Measurements of D^{+}\&

 D_{s} decay constants at CLEOLiming Zhang Syracuse University

Leptonic Decays: $\mathrm{D} \rightarrow \ell^{+} v$

c and \bar{q} can annihilate, probability is

 proportional to wave function overlapStandard Model decay diagram:

In general for all pseudoscalars:

$$
\Gamma\left(\mathrm{P}^{+} \rightarrow \ell^{+} v\right)=\frac{1}{8 \pi} G_{F}^{2} f_{P}^{2} m_{l}^{2} M_{P}\left(1-\frac{m_{l}^{2}}{M_{P}^{2}}\right)^{2}\left|V_{\ell Q}\right|^{2}
$$

- f_{P} is decay constant, related to the overlap of the heavy and light quark wave-functions at zero spatial separation.
- $V_{Q q}$ is known, here take $V_{c d}=V_{u s}=0.2256, V_{c s}=V_{u d}=0.9742$

A Window to New Physics?

- CLEO's previous measurement of $f_{\text {Ds }}$ + Belle's (see Rosner \& Stone arXiv:0802.1043) give $\mathrm{f}_{\mathrm{Ds}}=274 \pm 10 \mathrm{MeV}$ as compared with $241 \pm 3 \mathrm{MeV}$ $2+1$ unquenched lattice QCD calculation of Follana et.al (PRL 100, 062002 (2008))
- CLEOs previous measurement of $f_{D}+$ was too inaccurate to challenge Follana et al., theory 207 ± 4 versus $223 \pm 17 \mathrm{MeV}$ (CLEO)
- Dobrescu \& Kronfeld (arXiv:0803.0512) argue that this can well be the effect of NP, either charged Higgs (their own model) or leptoquarks

CLEO's Technique for $\mathrm{D}^{+} \rightarrow \mu^{+} v$

- $818 \mathrm{pb}^{-1}$ of data at $\psi(3770)$
- Fully reconstruct a D^{-}, and count total \# of tags
- Seek events with only one additional oppositely charged track within $|\cos \theta|<0.9 \&$ no additional photons $>250 \mathrm{MeV}$ (to veto $\mathrm{D}^{+} \rightarrow \pi^{+} \pi^{\circ}$)
- Charged track must deposit only minimum ionization in calorimeter $[\mathrm{E}<300 \mathrm{MeV}$: case (i)]
- Compute MM^{2}. If close to zero then almost certainly we have a $\mu^{+} v$ decay.

$$
\mathrm{MM}^{2}=\left(E_{D^{+}}-E_{\ell^{+}}\right)^{2}-\left(\vec{p}_{D^{+}}-\vec{p}_{\ell^{+}}\right)^{2}
$$

We know $\mathrm{E}_{\mathrm{D}^{+}}=\mathrm{E}_{\text {beam }}, \mathbf{p}_{\mathrm{D}^{+}}=-\mathbf{p}_{\mathrm{D}^{-}}$

Tags

-Total of 460,000

-Background 89,400

The MM² Distribution

- For $\mathrm{E}<300$ MeV in Csl

MM² Signal Shapes

$$
\mathrm{MM}^{2}=\left(E_{\text {Beam }}-E_{\ell^{+}}\right)^{2}-\left(-\vec{p}_{D^{-}}-\vec{p}_{\ell^{+}}\right)^{2}
$$

Model of $\mathrm{K}^{\circ} \pi^{+}$Tail

- Use double tag D° $\overline{\mathrm{D}}^{\circ}$ events, where both $\mathrm{D}^{\circ} \rightarrow \mathrm{K}^{\mp} \pi^{ \pm}$
- Make loose cuts on $2^{\text {nd }} D^{\circ}$ so as not to bias distribution: require only 4 charged tracks in the event

Gives an excellent description of shape of lovy mass tail "Extra" 1.3 event background in signal region

