Dalitz Decays in Charm

Jonas Rademacker on behalf of the CLEO-c collaboration

Dalitz Plots

- Kinematics of 3-body decay
 D→A,B,C fully described by 2 parameters.
- Usually chose $m_{AB}^2 \equiv (p_A + p_B)^2$ and $m_{BC}^2 \equiv (p_B + p_C)^2$.
 - Lorentz invariant
 - Phase-space is flat in these parameters.

• Decay rates: $\frac{d\Gamma(m_{ab}^{2}, m_{bc}^{2})}{dm_{ab}^{2} dm_{bc}^{2}} = |a_{1}e^{i\delta_{1}} + a_{2}e^{i\delta_{2}} + a_{3}e^{i\delta_{3}} + \dots|^{2} \frac{d\Phi(m_{ab}^{2}, m_{bc}^{2})}{dm_{ab}^{2} dm_{bc}^{2}} - A_{CP}$

Dalitz analyses can...

K*ρ**a**₁ **f**(980)...

Ω(š)^K(š)…

К

- Main strength of Dalitz analyses: Access to complex amplitudes, incl phases.
- Use for...
 - Understanding properties the light meson resonances.
 - Understand charm itself mixing, CPV
 - Measure properties (phases) of B-meson decays to charm (CPV)

Jonas Rademacker (University of Bristol) for CLEO; Heavy Quarks & Leptons, Melbourne, 5 June 2008. 3

Charm Dalitz for the resonances

"Isobar" Model

- Each resonance = Breit Wigner lineshape (or similar) times factors accounting for spin.
- Popular amongst experimentalists, but less so amongst theorists: violates unitarity. But not much as long as resonances are reasonably narrow, don't overlap too much.
- General consensus: Isobar OK for P, D wave, but problematic for S-wave.
- Alternatives exist, e.g. K-matrix formalism, which respects unitarity.

S-wave

- S-wave resonances $\sigma \rightarrow \pi^+ \pi^-, \varkappa \rightarrow K^+ \pi^$ are the real?
 - needed in isobar fits to $D^+ \rightarrow \pi^+ \pi^- \pi^+$, $D^0 \rightarrow K_s \pi^+ \pi^-$, $D^+ \rightarrow K^- \pi^+ \pi^+$
 - unclear if compatible with LASS scattering data
 - not required in $D^0 \rightarrow K^-\pi^+\pi^0$, $D^0 \rightarrow \pi^+\pi^-\pi^0$ isobar fits
- K-matrix Models don't explicitly require σ, *π*.

CLEO-c's $D^+ \rightarrow \pi^+\pi^+\pi^-$ 3-model fit

- Previously on this channel: E791's isobar fit, FOCUS pioneered K-matrix.
- CLEO-c: Isobar (two types: Flatté and complex-pole for f₀(980) and σ) and two models that respect unitarity & chirality [CLEO-c: Phys. Rev. D 76, 012001 (2007)]
 - Schechter [see CLEO paper and Int J. Mod. Phys. A20, 6149 (2005)]
 - Achasov [see CLEO paper and N. N. Achasov and G. N. Shestakov, Phys. Rev. D 67, 114018 (2003), and many more -<u>click here</u>.]
- All fit data well. Results compatible with prev experiments and each other.
 E791: Phys. Rev. Lett. 86, 770 (2001); FOCUS: Phys. Lett. B 585, 200 (2004); CLEO-c: Phys. Rev. D 76, 012001 (2007)

$D^+ \rightarrow K^- \pi^+ \pi^+$

- Large $K\pi$ S-wave component, large B.R.
- History
 - 2002, highest-statistics result (15k evts), isobar model fit by E791* (result not in PDG - model used not compatible with PDG prescription).
 - In 2006, E791^{**} re-analysed their data, describing the S-wave contribution in a model-independent way.
 - CLEO-c repeated this analysis in 2008*** (140k evts)
 - FOCUS use K-matrix approach (2007)**** (54k evts)

*<u>Phys. Rev. Lett 89, 121801 (2002);</u> **Phys. Rev. D73, 032004 (2006); *<u>arXiv:0802.4214</u> (submitted to PRD); ****arXiv:0705.2248 [hep-ex], to appear in Phys. Lett. B

4-body "Dalitz" $D \rightarrow \pi^+ \pi^+ \pi^- \pi^-$

- Similar formalism, now with 5 variables rather than 2.
- $D \rightarrow a_1(1260)\pi$ is the dominant channel, followed by $\varrho \varrho$.
- Found dominant decay of a_1 is $\sigma\pi$ (isobar analysis)
- Many more results in paper, (incl gg polarisation)
- 4-body amplitude in D also important for B physics.

