Improving the Precision of γ/φ₃ via CLEO-c Measurements

Paras Naik

1 August 2008, 34th ICHEP

Status of the Measurement of the CKM phase γ

Fit from direct measurements only (CKM Fitter, Summer 2007) CKMfitter Group (J. Charles et al.), Eur. Phys. J. C41, 1-131 (2005) [hep-ph/0406184], updated results and plots available at: <u>http://ckmfitter.in2p3.fr</u>

- Of the three CKM phases, γ is the least constrained.
- A precision measurement of γ is essential in order to test the internal consistency of the CKM triangle.
- In addition, tree measurements of γ compared to loop measurements may provide a first indication of New Physics in the flavor sector.
- The precision measurement of γ is one of the most important measurements of LHCb and e+e⁻ flavor factories

Measuring the CKM phase γ via B \rightarrow DK

$$\frac{\langle \mathbf{B}^{-} \longrightarrow \overline{\mathbf{D}}^{0} \mathbf{K}^{-} \rangle}{\langle \mathbf{B}^{-} \longrightarrow \overline{\mathbf{D}}^{0} \mathbf{K}^{-} \rangle} = \mathbf{r}_{\mathbf{B}} \mathbf{e}^{i(\delta_{B} - \boldsymbol{\gamma})} \qquad r_{B} \equiv \left| \frac{A(\mathbf{B}^{-} \longrightarrow \overline{\mathbf{D}}^{0} \mathbf{K}^{-})}{A(\mathbf{B}^{-} \longrightarrow \overline{\mathbf{D}}^{0} \mathbf{K}^{-})} \right| \sim 0.1$$

- The CKM phase γ can be determined through the interference between the $b \rightarrow c$ and $b \rightarrow u$ transitions
- Require the neutral D mesons to decay to the same final state f(D)
- This method is theoretically clean
- Success of this method requires that the D decay is well understood

The role of CLEO-c

- CLEO-c analyses are vital for the purpose of CKM phase γ extraction strategies via B[±] → D_{multi-body}K[±]
- We present a first determination of the $D \rightarrow K\pi\pi\pi$ coherence factor, $R_{K3\pi}$ (and its associated global strong phase $\delta_D^{K3\pi}$)
 - Will significantly increase precision on γ in future measurements
- CLEO-c has also measured the bin-averaged cosines (c_i) and sines (s_i) of D → K⁰_Sππ strong phase differences to allow a model-independent determination of γ with B[±] → D_{Ksππ} K[±]
 - Will reduce the largest systematic error for γ via $B^{\pm} \rightarrow D_{Ksrm} K \pm$
 - c_i determined from CP-tagged decays
 - c_i and s_i determined from K⁰sππ-tagged decays
- CLEO-c measurement of the D \rightarrow K π strong phase $\delta_D^{K\pi}$ also helps to determine γ via B[±] \rightarrow D_{K π}K[±] decays

CLEO-c

- Hermetic detector based at CESR (the Cornell Electron Storage Ring)
- Operating at energies around cc threshold
- We study $e^+e^- \rightarrow \psi(3770) \rightarrow D^0\overline{D^0}$ decays
 - C = -1 for these decays at $\psi(3770)$ threshold
 - Total integrated luminosity of this sample is 818 pb⁻¹
- Quantum correlated (QC) states
 - Example: Properly reconstructing one neutral D decay to a CP eigenstate uniquely identifies the other D decay to be of opposite CP
- Double Tag
 - We fully reconstruct the event for both neutral D decays in our analyses
- CP-Tagged
 - Reconstruct other neutral D to a CP eigenstate

ADS Method

The study of neutral D decays at CLEO-c is useful for measurements of the CKM phase γ via B[±] → DK[±] decays

- The four rates for the different combinations of B[±] and neutral D decays to Kπ, together with those from D decays to CP eigenstates (KK and ππ), determine γ
- A key measurement of LHCb and flavor factories
 - 10° statistical precision with one year of LHCb running [LHCb-2008-011]
- The ADS method can be extended to the mode $f(D) = K^+\pi^-\pi^+\pi^-$
 - However, we need to account for the resonant substructure
 - In principle, each point in phase space has a different strong phase associated with it

Using D → Kmm Decays at CLEO

- Atwood and Soni [Phys. Rev. D 68 (2003) 033003] showed how to modify the ADS formalism for the case of K⁺π⁻π⁺π⁻
- Introduce the **coherence parameter** $R_{K3\pi}$ which dilutes the interference term sensitive to γ

 $\Gamma(B^{-} \to (K^{+}\pi^{-}\pi^{-}\pi^{+})_{D}K^{-}) \propto r_{B}^{2} + (r_{D}^{K3\pi})^{2} + 2r_{B}r_{D}^{K3\pi}R_{K3\pi}\cos(\delta_{B} + \delta_{D}^{K3\pi} - \gamma)$

- $R_{K3\pi}$ then ranges between:
 - 0 = incoherent (several significant resonant components)
 - 1 = coherent (dominated by a single mode)
- If *R_{K3π}* is close to 0, the rates still provide an extremely useful constraint on r_B.
 So, still a very informative measurement!

