The Charm Renaissance: D-physics – a Selective Review

- Charm physics: why we live in interesting times
- Experimental facilities and techniques
- Charm and precision CKM physics
- Searches for new physics in charm decays
- Conclusions

Guy Wilkinson (University of Oxford) On behalf of the CLEO-c collaboration

Charm physics: extinct, dormant or active ?

A common view:

"Charm physics: illustrious past which played essential role in foundation of Standard Model, but not much present & still less future. B physics is where it's all at."

Some reasons that charm may appear underwhelming:

- Slow oscillation rate;
- Very low level of CP violation;
- Interesting physics masked by long distance dynamics.

Is this fair, or does charm remain a very important research, area, indeed one where new interest is erupting right now?

A Sporting Analogy

The future is bright (cf. b physics)...

English and European champions

Yesterday's men (cf. c physics):

18 times league championships – but none for 18 years (and counting)

Charm physics – a new dawn

There are several good reasons why charm physics is back in the limelight:

1) Precision CKM tests

Success of the B-factories and the Tevatron has meant that unitarity triangle tests are entering a new, precision era. Although the CKM elements being studied are those accessible in B-decays, charm turns out to be a vital ingredient in programme.

2) Charm mixing and its legacy

Discovery of $D^{0}-\overline{D}^{0}$ oscillation was HEP highlight of last 2 years. Higher than expected rate is (arguably) intriguing in its own right, and points the way forward to searches for CPV.

3) Recent discoveries in spectroscopy

Discovery of narrow c- \overline{c} states above threshold (X,Y,Z) and narrow excited D_s states. (But not discussed further today.)

Charm physics certain to have an exciting few years ahead (unlike Liverpool FC)

Facilities, experimental attributes and Dalitz plots

The Charm Renaissance - Guy Wilkinson Physics in Collision 2008, Perugia

Charm Facilities – Recent Past, Present & Future

Fixed target experiments eg. E687, E791, FOCUS

CLEO, B-factories

Very high statistics from e⁺e⁻ continuum in all final states. Highlight (so far): mixing discovery

CLEO-c

Threshold running: double tags and quantum coherence

BES-III (~20x CLEO dataset?)

Super-flavour factory

10-100x B-factory statistics. D's from e⁺e⁻ continuum *and* in dedicated threshold runs

LHCb

Tevatron, esp. CDF

First hadron collider D decay

studies with prompt charm

(eg. mixing: PRL 100 (2008) 121802)

Charm from B's in selected final states (~10² higher statistics than B-factory)

Super-LHCb

10x luminosity and more efficient + inclusive trigger

Charm Studies at Threshold (CLEO-c)

CLEO-c accumulated 818 pb⁻¹ at ψ (3770) and 586 pb⁻¹ at 4170 MeV (for D_s production)

Some advantages of threshold running:

Very clean – no fragmentation particles.
 Double tag studies have v. low bckgds

• Quantum coherence. ψ (3770) gives C=-1 state \rightarrow CP-tagging possible !

$$\psi(3770) \rightarrow D^+(K^-\pi^+\pi^+)D^-(K^+\pi^-\pi^-)$$

 Unseen particle reconstruction through kinematic constraints, eg. K⁰_L and ν.

Necessary Experimental Attributes

Characteristics needed for successful D physics ~ those required for B physics

- Efficient tracking and (if possible) good calorimetery for γ and π^{0} reconstruction
- Hadron identification abilities

• In hadronic environment need trigger system sensitive to final states of interest

Experimental Techniques: Dalitz Plots

Dalitz plot is invaluable technique exploited in many charm analyses.

Kinematics of 3-body decay $D \rightarrow A,B,C$ fully described by 2 parameters. Typical choice:

 $m_{AB}^2 \equiv (p_A + p_B)^2$; $m_{BC}^2 \equiv (p_B + p_C)^2$

Lorentz invariant, and phase space flat. Allows resonances to be clearly seen.