Phys.Rev.D75:052003,2007

Dalitz Plots for Charm mixing and CP violation

K*ρα₁ f(980)... σ(?)κ(?)... D R

The Charm System

• D mass eigenstates: $D_{1,2}=p \mid D \rangle \pm q \mid \overline{D} \rangle$

•
$$x = \frac{\Delta m}{\overline{\Gamma}}$$
 ~mixing frequency

•
$$y = \frac{\Delta \Gamma}{2\overline{\Gamma}}$$
 ~lifetime difference

- CP-violation if $|p/q| \neq 1$ or phase $\phi \neq 0$ (measured in interference between mixing and decay, like -2β in B)
- SM: x, y ~ 10⁻³ 10⁻², no CPV
- New Physics could affect charm very differently to K or B system (only mixing up-type quark).
- Most sensitive to NP: CP violation in charm.

Charm mixing

• First charm mixing evidence was found with $D \rightarrow K^+\pi^-$. Sensitive to $(x')^2$ and y', where

$$\left(\begin{array}{c} x'\\ y'\end{array}\right) = \left(\begin{array}{cc} \cos\delta & \sin\delta\\ -\sin\delta & \cos\delta\end{array}\right) \left(\begin{array}{c} x\\ y\end{array}\right)$$

- $\delta = \text{strong phase between the interfering CF } D \rightarrow K^-\pi^+ \text{ and } DCS$ $D \rightarrow K^+\pi^-$. (CLEO measured $\cos\delta = 0.9 \pm 0.3$). $\frac{W. M. Sun \text{ at } CHARM 2007 \text{ for}}{CLEO, \text{ arXiv:0712.0498 [hep-ex]}}$
- Same principle works with $D \rightarrow K^+\pi^-\pi^0$ Dalitz plots and measures measures x'', y''. See <u>William Lockman for BaBar at Lepton-Photon 2007, Daegu, S. Korea</u> and <u>backup slides</u> for details.

Charm mixing with time-dependent $D \rightarrow K_s \pi^+ \pi^-$ Dalitz

- $K_s\pi^+\pi^-$ is self-conjugate, both CF modes like $D \rightarrow K^*\pi^+$ and DCS modes such as $D \rightarrow K^{*+}\pi^-$ are in the same Dalitz plot \Rightarrow measure their relative phase δ_i .
- Dalitz fit measures all phases that are needed.
- Extracts (x, y) directly; not (x', y') or (x'',y'')
- Linear dependence on x, sensitivity to the sign of x.
- Pioneered by CLEO Phys. Rev. D72:012001,2005, hep-ex/0503045

Charm mixing with time-dependent $D \rightarrow K_s \pi^+ \pi^-$ Dalitz

Charm mixing with time-dependent Dalitz Plots at BELLE

HFAG FPCP 2008*

95% CL, BELLE, D→Ksππ

mix: $x = (0.89^{+0.26}_{-0.27})\%$ $y = (0.75^{+0.17}_{-0.18})\%$ **CPV:** $|p/q| = 0.87^{+0.18}_{-0.15} \phi = -9.1^{\circ}_{-7.8^{\circ}}^{+8.1^{\circ}}$

- BELLE's $D \rightarrow K_s \pi^+ \pi^-$ alone** $\mathbf{x} = (0.81 \pm 0.30^{+0.13}_{-0.17})\%$ $y = (0.37 \pm 0.25^{+0.10}_{-0.15})\%$
- $|p/q| = 0.86 \pm 0.30^{+0.10}_{-0.09}$ $\phi = -14^{\circ} \pm 18^{\circ} \pm 5^{\circ}$
 - Best single result on x.