• Determinations of $R_{K3\pi}$ and $\delta_D^{K3\pi}$ can be made at CLEO-c from an analysis of double-tagged neutral D decays at threshold. $A(D^0 \to K^- \pi^+ \pi^- \pi^+)$ $R_{K2\pi} e^{i\delta_D^{K3\pi}} = \frac{\int A(s)\bar{A}(s)e^{i\delta(s)}ds}{\int A(s)\bar{A}(s)e^{i\delta(s)}ds}$

Preliminary Results for *R*_{K3π} at CLEO-c

• We use result (3) to constrain $R_{K3\pi}$ and $\delta^{K3\pi}$ using $\delta^{K\pi}$ from CLEO-c Phys. Rev. Lett. **100** (2008) 221801

δ_D^{K3π} vs. R_{K3π} Parameter Space Constraints

150

100

50

0.2

²³⁵⁰ ²⁵⁰ 200 ²⁵⁰ 200 ²⁵⁰ ²⁵⁰ ²⁵⁰ ²⁵⁰ ²⁵⁰ ²⁵⁰ ²σ

0.5 0.6 0.7

3 σ

- We combine the results to make confidence plots for *R_{K3π}*
- Low coherence is preferred
- Allows accurate determination of r_B useful for all B[±] → DK[±] decays
- Improving the measurement of r_B improves the measurements of γ via ADS 2-body and Dalitz plot methods.

Example: Impact of CLEO-c Kmm at LHCb

- These D→K3π measurements have been input to ADS simulation studies by LHCb
- Estimated yields documented in LHCb-2006-066 and LHCb-2007-004
- One nominal year of LHCb running: results see significant improvement with the addition of B→D(K3π)K and the CLEO-c constraints
 - Added info from CLEO equivalent to ~doubling the LHCb data!

Using $D \rightarrow K_{S}\pi\pi$ Decays at CLEO

- f(D) = K_Sππ can be used as well
- Then a Dalitz plot analysis may be used to extract γ.
- Now, the interference depends on the D⁰, $\overline{D^0}$ phase difference $(\delta_{x,y} \delta_{y,x})$, as a function of position in the Dalitz plot.
- To date, this has been taken from results of uncorrelated Dalitz plot analyses, which suffer from a model dependence.
- Giri, et al. [Phys. Rev. D 68 (2003) 054018] and Bondar and Poluektov [Eur. Phys. J. C 47, 347-353(2006) & <u>arXiv:0801.0840v1</u> (hep-ex)] demonstrate a way to do a binned Dalitz plot analysis of neutral D → K_Sππ which does not suffer from model dependence.
- CLEO-c data has an essential role in the model-independent approach.

Binned Analysis of D $\rightarrow K^{0}_{S}\pi^{+}\pi^{-}$ at CLEO-c

Instead of square bins, we use bins of some range in δ_D

$$\begin{split} c_i &= \frac{1}{\sqrt{T_i T_{\bar{\imath}}}} \int_{D_i} |A_D(x, y)| |A_D(y, x)| \cos(\delta_{x, y} - \delta_{y, x}) dx dy \\ s_i &= \frac{1}{\sqrt{T_i T_{\bar{\imath}}}} \int_{D_i} |A_D(x, y)| |A_D(y, x)| \frac{\sin(\delta_{x, y} - \delta_{y, x}) dx dy}{T_i &= \int_i |A_D(x, y)|^2 dx dy} \end{split}$$

Preliminary CP tagged K⁰sπ⁺π⁻ results

Results for c_i using 8 bins:

CLEO-c Preliminary (818 pb⁻¹)

CLEO-c Preliminary K⁰sπ⁺π⁻ vs. K⁰sπ⁺π⁻ results

- The CP-tagged sample of $K^0 \ s \pi^+ \pi^-$ can only give us values for c_i
- Using a $K^0 S \pi^+ \pi^- vs$. $K^0 S \pi^+ \pi^- sample$, we can extract c_i and s_i simultaneously

$$M_{i,j} = \frac{1}{2N_{D,\bar{D}}\mathcal{B}_f^2}(K_iK_{\bar{\jmath}} + K_{\bar{\imath}}K_j - 2\sqrt{K_iK_{\bar{\jmath}}K_{\bar{\imath}}K_j}(c_ic_j + s_is_j)).$$

BaBar Model Arxiv:hep-ex/0607104

CLEO-c Preliminary (818 pb⁻¹)

httm.	//haaah7000	a duling	Judga/d	a anna anta/	agaalama	ha talle m	Af
	// neach / uua	sc enn/m	indes/d	ocuments/	sessions/i	петатк п	(11
mup.	/ 0000012000		liaaco/a	ocumento,		no.tum.p	ui