Charm Dalitz plots have many uses:

- 1) as a probe of light meson spectroscopy
- 2) key role in the CKM- γ measurement
- 3) mixing and CPV studies

Can be extended to 4- (and more) body decays

Richard Dalitz 1925-2006

Dalitz Plots and Resonance Models

To extract physics contributing to a Dalitz plot, necessary to develop a model Common choice: isobar model - fit a_i, b, α_i, β :

Non-resonant term

$$A(m_{12}^{2},m_{13}^{2}) = \left[\sum_{j} a_{j} e^{i\alpha_{j}}A_{j} (m_{12}^{2},m_{13}^{2})\right] + be^{i\beta}$$
Sum over resonances
where amplitudes described as follows:

$$A_{j}(m_{12}^{2},m_{13}^{2}) = F_{D}^{J}F_{D}^{r} \cdot M_{r}^{j} \cdot BW_{r}^{j}$$
Blatt-Weisskopf form factors
(angular momentum barrier penetration)
Relativistic Breit-Wigner
Angular distribution

Works well for P-, D-wave, but not so well for S-wave.

Not great for broad overlapping resonances, eg. σ , σ ' ?, κ ? (& unitarity violated). Here alternative treatments preferred based on scattering data, eg. LASS for K π (Aston et al. Nucl. Phys. B 296 (1988) 493), and K-matrix for $\pi\pi$ (I.J.R.Aitchison, Nucl. Phys. A189 (1972) 417) D decays and the CKM unitarity triangle

• Measurements of γ with $B \rightarrow DK$

- Lattice QCD tests and the 'mixing side'
- (Not covered: semileptonic decay rates and form factors, branching ratio measurements etc)

The Unitarity Triangle and D decays

Classical unitarity triangle is constrained by quantities measured in B decays

But key measurements have high dependence (direct & indirect) on D decays:

- Extraction through interference between $b \rightarrow u$ and $b \rightarrow c$ transitions
- Require D⁰ and D⁰ decay to a common final state, f(D). Today consider 2 possibilities:

 $K_{S}^{0}\pi\pi$; $K\pi$; ($K\pi\pi\pi$ - see backups)

 Tree level processes: little sensitivity to New Physics → SM 'standard candle'

Dalitz Plots for y at Belle & BaBar

A powerful (and at *present*, only statistically useful) choice of common state f(D) is $K_s \pi^+ \pi^-$. Rich resonant substructure.

Differences between B⁻ and B⁺ Dalitz plots allow γ to be extracted in unbinned fit...

...need to understand different amplitudes from D^0 and \overline{D}^0 decay across Dalitz space, esp. variation in strong phase Need a D decay model !

 $B^{\pm} \rightarrow (D \rightarrow K^{0}{}_{S}\pi^{+}\pi^{-})K^{\pm}$ m² (GeV²/c⁴) **5.2** 2.2 (GeV²/c⁴) B-B+ ELLE: arXiv:0803.3375 1.5 1.5 0.5 0.5 Ξ 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5 3 m²₊ (GeV²/c⁴) m_{+}^{2} (GeV²/c⁴)

BaBar (383M BB) $\gamma = 76^{\circ} \pm 22^{\circ}(\text{stat}) \pm 5^{\circ}(\text{sys}) \pm 5^{\circ}(\text{model})$ BELLE (657M BB) $\gamma = 76^{\circ} + 12^{\circ} - 13^{\circ}(\text{stat}) \pm 4^{\circ}(\text{sys}) \pm 9^{\circ}(\text{model})$

 $r_{B}=0.09\pm0.09$ $r_{B}=0.16\pm0.04$

LHCb with 10 fb⁻¹ can approach 3° statistical error

(NB sensitivity scales with r_B . All B→DK data suggest ~0.10)

Modelling the $K_s \pi^+ \pi^-$ decay

Unbinned fit of Dalitz space in $B \rightarrow D(K_s \pi^+\pi^-)K$ decays requires reliable model of D decay. Model developed on flavour tagged D* decays.