*http://www.slac.stanford.edu/xorg/hfag/charm/FPCP08/results_mix+cpv.html **Phys.Rev.Lett.99:131803,2007

Search for CPV in SCS decays

- New physics could affect Singly Cabibbo Suppressed decays differently from Cabbibo Favoured or Doubly Cabbibo Supressed.
- Recent Dalitz studies by BaBar ($D \rightarrow \pi^+\pi^-\pi^0$, $D \rightarrow K^+K^-\pi^0$) and CLEO-c $D^+ \rightarrow K^+K^-\pi^+$. Results: CPV in SCS smaller than few%.

Charm Dalitz for precision B physics

The importance of measuring Treelevel y

Constraints from Trees

Constraints from Loops

$B^{\pm} \rightarrow DK^{\pm}$

- Tree level only no new physics
- Crucial for NP sensitivity by providing a theoretically clean reference.
- No time measurement, no tagging.

<u>Gronau, Wyler Phys.Lett.B265:172-176,1991</u>, (GLW) <u>Gronau, London Phys.Lett.B253:483-488,1991</u> (GLW) <u>Atwood, Dunietz and Soni</u> Phys.Rev.Lett. 78 (1997) 3257-3260 (ADS) <u>Giri, Grossman, Soffer and Zupan</u> Phys.Rev. D68 (2003) 054018 <u>Belle Collaboration Phys.Rev. D70 (2004) 072003</u>

Dalitz Plots for y at Belle&BaBar

BaBar* (383M BB): $\gamma = 76^{\circ} \pm 22^{\circ}(\text{stat}) \pm 5^{\circ}(\text{sys}) \pm 5^{\circ}(\text{model})$, $r_B=0.086\pm0.04$ BELLE** (657M BB): $\gamma = 76^{\circ}_{-13^{\circ}}(\text{stat}) \pm 4^{\circ}(\text{sys}) \pm 9^{\circ}(\text{model})$, $r_B=0.16 \pm 0.04$

Using $B^0 \rightarrow D(K_s \pi \pi)K^*$ instead of charged B (May 08): <u>arXiv:0805.2001</u> BaBar: 162°±56° or 342°±56°, r_s < 0.55 at 95%CL

*Combined result B±→DK± and B±→D*K± for Ksm and KsKK Dalitz plot. arXiv:0804.2089; April 2008 **Combined result B±→DK± and B±→D*K± for Ksm Dalitz plot. arXiv:0803.3375, March 2008 Jonas Rademacker (University of Bristol) for CLEO; Heavy Quarks & Leptons, Melbourne, 5 June 2008. 21

BaBar's improved Dalitz model

BaBar $D \rightarrow K_s \pi \pi$ fit projections

- BaBar now use K-matrix^{*} for $\pi\pi$ S-wave (fit fraction 12%±3%) and LASS-parameterisation^{**} for K π S-wave.
- Isobar: χ^2 /ndof =1.20; K-matrix+LASS: χ^2 /ndof =1.11;

*E. P. Wigner. Phys. Rev. **70**, 15 (1946); **Nucl. Phys. B **296**, 493 (1988) I. J. R. Aitchison, Nucl. Phys. A **189**, 417 (1972)

Jonas Rademacker (University of Bristol) for CLEO; Heavy Quarks & Leptons, Melbourne, 5 June 2008. 22

Model Dependence

- Need D-Dalitz structure as input.
- Complex Amplitudes have
 2 parameters at each point in plot.
- Measure only 1 parameter: Intensity.
- Need Model. Get model dependence. Still largest systematic in both analyses.

CLEO-c

- Final state must be CP-odd.
- And flavour-neutral.
- That gives us access to both amplitude and phase across the Dalitz plot.