Fit MM^{2} to sum of signal \& bkgrd

- Case(i) E<300 MeV where $\tau^{+} v / \mu^{+} v$ is fixed to SM ratio 2.65 - $149.7 \pm 12.0 \mu v$ $\square 25.8 \mathrm{\tau v}$
- Case(i) E<300 MeV where $\tau^{+} v / \mu^{+} v$ is allowed to float - $153.9 \pm 13.5 \mu \nu$ - $13.5 \pm 15.3 \mathrm{\tau v}$

Residual Backgrounds for $\mu \nu$

- Monte Carlo of Continuum, D°, radiative return and other D^{+}modes, in $\mu \nu$ signal region

Mode	\# of events
Continuum	0.8 ± 0.4
$\bar{K}^{0} \pi^{+}$	1.3 ± 0.9
D^{0} modes	0.3 ± 0.3
Sum	2.4 ± 1.0

- This we subtract off the fitted yields

Branching Fractions \& $f_{D^{+}}$

- Fix $\tau v / \mu \nu$ at SM ratio of 2.65
- $\mathcal{B}\left(D^{+} \rightarrow \mu^{+} v\right)=(3.82 \pm 0.32 \pm 0.09) \times 10^{-4}$
- $\mathrm{f}_{\mathrm{D}^{+}}=(205.8 \pm 8.5 \pm 2.5) \mathrm{MeV}$
- This is best number in context of SM
- Float $\tau v / \mu v$
- $\mathcal{B}\left(D^{+} \rightarrow \mu^{+} v\right)=(3.93 \pm 0.35 \pm 0.09) \times 10^{-4}$
- $\mathrm{f}_{\mathrm{D}^{+}}=(207.6 \pm 9.3 \pm 2.5) \mathrm{MeV}$
- This is best number for use with Non-SM models
- The branching fractions have been reduced by 1% to count for radiative correction
- See arXiv:0806.2112v3, accepted by PRD

CLEO Improved Measurement of $f_{D s}$

- CLEO has two methods of measuring f_{Ds}
${ }_{\square}$ Measure $\mu^{+} \nu \& \tau^{+} v, \tau^{+} \rightarrow \pi^{+} v$ using similar MM^{2} technique used for D^{+}. Update result using new analysis \& 30% more data ($\sim 400 \mathrm{pb}^{-1}$)
\square Measure $\tau^{+} \rightarrow \mathrm{e}^{+} \nu \nu$ by using missing energy. This result has not been updated ($\sim 300 \mathrm{pb}^{-1}$) PRL 100, 161801 (2008)

Use $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{D}_{S} \mathrm{D}_{S}^{*}$ at 4170 MeV

- Reconstruct D_{S}^{-}
- Find the γ from the $\mathrm{D}_{\mathrm{S}}{ }^{*}$ \& compute MM^{2} from $D_{S}{ }^{-}$\& γ

$$
\mathrm{MM}^{* 2}=\left(\mathrm{E}_{\mathrm{CM}}-\mathrm{E}_{\mathrm{D}}-\mathrm{E}_{\gamma}\right)^{2}-\left(-\overrightarrow{\mathrm{p}}_{\mathrm{D}}-\overrightarrow{\mathrm{p}}_{\gamma}\right)^{2}
$$

- Select combinations consistent with a missing $\mathrm{D}_{\mathrm{S}}{ }^{+}$\& count the number
- Find MM^{2} from candidate muon for (i) < 300 MeV in Ecal, (ii) $\mathrm{E}>300 \mathrm{MeV}$ or (iii) e^{-}cand.

$$
\mathrm{MM}^{2}=\left(\mathrm{E}_{\mathrm{CM}}-\mathrm{E}_{\mathrm{D}}-\mathrm{E}_{\gamma}-\mathrm{E}_{\mu}\right)^{2}-\left(-\overrightarrow{\mathrm{p}}_{\mathrm{D}}-\overrightarrow{\mathrm{p}}_{\gamma}-\overrightarrow{\mathrm{p}}_{\mu}\right)^{2}
$$