State of the art – BaBar model fitted from 487k decays:

Ingredients – 10 resonances described with isobar model. S-wave $\pi\pi$ and K π treated with K-matrix approach and LASS parametrisation respectively (χ^2 / ndf = 1.11 to be compared with 1.20 for pure isobar model)

Impressive work – error on γ estimated to be 5°. But model systematic, even this small, uncomfortable for future very high stats measurements eg. LHCb.

CP- tagged Dalitz Plots

Dalitz plots of CP-tagged decays at the Ψ " provide orthogonal info to flavour tagged events accessible in, eg., D* decays. They access the strong phase difference between the D⁰ & \overline{D}^0 – vital information in the γ measurement

With both flavour and CP-tagged data we may either validate model, or avoid model *entirely* and used measured quantities as input to binned fit !

CP-tagged $K_s \pi^+ \pi^-$ Dalitz plots

Clear differences seen between CP-odd and CP-even:

The Charm Renaissance - Guy Wilkinson Physics in Collision 2008, Perugia

Binned Analysis of $B^{\pm} \rightarrow D(K_s \pi^+ \pi^-) K^{\pm}$

CP-tagged data can be used to avoid entirely need for model.

Expected number of events in bins of Dalitz space can be expressed in terms of γ , r_B , δ_B and measured yields in CP-tagged D decays!

(Additional input comes from quantum correlated $K_s \pi \pi vs K_s \pi \pi$ events)

Choice of bins informed by model, in order to maximise statistical sensitivity (only ~20% degradation w.r.t. unbinned fit)

CLEO-c analysis in progress...

But no model error! Only residual uncertainty from finite CLEO-c statistics (~3°)

Atwood-Dunietz-Soni (ADS) Method

Low interference scale of $B \rightarrow DK$ method ($r_B \sim 0.1$) can be enhanced by exploiting Doubly Cabibbo Suppressed modes eg. $D^0 \rightarrow K^+\pi^-$

This introduces two new parameters:

$$\frac{\langle \mathbf{D}^0 \longrightarrow \mathbf{K}^+ \pi^- \rangle}{\langle \overline{\mathbf{D}}^0 \longrightarrow \mathbf{K}^+ \pi^- \rangle} = \mathbf{r}_{\mathbf{D}}^{\mathsf{K}\pi} \mathbf{e}^{i\delta_D^{\mathsf{K}\pi}}$$

0.06, ie. similar in magnitude to $r_{\rm B}$

4 possible final states, between 2 of which there can be a big CP-asymmetry:

$$\Gamma(\mathbf{B}^{-} \to (\mathbf{K}^{+}\pi^{-})_{\mathbf{D}}\mathbf{K}^{-}) \propto r_{B}^{2} + (r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi} \cdot \cos(\delta_{B} + \delta_{D}^{K\pi} - \gamma)$$

$$\Gamma(\mathbf{B}^{+} \to (\mathbf{K}^{-}\pi^{+})_{\mathbf{D}}\mathbf{K}^{+}) \propto r_{B}^{2} + (r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi} \cdot \cos(\delta_{B} + \delta_{D}^{K\pi} + \gamma)$$

A powerful way to constrain γ , but need to know $\delta_D^{\kappa\pi}$ Can be measured in quantum correlated D decays !

these interference terms are 1st order

Measuring $\delta_{D}^{K\pi}$ in Quantum Correlated D Decays

Idea: tag one D in CP eigenstate, other side is mixture of D⁰ and \overline{D}^0 , hence:

Rate ~
$$B_{CP+} B_{K\pi} (1 + 2r_D^{K\pi} \cos \delta_D^{K\pi})$$

Approximate - full expression has additional dependence on mixing parameters x & y... Analysis: measure set of single & double tag rates, with $K\pi$ vs CP tags, & flavour tags

Extract $\delta_D^{K\pi}$, plus results on other parameters, including branching ratios.

Quantum correlations clearly seen !