CP- tagged Decays

Input for a model independent (binned) analysis of $B^{\pm} \rightarrow D(K_s\pi\pi)K^{\pm}$: <u>Giri, Grossmann, Soffer, Zupan, Phys Rev D 68, 054018 (2003)</u>. <u>Bondar, Poluektov hep-ph/0703267 (2007)</u>

CLEO-c's impact on γ from B[±] $\rightarrow D(K_s\pi\pi)K^{\pm}$

 Analysis not finalised. Based on 398/pb, expect for full 818/pb sample, using D_a→CP±, D_b→K_sππ and D_a→K_sππ, D_b→K_sππ:

 $\sigma(\gamma)$ from CLEO-c's input ~5° (replaces model error, 5°-9°).

• Using $D \rightarrow K_L \pi \pi$ could double statistics - currently investigating systematics.

References for binned, model independent analysis of B[±]→D(K_sππ)K[±]: <u>Giri, Grossmann, Soffer, Zupan, Phys Rev D 68, 054018 (2003)</u>. <u>Bondar, Poluektov hep-ph/0703267 (2007)</u>

- Four-body ^BDalit ^{DK} implitude) analyses can be done, see for example recent FOCUS results.
- Expect similar performance from KKππ amplitude analysis as for K_sππ (see <u>Phys. Lett. B 647 (2007) 400-405</u> and public note LHCb-2007-098)

27

• Expect more from from Κπππ due to "ADS effect". Jonas Rademacker (University of Bristol) for CLEO; Heavy Quarks & Leptons, Melbourne, 5 June 2008.

- Treat K 3π light two-body for K with and single effective strong $k^{(\delta + \gamma)}$
- New parameter: Conerence factor $\mathbf{R} < 1$.

Quasi-t

treatment

Atwood, Soni: Phys.Rev. D6 3.033003

$$\Gamma({\rm B}^{-} \to ({\rm K}^{+}3\pi)_{\rm D}{\rm K}^{-}) \propto r_{B}^{2} + (r_{D}^{K3\pi})^{2} + 2R_{K3\pi}r_{B}r_{D}^{K3\pi} \cdot \cos(\delta_{B} + \delta_{D}^{K3\pi} - \gamma)$$

 $(K^{+}\pi^{-}\pi^{+}\pi^{-})_{D}R^{-}$

 $r_{\rm B} e^{i(\delta - \gamma)} \overline{D} K^{-1}$

• CLEO-c's coherent $\psi(3770) \rightarrow D_1D_2$ events allow measurement of R, δ_D - important input for LHCb

Double Tag Rate	Sensitive To	
$K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$ vs. $K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$	$(R_{K3\pi})^2$	
$K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$ vs. CP	$R_{K3\pi}cos(\delta^{K3\pi})$	
$K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$ vs. $K^{\pm}\pi^{\mp}$	$R_{K3\pi}cos(\delta^{K\pi}-\delta^{K3\pi})$	

Kπππ coherence factor

- First measurement of coherence factor.
- Low value preferred.
 Implies that quasi-2
 body analysis of Kπππ
 on its own would not be terribly sensitive to γ.
- However, for combined analysis of KK, Kπ, ππ, Kπππ this still provides powerful constraints.

Andrew Powell on behalf of CLEO-c at the <u>Lake Louise</u> <u>Winter Institute 2008</u>. Proceedings: <u>arXiv:0805.1722</u>

Kπππ coherence factor

• Significantly increases the precision of global γ fits in combined fit with other modes (KK, $\pi\pi$, K π).

Precision on γ at LHCb for 2/fb (1 average year of data) using B[±] \rightarrow D(2body)K[±] and B[±] \rightarrow D(K $\pi\pi\pi$)K[±]

Summary

- S-wave resonances not a solved problem. Progress from new high-statistics results.
- Charm mixing and especially CP violation provide unique windows to New Physics.
 Dalitz analyses give access to strong phases that would otherwise dilute measurements.
- ψ(3770) data from CLEO-c, and in future hopefully BES III, provide essential input for γ measurements. Especially important for high-precision, high-statistics results at LHCb (start 2008) and future Super-Flavour Factory.

