Charmonium: An Experimental Review

Ryan Mitchell

Indiana University

ICHEP 2008

Introduction

- The **charmonium system** provides a laboratory for the study of the strong force.
- Progress is piecemeal.
- This talk will cover recent results from:
 - **CLEO**'s total sample of 27M $\psi(2S)$, mostly collected in August, 2006.
 - Recent Belle γγ results and BaBar B decays to charmonium.
- Note:
 - We are about to enter a new **BES III** era.
 - Heavy charmonia (**Belle**, **BaBar**) will be covered in separate talks.

$J/\psi, \psi(2S) \rightarrow \gamma \eta_c(1S)$

CLEO: 24.5M $\psi(2S)$ arXiv:0805.0252[hep-ex] (submitted to PRL)

Three Measurements of M1 Transitions:

- A. $B(\psi(2S) \rightarrow \gamma \eta_c) = (4.32 \pm 0.16 \pm 0.60) \times 10^{-3}$ from inclusive η_c decays.
- B. $B(J/\psi \rightarrow \gamma \eta_c) / B(\psi(2S) \rightarrow \gamma \eta_c)$ using exclusive η_c decays.
- C. $B(J/\psi \rightarrow \gamma \eta_c) = (1.98 \pm 0.09 \pm 0.30)\%$ taking A×B.

= $B(J/\psi \rightarrow \gamma \eta_c)$

- One "surprise" was the non-trivial line-shape of the η_c .
- Recent Lattice QCD Results (Dudek et al, PRD73,07450(2006)) predict $\Gamma_{\gamma\eta c} = (2.0\pm0.1\pm0.4)$ keV $\Rightarrow B(J/\psi \rightarrow \gamma \eta_c) = (2.1\pm0.1\pm0.4)\%$

The experimental value of $B(J/\psi \rightarrow \gamma \eta_c)$ is now in line with theoretical expectations.

Note on the $\eta_c(1S)$ Mass

PDG 2006 Mass

- From ψ(1S,2S)→γη_c: average = **2977.3 ± 1.3 MeV/c**²
- From γγ or p⁺p⁻ production average = **2982.6 ± 1.0 MeV/c²**

 \Rightarrow >3 σ difference!

From CLEO fits to $J/\psi \rightarrow \gamma \eta_c$ (previous slide):

$$\begin{split} M(\eta_c) &= 2976.7 \pm 0.6 \; MeV/c^2 \; (unmodified \; BW) \\ M(\eta_c) &= 2982.2 \pm 0.6 \; MeV/c^2 \; (BW \; modified \; by \\ energy \; dependence \; in \; the \; matrix \; element). \\ (statistical \; errors \; only!) \end{split}$$

Recent Belle γγ measurements: η_c →4-body (EPJ,C53:1-14(2008)): $M(\eta_c) = 2986.1 \pm 1.0 \pm 2.5 \text{ MeV/c}^2$ η_c →K_SKπ (photon 2007): $M(\eta_c) = 2981.4 \pm 0.5 \pm 0.4 \text{ MeV/c}^2$

Understanding the energy dependence of the $\psi(1S,2S) \rightarrow \gamma \eta_c$ matrix element is crucial for an accurate mass measurement from radiative decays.

Observation of $J/\psi \rightarrow \gamma \gamma \gamma$

CLEO 27M $\psi(2S)$ arXiv:0806.0315 [hep-ex] (accepted by PRL)

- This is the quarkonium analogue of ortho-positronium.
- Tag J/ ψ with $\psi(2S) \rightarrow \pi^+\pi^- J/\psi$.
- 37 events are inconsistent with $\gamma \pi^0 / \eta / \eta^2 / \eta_c$.
- 24.2 events remain after subtracting backgrounds (dominantly $\gamma \pi^0 \pi^0$).
- $B(J/\psi \rightarrow \gamma \gamma \gamma) = (1.2 \pm 0.3 \pm 0.2) \times 10^{-5}$.
- •A search for $J/\psi \rightarrow \gamma \eta_c$; $\eta_c \rightarrow \gamma \gamma$ leads to upper limits on $B(\eta_c \rightarrow \gamma \gamma)$:

B(η_c→γγ) < 3×10⁻⁴ at 90% C.L. (PDG: B(η_c→γγ) = (2.7±0.9)×10⁻⁴)