$\mathrm{MM}{ }^{* 2}$ Distributions From $\mathrm{D}_{\mathrm{S}}{ }^{-}+\gamma$

in $\mathrm{D}_{\mathrm{S}^{-}}$invariant mass signal region

MM^{2} data for D_{S}

- Total of 30848 $\mathbf{6 9 5}$ tags
- $\sim 99 \%$ of $\mu^{+} v$ in $\stackrel{\text { N }}{\text { © }}$

E < 300 MeV

- $55 \% / 45 \%$ split of $\tau^{+} v, \tau^{+} \rightarrow \pi^{+} v$ in two cases
- Small e^{-} background

Fit to signal \& background

CLEO: $\mathrm{D}_{S}{ }^{+} \rightarrow \tau^{+} v, \tau^{+} \rightarrow \mathrm{e}^{+} v v$

- $\mathcal{B}\left(\mathrm{D}_{\mathrm{S}}{ }^{+} \rightarrow \tau^{+} v\right) \bullet \mathscr{B}\left(\tau^{+} \rightarrow \mathrm{e}^{+} v v\right) \sim 1.3 \%$ is "large" compared with expected $\mathcal{B}\left(\mathrm{D}_{\mathrm{S}}{ }^{+} \rightarrow \mathrm{Xe}^{+} v\right) \sim 8 \%$
- We will be searching for events opposite a tag with one electron and not much other energy
- Opt to use only a subset of the cleanest tags

Measuring $\mathrm{D}_{\mathrm{S}}{ }^{+} \rightarrow \tau^{+} \nu, \tau^{+} \rightarrow \mathrm{e}^{+} \nu \nu$

Technique is to find events with an e^{+} opposite $\mathrm{D}_{\mathrm{s}}{ }^{-}$tags \& no other tracks, with Σ calorimeter energy < 400 MeV
No need to find γ from $\mathrm{D}_{\mathrm{s}}{ }^{*}$
$\mathcal{B}\left(\mathrm{D}_{\mathrm{S}}{ }^{+} \rightarrow \tau^{+} v\right)$
$=(6.17 \pm 0.71 \pm 0.36) \%$ $\mathrm{f}_{\mathrm{Ds}}=273 \pm 16 \pm 8 \mathrm{MeV}$

Branching Ratio \& f_{Ds} (preliminary)

Mode	B (\%)	$\mathrm{f}_{\mathrm{D}_{\mathrm{s}}}(\mathrm{MeV})$
(1) $\mu \nu+\tau \nu$ (fix SM ratio)	$\begin{aligned} & \mathcal{B}^{\text {eff }}\left(\mathrm{D}_{\mathrm{s}} \rightarrow \mu v\right)= \\ & (0.613 \pm 0.044 \pm 0.020) \end{aligned}$	$268.2 \pm 9.6 \pm 4.4$
(2) $\mu \nu$ only	$\begin{aligned} & \mathcal{B}\left(\mathrm{D}_{\mathrm{s}} \rightarrow \mu v\right)= \\ & (0.600 \pm 0.054 \pm 0.020) \end{aligned}$	$265.4 \pm 11.9 \pm 4.4$
(3) $\tau v, \tau \rightarrow \pi \nu$	$\begin{aligned} & \mathcal{B}\left(\mathrm{D}_{\mathrm{s}} \rightarrow \tau v\right)= \\ & (6.1 \pm 0.9 \pm 0.2) \end{aligned}$	$271 \pm 20 \pm 4$
(4) $\tau v, \tau \rightarrow e v v$ PRL 100, 161801 (2008)	$\begin{aligned} & \mathcal{B}\left(\mathrm{D}_{\mathrm{s}} \rightarrow \tau v\right)= \\ & (6.17 \pm 0.71 \pm 0.36) \end{aligned}$	$273 \pm 16 \pm 8$
CLEO Average of (1) \& (4)	1\% Rad. corr.	$\begin{aligned} & 269.4 \pm 8.2 \pm 3.9 \\ & 267.9 \pm 8.2 \pm 3.9 \end{aligned}$

