Hadronic Charm Decays: Experimental Review

Peter Onyisi

ICHEP, 1 Aug 2008

Hadronic charm decays are relevant in many ways:

- Easy to reconstruct and large rate so they **normalize** many measurements in *b* and *c* systems
- In measurements of D mixing and when using CP eigenstates for B interferometry¹, long-distance physics introduces phases that must be measured
- A complete picture of decay rates tells us about QCD in weak decays
- Amplitude analysis gives access to **light meson spectroscopy** Brief glimpse of these topics in the next 12 minutes...

= New results for this conference!

¹See talks by Meadows, Naik, Asner

Peter Onyisi

Dramatis Personae

CLEO-c

- Symmetric charm facility
- Threshold operation:
 - Simple initial state
 - Generally very clean signals
 - *CP* correlation allows unique measurements

BaBar, Belle

- Asymmetric *B*-factories
- Huge luminosity and statistics
- Boost allows time-dependent measurements

< 🗗 🕨

Absolute Branching Fractions 🗕 🖥 🚰

Important normalizing modes:

• $D^0 \rightarrow K^- \pi^+$

•
$$D^+ \rightarrow K^- \pi^+ \pi^+$$

• $D_s^+ \rightarrow K^- K^+ \pi^+$ (historically " $\phi \pi^+$ ")

Charm branching fraction uncertainties affect e.g.

exclusive |V_{cb}|

•
$$\mathcal{B}(B_s \to D_s^{(*)} D_s^{(*)})$$

Great improvement in our knowledge in the last few years

$$ightarrow$$
 Replace $D^+_s
ightarrow \Phi \pi^+$ by $D^+_s
ightarrow K^- K^+ \pi^+ !$

Belle 07: hep-ex/0701053 (Prel.) [552 fb⁻¹] CLEO 07: PRD 76, 112001 [281 pb⁻¹] BaBar 08: PRL 100, 051802 [210 fb⁻¹] CLEO 08: PRL 100, 161804 [298 pb⁻¹]

 $D^+_s
ightarrow K^- K^+ \pi^+$ Dalitz Analyses 🖉 🛐

- $D_s^+ \to K^- K^+ \pi^+$ dominated by resonances: eliminate background by rejecting most of phase space
- However much easier to define the full $\mathcal{B}(\mathcal{K}^-\mathcal{K}^+\pi^+)$
- Reconcile with good Dalitz analyses...

< 4 → <

 D^0 mixing parametrized in terms of

$$x \equiv \frac{\Delta m}{\Gamma}, \quad y \equiv \frac{\Delta \Gamma}{2\Gamma}$$

When mixing is measured in time-dependent $D^0 \to K^- \pi^+$, one obtains instead

$$x' \equiv x \cos \delta + y \sin \delta, \quad y' \equiv y \cos \delta - x \sin \delta$$

if there is a non-trivial phase δ between $D^0 \to K^- \pi^+$ and $D^0 \to K^+ \pi^-$.

Relating (x', y') to (x, y) requires external input on δ .

The Quantum Correlation Analysis 👂

- Change basis to $\psi(3770) \rightarrow D_1 D_2$
- CP structure of initial state modifies production rates for double tag events; factors depend on x, y, δ, DCSD decay rate
- Use external inputs for weakly-measured parameters

PRL 100, 221801

Also Extended fit (standard + external mixing)

95% C.L.: $\delta \in [-7^{\circ}, +61^{\circ}]$ $x \sin \delta \in [0.002, 0.014]$

- ∢ ≣ →

Open charm is an interesting system for looking at strong interactions in weak decays

- Long distance interactions are important: many resonances in region of interest
- *D* mass is not far above *K* mass (e.g. $D^0 \rightarrow 4K$ is impossible, while 4π has lots of phase space): **SU(3) breaking** effects are significant
- Factorization assumptions can fail

Experimentally,

• *D* decays are low multiplicity, and e.g. $D \rightarrow PP$ decays have large branching ratios compared to the *B* system

- Only kinematically allowed baryonic decay of a D meson
- Unambiguous quark annihilation topology first such D⁺_s hadronic decay
- Probes long distance effects (Pham, PRL 45, 1663; Bediaga & Predazzi, PLB 275, 161; Chen et al., PLB 663, 326)

PRL 100, 181802

Can analyze hadronic decays in flavor-topology terms, extracting amplitudes for various terms:

By exploiting SU(3), one can relate different decays and search for a consistent picture.