The Charm Renaissance - Guy Wilkinson Physics in Collision 2008, Perugia

CLEO-c 281 fb⁻¹ Results for $\delta_D^{K\pi}$

Result also important for charm mixing (x', y' measured in 'wrong sign' Kπ analysis related to x, y through: $x' = x \cos \delta_D^{K\pi} + y \sin \delta_D^{K\pi}$)

Most precise result on $\delta_D^{K\pi}$ obtained with mixing results used as external constraint:

$$\delta_{\rm d}^{\rm Km} = \left(22^{+11+9}_{-12-11}\right)^{\circ}$$

1711	ro o ulto	ما فاند و			o o po otro i o to
FIT	results	with	all	external	constraints

Parameter	Extended Fit
$N (10^6)$	$1.042 \pm 0.021 \pm 0.010$
$y (10^{-3})$	$6.5 \pm 0.2 \pm 2.1$
$r^{2}(10^{-3})$	$3.44 \pm 0.01 \pm 0.09$
$\cos\delta$	$1.10 \pm 0.35 \pm 0.07$
$x^2 (10^{-3})$	$0.06 \pm 0.01 \pm 0.05$
$x\sin\delta$ (10 ⁻³)	$4.4\pm2.4\pm2.9$
$K^{-}\pi^{+}$ (%)	$3.78 \pm 0.05 \pm 0.05$
K^-K^+ (10 ⁻³)	$3.88 \pm 0.06 \pm 0.06$
$\pi^{-}\pi^{+}$ (10 ⁻³)	$1.36 \pm 0.02 \pm 0.03$
$K_S^0 \pi^0 \pi^0 (10^{-3})$	$8.35 \pm 0.44 \pm 0.42$
$K_{S}^{0}\pi^{0}$ (%)	$1.14 \pm 0.03 \pm 0.03$
$K_{S}^{0}\eta \ (10^{-3})$	$4.42 \pm 0.15 \pm 0.28$
$K^0_S\omega$ (%)	$1.12 \pm 0.04 \pm 0.05$
$X^{-}e^{+}\nu_{e}$ (%)	$6.59 \pm 0.16 \pm 0.16$
$K_L^0 \pi^0$ (%)	$1.01 \pm 0.03 \pm 0.02$
$\chi^2_{\rm fit}/{ m ndof}$	55.3/57

Result will improve with full 818 fb⁻¹ data set,

use of additional tags, and possible exploitation of 4170 MeV data.

Similar analysis can be done for $K\pi\pi\pi$ – but here need to worry about resonant substructure which brings dilution to ADS interference (see backup slides).

Expected Sensitivity to γ at LHCb

Expected γ precision with 2 fb⁻¹ of data (one year) for ADS modes alone:

Add other measurements, especially $B \rightarrow D(K_S \pi^+ \pi^-)K$, & extrapolate to 10 fb⁻¹

 σ_{γ} = 1.9 - 2.7°

...in which $B \rightarrow DK$ methods have a weight of ~70% (variation in number depends on values of phases)

Understanding of D decay properties central to precise measurement of γ !

Lattice QCD and the 'Mixing Side'

Highly desirable to cross-check lattice against experiment - go to D system !

Leptonic D Decays and Decay Constants

In D⁺ and D_s c and spectator quark can annihilate to produce leptonic final state:

In general, for all pseudoscalars:

$$\Gamma(\mathbf{P}^{+} \to \ell^{+} \nu) = \frac{1}{8\pi} G_{F}^{2} f_{P}^{2} m_{\ell}^{2} M_{P} \left(1 - \frac{m_{\ell}^{2}}{M_{P}^{2}}\right)^{2} |V_{Qq}|^{2}$$

Since V_{cd} and V_{cs} well known, can extract f_{D} and $f_{D_{\varsigma}}$ and compare with lattice !

