BNM2008@ATAMI JAPAN JAN/2008 1

Lepton Universality in Y(nS) Decays at CLEO

Hajime Muramatsu

University of Rochester For the CLEO Collaboration

Topics ("n" on this page means 1, 2, and 3, but NOT 4)

- Testing lepton universality in $\Upsilon(nS) \rightarrow \tau^+ \tau^- vs \ \Upsilon(nS) \rightarrow \mu^+ \mu^-$ PRL98, 052002 (2007)
- Search for lepton flavor violating decay via Y(nS) → τμ (preliminary)

CLEO-III detector

- Located at Cornell Electron Storage Ring
- e^+e^- collisions at $\sqrt{s} \sim 10 \text{GeV} (2001 \sim 2002)$

EM calorimeter – Essential for photon spectroscopy

- ~8000 CsI(Tl) crystals + photo-diodes
- First crystal calorimeter in magnetic field (1.5T)
- 2.2 (5)% at $E_{\gamma}=1(0.1)GeV$

Excellent charged particle detection

Excellent particle identification

- dE/dx
- Ring Imaging Cherenkov (RICH)

BNM2008@ATAMI JAPAN JAN/2008 4

One way to test Lepton universality

- Naively we expect; $B(\Upsilon(nS) \rightarrow e^+e^-) = B(\Upsilon(nS) \rightarrow \mu^+\mu^-) = B(\Upsilon(nS) \rightarrow \tau^+\tau^-)$ $\Upsilon(nS)$
- Obtain R(nS) = $B(\Upsilon(nS) \rightarrow \tau^+\tau^-)/B(\Upsilon(nS) \rightarrow \mu^+\mu^-)$ See if it is consistent with 1.
- One way to deviate from 1; Y(nS) → γη_b(mS), (η_b(mS) → A⁰), A⁰ → τ⁺τ, n ≥ m. if the photon is undetected (E_γ~60MeV for 1S→1S). Here, A⁰ is a non-Standard CP-odd Higgs boson whose mass is ~10GeV → possible mixing between η_b and A⁰. (i.e. see Miguel-Angel Sanchis-Lozano hep-ph/0610046,

(i.e. see Miguel-Angel Sanchis-Lozano hep-ph/0610046, contributed paper to BNM2006) Prior M1 transition

Procedure to obtain $R(nS) = B(\Upsilon(nS) \rightarrow \tau^+\tau^-)/B(\Upsilon(nS) \rightarrow \mu^+\mu^-)$

- Select μμ and ττ signals at and below Y(nS), n=1,2,3, and
 4.
- 2. Subtract scaled continuum.
 - a) Check with $\Upsilon(4S)$ data first to make sure this subtraction is working. Since $B(\Upsilon(4S) \rightarrow e^+e^-) \sim 10^{-5}$, no measurabale tau-pair and mu-pair is expcted here.
 - b) Compare $\sigma(e^+e^- \rightarrow \mu^+\mu^-)$ with $\sigma(e^+e^- \rightarrow \tau^+\tau^-)$ in off-resonance data by measuring their luminosities respectively.
 - c) Apply the above continuum subtraction to $\Upsilon(nS)$ -on-resonance data (n=1, 2, 3) for $\mu^+\mu^-$ and $\tau^+\tau^-$ candidates.
- 3. Extract R(nS)

Bonus: Can obtain $B(\Upsilon(nS) \rightarrow \tau^+\tau^-)$ using the published $B(\Upsilon(nS) \rightarrow \mu^+\mu^-)$ with R(nS).

Step 1: Selecting muon pairs

Similar to study of $B(\Upsilon(nS) \rightarrow \mu^+\mu^-)$: PRL94,012001 (2005)

- 2 energetic (P_{tk}/E_{beam}~1), well separated (>170⁰ of their opening ang.) tracks with opposite sign
- EM CC energy and Muon-chamber signal consistent with muons.

Selecting tau pairs.

- Look for one-prong tau decays: $B(\tau \rightarrow 1 \text{ prong}) \sim 75\%$
 - 2 track events, cuts on generic $\tau\tau$ missing momentum and energy.
- Classify tracks as e (dEdx, E/p), μ (muon-chamber, E_{cc}), and X (= not e nor μ. Mixture of misidentified leptons and hadrons).

Step 2-a: Subtracting scaled continuum at Y(4S).

- On-resonance data (points)
- ON S·OFF, S∝1/s works.
- No evidence for background that does not scale as 1/s.

- All decay channels agree.
- Confidence that we can reconstruct $ee \rightarrow \tau \tau$, $\mu \mu$

Hajime Muramatsu, University of Rochester Step 2-c: Subtracting scaled continuum at $\Upsilon(nS)$ for n=1, 2, and 3.

- Scaled continuum data (solid histograms)
- On-resonance data (points)

Step 3: obtaining R(nS)

Sum of all clasifications

• The remaining backgrounds are due to cascade decays (e.g. $\Upsilon(2S) \rightarrow \Upsilon(1S) X, \Upsilon(1S) \rightarrow \tau\tau$).