Belle: $\mathrm{D}_{S}{ }^{+} \rightarrow \mu^{+} v$

- Look for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{DKX}_{\gamma}\left(\mathrm{D}_{\mathrm{S}}\right)$, where $X=n \pi$ \& the D_{S} is not observed but inferred from calculating the MM
- Then add a candidate μ^{+} and compute MM^{2}
- $\mathcal{B}\left(\mathrm{D}_{\mathrm{S}}{ }^{+} \rightarrow \mu^{+} v\right)=$
(0.644 $\pm 0.076 \pm 0.057$)\%
- $f_{D s}=275 \pm 16 \pm 12 \mathrm{MeV}$
arXiv:0709.1340v2 [hep-ex]

Conclusions (I)

- We are in close agreement with the Follana et al calculation for $f_{D}+$. This gives credence to their methods
The disagreement on f_{Ds} is 3.2σ
- Weighted Average CLEO + Belle: $\mathrm{f}_{\mathrm{Ds}}=269.6 \pm 7.3 \pm 3.7$ MeV

Unquenched Lattice QCD (Follana et all.)

Conclusions (II)

- Possibilities
- An unlikely statistical fluctuation in experiments
- Or systematic uncertainty that is not understood in the LQCD calculation
- Or NP
- Fits to the CKM matrix parameters use theoretical predictions of $f_{B s} / f_{B d}$. As similar calculations are used for $f_{B S} / f_{\text {Bd }}$, we need to be concerned with them.

Future Improvements

- CLEO will further update $f_{D s}$ using at total of $\sim 600 \mathrm{pb}^{-1}$
- 50% increase in data for $\mu \nu$
- 100% increase in data for $\tau v, \tau \rightarrow e v v$
$-f_{D^{+}}$will not see any major improvements until BES

The

New Physics Possibilities III

- Leptonic decay rate is modified by $\mathrm{H}^{ \pm}$
- Can calculate in SUSY as function of m_{q} / m_{c},
- In 2HDM predicted decay width is x by
$r_{q}=\left[1-M_{D}^{2}\left(\frac{\tan \beta}{M_{H^{ \pm}}}\right)^{2}\left(\frac{m_{q}}{m_{c}+m_{q}}\right)\right]^{2}$
- Corrected
$r_{q}=\left[1+\left(\frac{M_{b}^{2}}{m_{c}+m_{q}}\right)\left(\frac{1}{M_{H^{\prime}}}\right)^{2}\left(m_{c}-m_{q} \tan ^{2} \beta\right)\right]^{2}$
- Since m_{d} is ~ 0, effect can be seen only in D_{S}

ICHEP2008

New Physics Possibilities

- Ratio of leptonic decays could be modified e.g. in Standard Model

$$
\frac{\Gamma\left(\mathrm{P}^{+} \rightarrow \tau^{+} v\right)}{\Gamma\left(\mathrm{P}^{+} \rightarrow \mu^{+} v\right)}=m_{\tau}^{2}\left(1-\frac{m_{\tau}^{2}}{M_{P}^{2}}\right)^{2} / m_{\mu}^{2}\left(1-\frac{m_{\mu}^{2}}{M_{P}^{2}}\right)^{2}
$$

- If $\mathrm{H}^{ \pm}$couple proportional to $\mathrm{M}^{2} \Rightarrow$ no effect

See Hewett [hep-
ph/9505246] \& Hou,
PRD 48, 2342 (1993).

Improvements in Analysis

- Increase solid angle to $|\cos \theta|<0.9$ (+11\%)
- Now we fit the muon candidate distribution to extract $\mu^{+} \nu \& \tau^{+} v$, to extract yield, improves efficiency by $\sim 5 \%, \&$ also allows us to quote a E independent of assuming SM $\tau^{+} v / \mu^{+} \nu$ ratio
- Requires signal shapes for $\mu^{+} v$ \& $\tau^{+} v$
- Requires background shapes for $\mathrm{K}^{\circ} \pi^{+}$low MM^{2} tail, $\pi^{+} \pi^{0}$ \& residual 3 body modes, e.g. $\tau^{+} \rightarrow \mu^{+} v v, \rho^{+} v, \pi^{0} \mu^{+} v$.
- Requires small residual background subtraction from continuum, etc...
- Backgrounds are now well understood especially from $\mathrm{K}^{\circ} \pi^{+}$peak