Some interesting things to look at:

- SU(3): $|\mathcal{A}(D^0 \to K^- K^+)| = |\mathcal{A}(D^0 \to \pi^+ \pi^-)|$
- SU(3) + GIM: $\mathcal{B}(D^0 \to K^0_S K^0_S)$ should be zero
- How large are disconnected graphs SA and SE?

CLEO-c has assembled a complete picture of CF and SCS $D \rightarrow PP$ branching fractions — many are first observations (PRD 77, 091106; PRL 99, 191805; PRD 77, 092003: + Absolute B measurements)

Analysis by Bhattacharya & Rosner (PRD 77, 114020):

- D decays provide access to light hadrons complementary to e.g. J/ψ decay, hadroproduction
 - $P \rightarrow 3P$ has highly constrained partial waves
 - Interferometry for free
 - Difficult to go beyond three-body final states
- Controversies in the scalar sector can be addressed:
 - What states are there? (Does e.g. f₀(1370) exist?)
 - What is up with the low mass S-wave? (σ and $\kappa?)$
 - How do the *f*₀(980) and *a*₀(980) interact? (Coupling constants, lineshape?)
- Recent high-statistics samples are pointing out the failures of the isobar model with simple resonances

$D_s^+ ightarrow \pi^+ \pi^-$ Dalitz Analysis 🛐

- $D_s^+ \to \pi^+\pi^+\pi^-$ is dominated by $\pi^+\pi^-$ *S*-wave; interesting lab for probing scalar sector
- Also for D_s^+ decays: large \mathcal{B} where $s\bar{s}$ is not manifest. Short-distance annihilation? Long-distance $s\bar{s} \rightarrow n\bar{n}$?
- Large statistics: explicitly obtain amplitudes and phases for one component instead of assuming Breit-Wigner/Flatté/... shapes: "(Quasi) Model Independent PWA" pioneered by E791

Summary

- Hadronic decays of charm are linked to many other topics
- Interesting in their own right
- Recent large datasets have enabled a new era of precision, discovery
 - Some reference branching fractions 2–3 \times better than previous world average
 - First measurements being made of strong phases between *different* decays
 - First observation of baryonic decay
 - Access to decay mechanism information via comprehensive overview of decay modes
 - Studies of low-mass hadron interactions
 - (And D^0 mixing was first observed in hadronic decays...)
- Look forward to future results from current experiments, BES-III, LHCb!

The End

2

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Mode	Correlated	Uncorr.
$K^-\pi^+$	$1 + R_{\rm WS}$	$1 + R_{\rm WS}$
S_{\pm}	2	2
$K^-\pi^+, K^-\pi^+$	R_{M}	$R_{\rm WS}$
$K^{-}\pi^{+}, K^{+}\pi^{-}$	$(1+R_{\rm WS})^2 - 4r\cos\delta(r\cos\delta + y)$	$1 + R_{\rm WS}^2$
$K^{-}\pi^{+}, S_{\pm}$	$1 + R_{\rm WS} \pm 2r\cos\delta \pm y$	$1 + R_{\rm WS}$
$K^{-}\pi^{+}, e^{-}$	$1 - ry \cos \delta - rx \sin \delta$	1
S_{\pm}, S_{\pm}	0	1
S_{+}, S_{-}	4	2
S_{\pm}, e^{-}	$1\pm y$	1

Standard fit uses external measurements of $\mathcal{B},~\textit{R}_{M},~\textit{R}_{WS}$

Extended fit in addition uses y, x, r^2 , y', x'^2

Likelihood contours from extended fit

$D^+ ightarrow K^- \pi^+ \pi^+$ Dalitz Analysis 🖗

- $D^+
 ightarrow K^- \pi^+ \pi^+$ has dominant contribution from $K^- \pi^+$ S-wave
 - Can parametrize with κ and nonresonant, but can also derive quasi-model-independently through interference with *P*, *D*-waves (pioneered by E791)
- Need fairly sizable $\pi^+\pi^+$ *S*-wave (fit fraction 10–15%)

arXiv:0802.4214, submitted to PRD