	15	25	35
On-S*Off	61697±1536	25085±1399	16290±1522
background	1556±83	3334±593	1536±474
ε (ττ)	11.2±0.1%	11.3±0.1%	11.1±0.1%
N(ττ)/ε (10 ³)	537±14	193±12	132±13
N(μμ)/ε (10 ³)	527±15	185±11	126±11

• From non l⁺l⁻

• Backgrounds were estimated based on MC simulation.

 $= B(\Upsilon(nS) \rightarrow \tau^+\tau^-)/B(\Upsilon(nS) \rightarrow \mu^+\mu^-)$

$$\mathcal{R}(1S) = 1.02 \pm 0.02 \pm 0.05$$

 $\mathcal{R}(2S) = 1.04 \pm 0.04 \pm 0.05$

$$\mathcal{R}(3S) = 1.07 \pm 0.08 \pm 0.05$$

Statistical: Mostly due to scaled continuum subtractions

Systematics: Domnated by τ selection criteria (2.9%) and trigger (1.6%)

BNM2008@ATAMI JAPAN JAN/2008 14

R(nS) for each decay modes

Upper limit on the Higgs contribution

"R-1" can be used to set an upper limit on: $B_{\rm H} = B(\Upsilon(1S) \rightarrow \gamma A^0) \cdot B(A^0 \rightarrow \tau^+ \tau^-)$ $= (R(1S)-1) \cdot B(\Upsilon(1S) \rightarrow \mu^+ \mu^-) \cdot (\epsilon_{\tau\tau} / \epsilon_{\rm H})$

 $\varepsilon_{\tau\tau}$ is the selection efficiency for $\Upsilon(1S) \rightarrow \tau^+ \tau^-$

 $\epsilon_{\rm H}$ is the selection efficiency for Higgs mediated decay assuming M(Y(1S)) - M(A⁰) ~100MeV and $\Gamma(A^0)$ ~5MeV:

 $B_{\rm H} < 0.27\%$ at 95% C.L.

No obvious peaks were seen in photon spectra of $\Upsilon(2S)$ and $\Upsilon(3S)$ data.

BNM2008@ATAMI JAPAN JAN/2008 17

Search for Lepton Flavor Violation in $\Upsilon(nS) \rightarrow \mu \tau$

Lepton Flavor Violation (LFV)

- LFV is forbidden in the standard model.
- After discovering neutrinos have mass, hence oscillations, it MAY BE natural to think or look for LFV beyond the SM (or BSM).

Lepton Flavor Violation (LFV)

 W/ Effective Field Theory, Z.K. Silagadze (Phys.Scripta 64,128 (2001)) relates LFV BF of Y decays to the scale Λ of LFV BSM physics via:

$$rac{B(\Upsilon
ightarrow \mu au)}{B(\Upsilon
ightarrow \mu \mu)} \propto (lpha_N/lpha)^2 (M_\Upsilon/\Lambda)^4$$

α is fine structure constant and α_N is the effective LFV coupling

$\Upsilon(nS) \rightarrow \mu \tau$

- Look for $\Upsilon(nS) \rightarrow \mu\tau, \tau \rightarrow e\nu_e\nu_{\tau}$
- Demand two tracks
 - One needs to be IDed as a μ (muon-chamber) $p_{\mu}/E_{beam}{\sim}1$
 - For electrons, use information from E/p and dE/dx
- To select signal candidate events, maximize the likelihood function:

$$\mathcal{L} = e^{-N_{evnt}} \Pi_{evnt} \left(\Sigma N_i \mathcal{P}_i(X|S) \right)$$

- Use product PDF: $\mathcal{P}(p_{\mu}) \times \mathcal{P}(p_{e}) \times \mathcal{P}(dE/dx(e)) \times \mathcal{P}(E/p(e))$
- Sum over signal events plus 3 classes of bkg events: $\tau\tau$, $\mu\mu$ + hard γ , and μ \rightarrow e (see the next slide).

Y(4S) data (control sample)

PRELIMINARY LFV results

	Υ(1S)	Υ(2S)	Υ(3S)
<i>B</i> (Υ(nS)→μτ) @ 95% CL (×10 ⁻⁶)	<6.0	<24.2	<23.4
B(Υ(nS)→μτ)/ B (Υ(nS)→μμ)	<0.00025	<0.0018	<0.0015
Λ@ 95% CL Lower Limits in TeV with α _N =1	>1.29	>0.84	>0.93

- Largest source of syst: PDF shape (up to 15%)
- Assuming $\alpha_N = 1$, these BRs set lower limit on $\Lambda \sim 1$ TeV.

Summary

- Measured $B(\Upsilon(nS) \rightarrow \tau\tau)/B(\Upsilon(nS) \rightarrow \mu\mu)$ to be consistent with 1
 - The measured $B(\Upsilon(2S) \rightarrow \tau\tau)$ is the most precise to date.
 - $-B(\Upsilon(3S) \rightarrow \tau\tau)$ was measured for the first time.
- Set limit on CP-odd Higgs in Y(1S) region.
- Searched for LFV. Preliminary results are; $B(\Upsilon(nS) \rightarrow \mu \tau) \sim 10^{-5}$ at 95% CL UL.