependence) test/develop LQCD
- 'Mixing' side Depends on LQCD calculation of ($f_B \sqrt{B_B}$) / ($f_B \sqrt{B_B}$) Measure f_{Ds}/f_D to test LQCD

- ADS Modes Κπ ; Κπππ
- Tree level processes: little sensitivity to New Physics → SM 'standard candle'

Charm Analyses Impact Gamma ICHEP08 HFAG

• Measurement of $\overline{\delta_D^{K\pi}} = 22^{+11+9}_{-12-11}$ OR $\delta_D^{K\pi} = 22.5^{+10.5}_{-12.0}$

 $\Gamma(B^- \to (K^+\pi^-)_D K^-) \propto r_B^2 + (r_D^{K\pi})^2 + 2r_B r_D^{K\pi} \cdot \cos(\delta_B + \delta_D^{K\pi} - \gamma)$

• Measurement of 'coherence factor' $R_{K3\pi} \& \delta_D^{K3\pi}$

 $\Gamma(B^{-} \to (K^{+}3\pi)_{\rm D}K^{-}) \propto r_{B}^{2} + (r_{D}^{K3\pi})^{2} + 2R_{K3\pi}r_{B}r_{D}^{K3\pi} \cdot \cos(\delta_{B} + \delta_{D}^{K3\pi} - \gamma)$

 Measurement of D/D phase difference across K_Sπ⁺π⁻ Dalitz plot - Dominant systematic error for BaBar, Belle

■ All analyses exploit Quantum Correlated initial state of $\psi(3770) \rightarrow D_1 D_2$

$\delta_D^{K3\pi}$ vs. $R_{K3\pi}$ Parameter Space Constraints

- Combine results to make confidence plots for $R_{K3\pi}$
- Low coherence is preferred
- Allows accurate r_B determination useful for all $B^{\pm} \rightarrow DK^{\pm}$ decays

00

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Better measurement of rB improves the measurements of γ via ADS method.

CLEO-c Event Samples for $B \rightarrow DK, D \rightarrow K_S \pi^+ \pi^-$

$$c_{i} = \frac{(M_{i}^{+}/S_{+} - M_{i}^{-}/S_{-})}{(M_{i}^{+}/S_{+} + M_{i}^{-}/S_{-})} \frac{(K_{i} + K_{\bar{\imath}})}{2\sqrt{K_{i}K_{\bar{\imath}}}}.$$

 $S_+(S_-)$, number of single tags for CP even(odd) modes. $M_i^+(M_i^-)$, yields in each bin of Dalitz plot in CP even(odd) modes.

 $K_i(K_{\overline{\imath}})$, yields in each bin of Dalitz plot in flavor modes.

Need to know phase difference δ_D between D & D across Dalitz plot $c_i \equiv \langle \cos(\delta_D(x,y) \rangle_i \ s_i \equiv \langle \sin(\delta_D(x,y) \rangle_i \rangle_i$ Choose bins of similar phase δ_D

- Combined result from CP tagged K_Sπ⁺π⁻ and K_Sπ⁺π⁻ vs K_Sπ⁺π⁻ samples expect to yield a 2° error (replaces 7° systematic error due to D decay model)
- Addition of CP tagged $K_L \pi^+ \pi^-$ and $K_L \pi^+ \pi^-$ vs $K_S \pi^+ \pi^-$ samples further expected to yield 1° error

Lattice QCD and the 'Mixing Side'

Leptonic D Decays and Decay Constants

In D⁺ and D_s c and spectator quark can annihilate to produce leptonic final state:

In general, for all pseudoscalars:

$$\Gamma(\mathbf{P}^{+} \to \ell^{+} \nu) = \frac{1}{8\pi} G_{F}^{2} f_{P}^{2} m_{\ell}^{2} M_{P} \left(1 - \frac{m_{\ell}^{2}}{M_{P}^{2}} \right)^{2} |V_{Qq}|^{2}$$

Since V_{cd} and V_{cs} well known, can extract f_D and f_{D_s} and compare with lattice !