Measurements of $D_{(s)} \rightarrow l\nu$ Branching Fractions

Precise measurements now exist for:

 $\mu^+\nu$, τ⁺ (\rightarrow π⁺ν)υ CLEO-C (PRL 99 (2007) 071802; arXiv:0704.0437 + prelim)

 D_{s} $\mu^{+}\nu$ BELLE (arXiv:0709.1340) & BaBar (hep-ex/0607094)

 $\tau^+ \rightarrow (e^+ \nu \nu) \nu$ CLEO-C (PRL 100 (2008) 161801)

D+ CLEO-C (arXiv:0806.2112)

Basic method for $\mu\nu$ measurement:

- CLEO-c: for f_D reconstruct one D⁺, look for MIP (μ), and then compute missing mass squared (similar for f_{D_s} , but here exploit $D_s D_s^*$ production in 4170 MeV dataset)
- B-factory: infer presence of ${\rm D}_{\rm s}$ from recoiling mass against reconstructed D & fragmentation. Add candidate $\,\mu\,$ and compute missing mass

CLEO-c $D^+ \rightarrow \mu^+ \nu$

Missing mass squared distribution (incld. log zoom with fit):

 $f_D = (205.8 \pm 8.5 \pm 2.5) \text{ MeV}$

(result with $\tau \nu / \mu \nu$ fixed at SM expectation)

$$D_s \rightarrow \mu^+ \nu$$

D⁺ and D_s Decay Constants: the Global Picture

 f_D agrees well with lattice QCD; f_{D_s} measurements internally consistent, but more than 3.5 sigma away from lattice QCD !

Is there something wrong with calculation (implications for mixing side) or is it new physics (charged Higgs, leptoquarks... arXiv:0803.1898; arXiv:0803.0512)?

Final D_s results from CLEO-c expected soon with full data sample

New Physics Searches in the D system

D⁰-D
⁰ oscillations (in brief – see next talk)
The search for CP violation
Rare decays

D⁰-D⁰ Mixing

 $D^0-\overline{D}^0$ transitions have two observables:

$$x = \frac{\Delta M}{\Gamma}, \qquad y = \frac{\Delta \Gamma}{2\Gamma}$$

Boxes and loops in charm transitions involve down-type quarks – this gives charm system unique new physics sensitivity.

SM calculations based on box diagrams alone gives x~10⁻⁵, y~10⁻⁷ [Falk et al. PRD 65 (2002) 054034]

y should be dominated by long-distance effects, and is generally considered to be immune to NP (but not always, ie. [Petrov & Yegiyan PRD 77 (2008) 034018]). So x>>y would point to NP!

Short-distance

D^0 - \overline{D}^0 Mixing: Observation

Numerous recent, exciting results on charm mixing (see Joerg Marks' talk).

The most interesting..

No doubt now that mixing has been seen...

$$x = 0.89 \pm \frac{0.26}{0.27} \%$$
$$y = 0.75 \pm \frac{0.17}{0.18} \%$$

(HFAG May 08, CPV allowed)

...but what does it mean?

The Charm Renaissance - Guy Wilkinson Physics in Collision 2008, Perugia

$D^0-\overline{D}^0$ Mixing: Interpretation

SM predictions for x & y have very large spread in value.

Observed values of parameters:

 $x = 0.89 \pm \frac{0.26}{0.27} \%$ $y = 0.75 \pm \frac{0.17}{0.18} \%$

are on high side of what was expected, but are consistent.