Background Check

- Use case(ii) E>300 MeV
- Fix τv from case(i) μv.
- Consider signal region $\left|\mathrm{MM}^{2}\right|<0.05 \mathrm{GeV}^{2}$. Expect $1.7 \mu \nu+5.4$ $\pi^{+} \pi^{0}+4.0 \tau \nu=11.1$
- Find 11 events
- Extra bkgrnd=-0.1 ± 3.3 events

$\mu \nu$ Signal Shape Checked

- Data $\sigma=0.0247 \pm 0.0012 \mathrm{GeV}^{2}$
- MC $\sigma=0.0235 \pm 0.0007 \mathrm{GeV}^{2}$
- Both average of double Gaussians

Upper limits on $\tau v \& e v$

- Here we fit both case(i) \& case(ii) constraining the relative τv yield to the pion acceptance, 55/45.
- Find
- $\mathcal{B}\left(\mathrm{D}^{+} \rightarrow \tau^{+} v\right)$
< 1.2x10⒊3, @ 90\% c.l.
 - $\mathcal{B}\left(\mathrm{D}^{+} \rightarrow \tau^{+} v\right) / 2.65 \mathcal{B}\left(\mathrm{D}^{+} \rightarrow \mu^{+} v\right)<1.2 @ 90 \%$ c. I. - Also $\mathcal{B}\left(\mathrm{D}^{+} \rightarrow \mathrm{e}^{+} \mathrm{v}\right)<8.8 \times 10^{-6}$, @ 90% c.l.

CP Violation

- D^{+}tags $228,945 \pm 551$
- D- tags $231,107 \pm 552$
- $\mu^{-} \nu$ events 64.8 ± 8.1
- $\mu^{+} v$ events 76.0 ± 8.6

$$
\begin{aligned}
& A_{C P} \equiv \frac{\Gamma\left(D^{+} \rightarrow \mu^{+} v\right)-\Gamma\left(D^{-} \rightarrow \mu^{-} v\right)}{\Gamma\left(D^{+} \rightarrow \mu^{+} v\right)+\Gamma\left(D^{-} \rightarrow \mu^{-} v\right)}=0.08 \pm 0.08 \\
& -0.05<A_{C P}<0.21 @ 90 \% \text { c. I. }
\end{aligned}
$$

Efficiencies

- Tracking, particle id, $\mathrm{E}<300 \mathrm{MeV}$ (determined from μ-pairs) $=85.3 \%$
- Not having an unmatched shower > 250 MeV 95.9%, determined from double tag, tag samples
- Easier to find a $\mu \nu$ event in a tag then a generic decay (tag bias) (1.53\%)

Systematic Errors of f_{D}

Source of Error	$\%$
Finding the μ^{+}track	0.7
Minimum ionization of μ^{+}in EM cal	1.0
Particle identification of μ^{+}	1.0
MM^{2} width	0.2
Extra showers in event > 250 MeV	0.4
Background	0.7
Number of single tag D^{+}	0.6
Total	$\mathbf{2 . 2}$

$\mathrm{D}_{\mathrm{S}}{ }^{-}$Tags: Invariant Mass

$\mathrm{f}_{\mathrm{D}_{\mathrm{s}}} \& \mathrm{f}_{\mathrm{D}_{\mathrm{s}}} / \mathrm{f}_{\mathrm{D}^{+}}$

- Weighted Average CLEO + Belle: $\mathrm{f}_{\mathrm{Ds}}=269.6 \pm 7.3 \pm 3.7 \mathrm{MeV}$, the systematic error is uncorrelated between the measurements
- Using $f_{D^{+}}=(205.8 \pm 8.5 \pm 2.5) \mathrm{MeV}$
$-\mathrm{f}_{\mathrm{Ds}} / \mathrm{f}_{\mathrm{D}^{+}}=1.31 \pm 0.06 \pm 0.02$ Much larger than models
- $\Gamma\left(\mathrm{D}_{\mathrm{S}}{ }^{+} \rightarrow \tau^{+} v\right) / \Gamma\left(\mathrm{D}_{\mathrm{S}}{ }^{+} \rightarrow \mu^{+} v\right)=10.3 \pm 1.1$, SM=9.72
Consistent with lepton universality