Measurements of $D_{(s)} \rightarrow l\nu$ Branching Fractions

Precise measurements now exist for:

 $\mu^+\nu$, τ^+ ($\rightarrow\pi^+\nu$) υ CLEO-C (PRL 99 (2007) 071802; arXiv:0704.0437 + FPCP08)

- $D_{s} \qquad \mu^{+}\nu \quad \text{BELLE} \quad (Phys.Rev.Lett.100:241801,2008 arXiv:0709.1340)$
 - & BaBar (Phys.Rev.Lett.98:141801,2007 hep-ex/0607094)

 $\tau^+ \rightarrow (e^+ \nu \nu) \nu$ CLEO-C (PRL 100 (2008) 161801)

 $\mu^+\nu$ CLEO-C (accepted by Phys. Rev. D. arXiv:0806.2112)

Basic methods for $\mu\nu$ measurement:

- CLEO-c: for f_D reconstruct one D⁺, look for MIP (μ), and then compute missing mass squared (similar for f_{Ds} , but here exploit $D_s D_s^*$ production in 4170 MeV dataset)
- Belle: infer presence of D_s from recoiling mass against reconstructed D & fragmentation. Add candidate μ and compute missing mass
- Babar: Select e+e- \rightarrow cc events with high momentum D⁰, D+, D_s, D*+ close to B kinematic end-point. Search for D_s* $\rightarrow\gamma$, D_s $\rightarrow\gamma\mu\nu$ in the recoil

CLEO-c $D^+ \rightarrow \mu^+ \nu$

Missing mass squared distribution (incld. log zoom with fit):

D⁺ and D_s Decay Constants: the Global Picture

Lattice QCD and the 'Vub Side'

Direct determination of V_{cd} & V_{cs} from charm semileptonic decay + LQCD

- Assume V_{cs (cd)} = V_{ud (us)} & use data to test LQCD calculations
 - Both Form Factor and Normalization
- Potentially lead to improved FF and Normalization calculations for semileptonic b decays - and improved V_{ub}

$D_s \rightarrow K^+K^-ev$ Form Factors & LQCD

Summary & Outlook

Rare Charm Decays:	Experiments entering interesting territory - expect more results soon from CLEO, B-factories and Tevatron that provide constraints on New Physics.	
Charm Mixing:	Discovery of D ⁰ -D ⁰ oscillation points the way forward to searches for CPV and New Physics	
CP Violation:	Experiments entering interesting territory due to data driven estimates of systematic uncertainties	
Precision CKM tests:	Success of the B-factories and the Tevatron has meant that unitarity triangle tests are entering a new, precision era. Charm input is a vital ingredient,	
Future:	Tighter constraints on New Physics, more stringent tests of LQCD, more precise input to B-physics expected soon from CLEO, B-factories & Tevatron. In the near future charm results from BESIII & LHCb. SuperB is required for charm (B & τ) sector(s) to be fully engaged in understanding NP observed at LHC.	

Pseudo-scalar Form Factor: LQCD vs Exp't

Pseudo-scalar Form Factor: LQCD vs Exp't

Tests of LQC

Slope

0.2

LQCD

FOCUS (Param)

CLEO III

Belle (2006)

BABAR (2007)

0

-0.2

Normalization (assuming $|V_{cs (cd)}| = |V_{ud (us)}|$)

Het

0.8

$D \rightarrow Kev$

Normalization errors

Channel	Experi- ments	theory
$D\toKev$	2%	10%
$D \to \pi e \nu$	4%	10%

Vcs and Vcd

Combine measured $|V_{cx}|f_{+}(0)$ values (*fit of Hill&Becher f.f. parameterization*) with FNAL-MILC-HPQCD calculations for $f_{+}(0)$

Improvements in LQCD calculations are needed