Golowich, Hewett, Pakvasa and Petrov, PRL 98 (2007) 181801

Model	Approximate Constraint	
Fourth Generation	$ V_{ub'}V_{cb'} \cdot m_{b'} < 0.5 \; (\text{GeV})$	
Q = -1/3 Singlet Quark	$s_2 \cdot m_S < 0.27 \; (\text{GeV})$	
Q = +2/3 Singlet Quark	$ \lambda_{uc} < 2.4 \cdot 10^{-4}$	
Little Higgs	Tree: See entry for $Q = -1/3$ Singlet Quark	
	Box: Parameter space can reach observed $x_{\rm D}$	
Generic Z'	$M_{Z'}/C > 2.2 \cdot 10^3 { m ~TeV}$	
Family Symmetries	$m_1/f > 1.2 \cdot 10^3 \text{ TeV} \text{ (with } m_1/m_2 = 0.5)$	
Left-Right Symmetric	No constraint	
Alternate Left-Right Symmetric	$M_R > 1.2 \text{ TeV} (m_{D_1} = 0.5 \text{ TeV})$	
	$(\Delta m/m_{D_1})/M_R > 0.4 \text{ TeV}^{-1}$	
Vector Leptoquark Bosons	$M_{VLQ} > 55(\lambda_{PP}/0.1)$ TeV	
Flavor Conserving Two-Higgs-Doublet	No constraint	
Flavor Changing Neutral Higgs	$m_H/C > 2.4 \cdot 10^3 \text{ TeV}$	
FC Neutral Higgs (Cheng-Sher)	$m_H/ \Delta_{uc} > 600 { m GeV}$	
Scalar Leptoquark Bosons	See entry for RPV SUSY	
Higgsless	$M > 100 { m ~TeV}$	
Universal Extra Dimensions	No constraint	
Split Fermion	$M/ \Delta y > (6 \cdot 10^2 \text{ GeV})$	
Warped Geometries	$M_1 > 3.5 \text{ TeV}$	
MSSM	$ (\delta_{12}^u)_{\mathrm{LR,RL}} < 3.5 \cdot 10^{-2} \text{ for } \tilde{m} \sim 1 \text{ TeV}$	
	$ (\delta_{12}^u)_{\rm LL,RR} < .25$ for $\tilde{m} \sim 1$ TeV	
SUSY Alignment	$ ilde{m} > 2 { m TeV}$	
Supersymmetry with RPV	$\lambda'_{12k}\lambda'_{11k}/m_{\tilde{d}_{R,k}} < 1.8 \cdot 10^{-3}/100 { m GeV}$	
Split Supersymmetry	No constraint	

For this reason, and since x~y, no immediate sign of new physics, but plenty of useful constraints can be derived

CP Violation in the Charm System

If D mixing discovery has not (immediately) revealed New Physics, where to look? Answer: CP violation ! Extremely small in SM (~ only 2 generations participate).

Two possible sources of CPV (there is another – see later):

φ -	 phase between mixing and decay 	both negligibly
(q/p -1) -	where $D_{+,-} = p D^0 > \pm q \overline{D}^0 >$	small in SM

So CP asymmetries possible in mixing (A^m) or between mixing and decay (Aⁱ):

 $\begin{array}{l} \mathsf{A}^{\mathsf{m}} \propto \mathsf{-y/2} \; (|\mathsf{q}/\mathsf{p}| \mathsf{-} |\mathsf{p}/\mathsf{q}|) \; \mathsf{cos}\varphi \\ \mathsf{A}^{\mathsf{i}} \; \propto \; \mathsf{x/2} \; (|\mathsf{q}/\mathsf{p}| \mathsf{+} |\mathsf{p}/\mathsf{q}|) \; \mathsf{sin}\varphi \end{array}$

New Physics observable giving non-0 ϕ or (|q/p|-1) suppressed by x, y ~ 10⁻². So if something is seen it will be very small – but not as small as once feared !

Indirect CP Violation in Charm: Status & Prospects

Generalising the mixing analyses to allow for CPV violation gives sensitivity to the two parameters governing CPV in mixing and mixing-decay interference.

So far no evidence of CPV, but existing limits are already quite impressive:

$$|q/p| = 0.87 \pm \frac{0.18}{0.15}$$

 $\phi = -9.1 \pm \frac{8.1}{7.8}$ degrees

Higher sensitivity will come as mixing analyses improve precision – wait for LHCb (and beyond)

Many NP models expect effects here (eg. flavour alignment in SUSY)

CPV in Singly Cabibbo Suppressed D decays

Singly Cabibbo Suppressed (SCS) decays - a win-win scenario for CPV searches

Interference between tree and Penguin can generate both direct CP asymmetries which:

- Could reach ~10⁻³ in SM may be observable!
- In many NP models effects of ~10⁻² possible (see eg. Grossman, Kagan, Nir, PRD 75 (2007) 036008)

Task therefore is to look for CPV in SCS:

- Time integrated asymmetries in CP eigenstates, eg. KK, $\pi\pi$ (involves other types of CPV, not just direct)
- \bullet Asymmetries in charged D decays, eg. KK π
- Asymmetries in final state distributions, eg. Dalitz plots and moments (may be most sensitive)

CPV searches in D⁰ \rightarrow KK, $\pi\pi$

Measure asymmetry in time integrated rates:

$$A_{CP} = \frac{\Gamma(D^0 \to KK(\pi\pi)) - \Gamma(\overline{D}^0 \to KK(\pi\pi))}{\Gamma(D^0 \to KK(\pi\pi)) + \Gamma(\overline{D}^0 \to KK(\pi\pi))}$$

Distinguish D flavour from 'slow pion' charge in $D^* \rightarrow D^0 \pi$

BaBar, PRD 100 (2008) 061803

 $A_{CP} = 0.00 \pm 0.34 \text{ (stat)} \pm 0.13 \text{ (syst)}\%$

(dominates HFAG world average)

386 fb⁻¹, ~130k KK events Spot the difference....

Use K π events to calibrate out asymmetries in slow π reconstruction. Form CP asymmetry in bins of θ to account for EW (γ -Z) FB asymmetries.

Entering interesting territory !

LHCb will accumulate > 50x statistics in this mode – big improvements possible...

CPV Searches in Multibody ($n \ge 3$) Decays

Final state distributions in 3 and 4-body decays allow for other strategies, some with higher sensitivity than simple comparisons of integrated rates.

eg. BaBar study of K+K- $\pi^0, \pi^+\pi^-\pi^0$

Several complementary analyses:

- Form residuals of D⁰, D⁰
 w.r.t. mean in Dalitz space
- Look for difference in angular moments of D⁰ & D⁰ distributions
- Compare amplitude fits of D⁰ & D⁰ Dalitz spaces (model dependent)

Consistent with no CPV at 33% and 17%

• Look for phase space integrated asymmetry.

Other example: FOCUS T-odd moments study in D \rightarrow KK $\pi\pi$ (PLB 622 (2005) 622)

New Physics Searches with Rare D Decays

Example: $c \rightarrow ul^{+l^{-}}$. Initially, exclusive modes look unpromising for NP searches, in contrast to B decays.

Why? Because short distance effects are swamped by long distance contributions.

Br	short distance		total rate \simeq	experiment
	contribution only		long distance contr.	
	SM	SM + NP		
$D^+ \rightarrow \pi^+ e^+ e^-$	6×10^{-12}	8×10^{-9}	$1.9 imes10^{-6}$	$< 7.4 \times 10^{-6}$
$D^+ \to \pi^+ \mu^+ \mu^-$	6×10^{-12}	8×10^{-9}	$1.9 imes 10^{-6}$	$< 8.8 \times 10^{-6}$
$D^0 ightarrow ho^0 e^+ e^-$	negligible	5×10^{-10}	$1.6 imes 10^{-7}$	$< 1.0 \times 10^{-4}$
$D^0 ightarrow ho^0 \mu^+ \mu^-$	negligible	$5 imes 10^{-10}$	$1.5 imes 10^{-7}$	$<2.2\times10^{-5}$

However, differential distributions, and FB asymmetries, still have discriminating power.

And total rate can still be sizably enhanced

in some cases: $D^0 \rightarrow \mu\mu \sim 10^{-13}$ in SM, can go up to 10^{-7} in R-parity violating SUSY

NP models with extra up-type quark. From arXiv:0801.1833

Conclusions

Charm has stepped back into the front-line of flavour physics

- SM description of CP violation has withstood its first attack (from the B-factories and Tevatron). Next phase of measurements, at LHCb, will have heavy reliance on what we understand about D decays.
- The D meson system is an excellent place to look for new physics (and one which is complementary to the B sector). In particular the ~ zero expected CP violation in the SM gives a near background-free environment in which to search. The observation of D-mixing gives us heart.

So, as well as being instrumental in the establishment of the SM, charm may yet play a role in its dethronement!