Case(i) With $\tau^{+} v / \mu^{+} v$ Floating

- Fixed

\author{

- $149.7 \pm 12.0 \mu \nu$
 - 28.5 vv
}
- Floating

\author{

- $153.9 \pm 13.5 \mu \nu$
 - $13.5 \pm 15.3 \mathrm{\tau v}$
}

Systematic Errors of $f_{\text {Ds }}$

Source of Error	$\%$
Finding the μ^{+}track	0.7
Particle identification of μ^{+}	1.0
MM^{2} width	0.2
Extra showers in event $>300 \mathrm{MeV}$	0.4
Background	0.5
Number of single tag $\mathrm{D}_{\mathrm{s}}{ }^{-}$	3.0
Total	3.3

Other Non-absolute Measurements

Exp.	mode	\mathscr{B}	$\mathscr{B}\left(\mathrm{D}_{\mathrm{S}} \rightarrow \phi \pi\right)$	$\mathrm{f}_{\mathrm{Ds}}(\mathrm{MeV})$
			$(\%)$	
CLEO [11]	$\mu^{+} \nu$	$(6.2 \pm 0.8 \pm 1.3 \pm 1.6) \cdot 10^{-3}$	3.6 ± 0.9	$273 \pm 19 \pm 27 \pm 33$
BEATRICE [12] $\mu^{+} \nu$	$(8.3 \pm 2.3 \pm 0.6 \pm 2.1) \cdot 10^{-3}$	3.6 ± 0.9	$312 \pm 43 \pm 12 \pm 39$	
ALEPH [13]	$\mu^{+} \nu$	$(6.8 \pm 1.1 \pm 1.8) \cdot 10^{-3}$	3.6 ± 0.9	$282 \pm 19 \pm 40$
ALEPH [13]	$\tau^{+} \nu$	$(5.8 \pm 0.8 \pm 1.8) \cdot 10^{-2}$		
L3 [14]	$\tau^{+} \nu$	$(7.4 \pm 2.8 \pm 1.6 \pm 1.8) \cdot 10^{-2}$	$299 \pm 57 \pm 32 \pm 37$	
OPAL [15]	$\tau^{+} \nu$	$(7.0 \pm 2.1 \pm 2.0) \cdot 10^{-2}$		$283 \pm 44 \pm 41$
BaBar [16]	$\mu^{+} \nu$	$(6.74 \pm 0.83 \pm 0.26 \pm 0.66) \cdot 10^{-3}$	4.71 ± 0.46	$283 \pm 17 \pm 7 \pm 14$

See arXiv:0802.1043 for references

Questions

- Pick your favorite of the two:
- If theoretical predictions of $\mathrm{f}_{\mathrm{Ds}} / \mathrm{f}_{\mathrm{D}}+$ do not agree with the data, why should we believe $\mathrm{f}_{\mathrm{BS}} / \mathrm{f}_{\mathrm{B}}$ from theory? What does this do to the CKM fits?
- If there is New Physics affecting leptonic D_{S} decays, how does it affect B_{S} mixing and other B_{S} decays? (See A. Kundu \& S. Nandi, "R-parity violating supersymmetry, B_{S} mixing, \& $\mathrm{D}_{\mathrm{S}}{ }^{+} \rightarrow \ell^{+}{ }^{\prime}$ " [arXiv:0803.1898])

Rediative Correction

- FSR of the muon has been corrected in the MC simulation.
- However, another process where the D^{+} $\rightarrow \gamma \mathrm{D}^{*+} \rightarrow \gamma \mu^{+} v$, where the D^{*+} is a virtual vector or axial-vector meson.