	Value		Value
c_1	0.779±0.087±0.062	<i>s</i> ₁	$0.380 \pm 0.179 \pm 0.085$
c_2	$0.874 \pm 0.120 \pm 0.113$	<i>s</i> ₂	$0.137 \pm 0.260 \pm 0.084$
c3	$0.003 \pm 0.166 \pm 0.152$	<i>s</i> ₃	$0.749 \pm 0.145 \pm 0.053$
C4	$-0.165 \pm 0.323 \pm 0.152$	<i>s</i> ₄	$0.490 \pm 0.400 \pm 0.093$
C5	$-0.929 \pm 0.058 \pm 0.044$	<i>s</i> 5	$0.141 \pm 0.268 \pm 0.085$
<i>c</i> ₆	$-0.472 \pm 0.196 \pm 0.099$	<i>s</i> ₆	$-0.679 \pm 0.203 \pm 0.059$
C7	$0.459 \pm 0.204 \pm 0.170$	\$7	$-0.558 \pm 0.367 \pm 0.106$
c ₈	$0.526 \pm 0.109 \pm 0.114$	<i>s</i> ₈	$-0.376 \pm 0.169 \pm 0.060$

Combine CP-tagged $K^0_S \pi^+ \pi^-$ and $K^0_S \pi^+ \pi^-$ vs. $K^0_S \pi^+ \pi^$ samples: systematic uncertainty on γ from c_i, s_i expected

~ 450 (K⁰_Sπ⁺π⁻)² to be ~2°. Adding $K^{0}L\pi^{+}\pi^{-}$ statistics reduces this to ~1°.

Paras Naik, University of Bristol

1 August 2008, 34th ICHEP

Summary

- CLEO-c data is vital for the purpose of γ extraction strategies with B[±] → D_{multi-body}K[±]
- A first determination of the D \rightarrow KTITIT coherence factor, $R_{K3\pi}$, has been made (and its associated global strong phase $\delta_D^{K3\pi}$)
 - Results already have a significant impact; further improvements to this result are foreseen with the addition of K_L CP modes in the selection
 - Additional ADS modes are being studied ($D \rightarrow K\pi\pi^0$)
- CLEO-c is also measuring the average cosine and sine of D → K⁰sm strong phase differences to allow a model-independent determination of γ with B[±] → D_{Ksm} K[±]
 - Further improvements to this result are foreseen with the addition of K⁰_Lππ candidates
 - D decay-model systematic error of 6°-15° from currently available D → K⁰_Sππ Dalitz plot analyses will be replaced with a residual D decay systematic error of 1°-2°!

Measuring R_{K3π} at CLEO-c

- Determinations of $R_{K3\pi}$ and $\delta_D^{K3\pi}$ can be are made from analysis of double-tagged $D^0\overline{D^0}$ at CLEO-c.
- The coherent production of this state causes the double-tagged rates of *K*πππ vs. X to be altered in the following ways:

Double Tag Rate Sensitive To

$$K^{\pm}\pi^{\mp}\pi^{+}\pi^{-} \text{ vs. } K^{\pm}\pi^{\mp}\pi^{+}\pi^{-} (\mathbf{R}_{K3\pi})^{2}$$
$$K^{\pm}\pi^{\mp}\pi^{+}\pi^{-} \text{ vs. } CP \qquad \mathbf{R}_{K3\pi}cos(\delta^{K3\pi})^{2}$$

 $K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$ vs. $K^{\pm}\pi^{\mp}$

 $R_{K3\pi}cos(\delta^{K\pi}-\delta^{K3\pi})$

- We perform selections of these double-tags
- In addition, it is also necessary to perform selections of the opposite sign K[±] modes to determine normalisation factors

Uncertainty due to K⁰ππ decay

Bondar, et al. says uncertainty due to $K^0\pi\pi \sim 5^\circ$

		B -stat. err. D_{CP} -s		stat. err.	$(K_S^0 \pi^+ \pi^-)^2$ -stat. err.		
Binning	Q	σ_x	σ_y	σ_x	σ_y	σ_x	σ_y
$\mathcal{N} = 8 \ (\Delta \delta_D)$	0.79	0.027	0.037	0.004	0.007	0.005	0.010

$$x_{\pm} = r_B \cos(\delta_B \pm \gamma)$$

$$y_{\pm} = r_B \sin(\delta_B \pm \gamma)$$
5° uncertainty assumed $\sigma_x = \sigma_y = 0.010$
arXiv:0803.3375 [hep-ex]

Model-independent studies have been performed for LHCb with 8 $\Delta \delta_d$ bins (LHCb-2007-141). We use the same code to evaluate γ systematic uncertainties from the measured c_i and s_i

These uncertainties have less impact (using Belle's central values)

Parameter	RMS toy	RMS B&P (scaled to actual yields)
 X ₊	0.005	0.004
У ₊	0.005	0.007
X _	0.005	0.004
У_	0.014	0.007