Observation of $\chi_{cJ}(1P) \rightarrow \gamma(\varrho, \omega, \phi)$

χ_{cJ}(1P) Two-body Decays

3.30

3.40

3.50

3.60

χ_{cJ}(1P) Two-Photon Widths

CLEO 24.5M $\psi(2S)$ arXiv:0803.2869 [hep-ex] (submitted to PRL) $\psi(2S) \rightarrow \gamma \chi_{cJ}; \ \chi_{cJ} \rightarrow \gamma \gamma$ 3850208-001 300 200 Events / 5 MeV 100 χ_{c2} χc1 χ_{cl} 0 170 270 370 70 $E(\gamma_1)$ (MeV) $\Gamma_{\gamma\gamma}(\chi_{c0}) = 2.53 \pm 0.37_{stat} \pm 0.11_{syst} \pm 0.24_{PDG} \text{ keV}$ $\Gamma_{\gamma\gamma}(\chi_{c2}) = 0.60 \pm 0.06_{stat} \pm 0.03_{syst} \pm 0.05_{PDG} \text{ keV}$ Ratio = $0.237 \pm 0.043_{\text{stat}} \pm 0.015_{\text{syst}} \pm 0.03_{\text{PDG}}$

Sensitive to relativistic and radiative corrections in the charmonium system.

A Survey of Other $\chi_{cJ}(1P)$ Decays

0991007-007

3.52

0990408-00

1. B($\chi_{cJ} \rightarrow$ baryon antibaryon); CLEO 26M $\psi(2S)$; arXiv:0806.1715 [hep-ex] (accepted by PRD RC)

2. $B(\chi_{cJ} \rightarrow h^+h^-h^0h^0)$; CLEO 3.1M $\psi(2S)$; arXiv:0806.1227 [hep-ex] (submitted to PRD RC)

3. B($\chi_{cJ} \rightarrow \eta^{(\prime)} \eta^{(\prime)}$); CLEO Preliminary 26M $\psi(2S)$; (older data: hep-ex/0611013; PRD 75, 071101(R) (2007).)

4. B($\chi_{cJ} \rightarrow KK\pi\pi$); CLEO "first look" 24.5M $\psi(2S)$

The h_c(1P) Mass

CLEO 24.5M $\psi(2S)$ arXiv:0805.4599 [hep-ex] (submitted to PRL)

 $\psi(2S) \rightarrow \pi^0 h_c(1P); h_c(1P) \rightarrow \gamma \eta_c$

(factor of 9 more data than previous measurement)

Properties of the $\eta_c(2S)$

Belle; Photon 2007

 $\gamma\gamma \rightarrow K_S K \pi$

Mass = $3633.7 \pm 2.3 \pm 1.9 \text{ MeV/c}^2$ Width = $19.1 \pm 6.9 \pm 6.0 \text{ MeV/c}^2$

Interference with the continuum complicates the extraction of $\Gamma_{\gamma\gamma}$.

BaBar; arXiv:0804.1208 [hep-ex]; PRD 78, 012006 (2008)

Previous inclusive $B^+ \rightarrow K^+X$ measurements can be used to turn product BF's into absolute BF's: $\Rightarrow B(\eta_c(2S) \rightarrow KK\pi) = (1.9 \pm 0.4 \pm 0.5 \pm 1.0)\%$ c.f. $B(\eta_c(1S) \rightarrow KK\pi) = (7.0 \pm 1.2)\%$ (PDG)

KK π is still the only observed decay mode of the $\eta_c(2S)$.

Conclusions

- After more than 30 years, the charmonium system continues to provide important insight into the strong force.
- This Talk:
 - M1 radiative transitions: $\psi(1S,2S) \rightarrow \gamma \eta_c(1S)$ and $\eta_c(1S)$ mass
 - $J/\psi \rightarrow \gamma \gamma \gamma$
 - χ_{cJ} decays:
 - $\rightarrow \gamma(\varrho, \omega, \phi)$
 - \rightarrow two bodies
 - $\rightarrow \gamma \gamma$
 - \rightarrow etc.
 - h_c mass
 - $\eta_c(2S)$ properties
- We are looking forward to new results from **BES-III!**