K*ρα₁ f(980)... σ(?)κ(?)... ↑ D

R

SM-y for New Physics

Focus T-matrix poles in D+->3pi

T-matrix pole	$(m,\Gamma/2)$ (GeV)	D^+ (relative) coupling constant
$f_0(980)$	(1.019, 0.038)	$1 e^{i0}$ (fixed)
$f_0(1300)$	(1.306, 0.170)	$(0.67 \pm 0.03) e^{i(-67.9 \pm 3.0)}$
$f_0(1200 - 1600)$	(1.470, 0.960)	$(1.70 \pm 0.17) e^{i(-125.5 \pm 1.7)}$
$f_0(1500)$	(1.488, 0.058)	$(0.63 \pm 0.02) e^{i(-142.2 \pm 2.2)}$
$f_0(1750)$	(1.746, 0.160)	$(0.36 \pm 0.02) e^{i(-135.0 \pm 2.9)}$

Focus Fit Fractions in D->3pi

	D_s^+
decay channel	fit fraction $(\%)$
$(S-\text{wave}) \pi^+$	$87.04 \pm 5.60 \pm 4.17 \pm 1.34$
$f_2(1270) \pi^+$	$9.74 \pm 4.49 \pm 2.63 \pm 1.32$
$\rho^0(1450)\pi^+$	$6.56 \pm 3.43 \pm 3.31 \pm 2.90$
	D^+
decay channel	fit fraction (%)
$(S$ -wave) π^+	$56.00 \pm 3.24 \pm 2.08 \pm 0.50$
$f_2(1270) \pi^+$	$11.74 \pm 1.90 \pm 0.23 \pm 0.18$
$\rho^{0}(770)\pi^{+}$	$30.82 \pm 3.14 \pm 2.29 \pm 0.17$

$D^+ \rightarrow K^- \pi^+ \pi^+$ at FOCUS

- Focus use K-matrix approach, parameterised according to LASS elastic scattering lineshape. Separate fit to I=1/2 and I=3/2 Kπ.
- Consistent description scattering and resonances in charm.
- S-wave fraction $83\% \pm 1\%$, Fit χ^2 -prob 1.2%
- Isobar fit with \varkappa as x-check. Consistent with prev. experiments. Fit χ^2 -prob 6.3%

The $\pi\pi$ S-wave in D $\rightarrow\pi\pi\pi$

- Recent results by E791 [Phys. Rev. Lett 86, 770 (2001), FOCUS (Phys. Lett. B 585, 200 (2004), CLEO-c (Phys. Rev. D 76, 012001 (2007)).
- E791 uses the isobar model, FOCUS the K-matrix*, CLEO-c compares isobar, Schechter**, and Achasov*** model.

* E. P. Wigner, Phys. Rev. 70 (1946) 15. S. U. Chung et al, Annalen Phys. 4 (1995) 404. ** Int J. Mod. Phys. A20, 6149 (2005)

V. V. Anisovich and A. V. Sarantsev, Eur. Phys. J. A16 (2003) 229

*** private communications with the authors of the CLEO paper, and many papers - <u>click here</u>.

$D^+ \rightarrow K^- \pi^+ \pi^+$ Isobar and Model Independent Fit at CLEO-c

- For same parameterisation, results compatible between E791* and CLEO-c** both models.
- Crucial to achieve agreement with CLEO-c's data: Add I=2 ππ S-wave.
- Significantly improves fit for both models. Better fit quality for binned S-wave.

*Phys. Rev. Lett 89, 121801 (2002); Phys. Rev. D73, 032004 (2006); **<u>arXiv:0802.4214</u> (submitted to PRD)

Jonas Rademacker (University of Bristol) for CLEO; Heavy Quarks & Leptons, Melbourne, 5 June 2008. 38

— total Кп S-wave — Кп S-wave w/o K*(1430)

BELLE Kspipi Dalitz for mix

Resonance	Amplitude	Phase (°)	Fit fraction
$K^{*}(892)^{-}$	1.629 ± 0.006	134.3 ± 0.3	0.6227
$K_0^*(1430)^-$	2.12 ± 0.02	-0.9 ± 0.8	0.0724
$K_2^*(1430)^-$	0.87 ± 0.02	-47.3 ± 1.2	0.0133
$K^{*}(1410)^{-}$	0.65 ± 0.03	111 ± 4	0.0048
$K^{*}(1680)^{-}$	0.60 ± 0.25	147 ± 29	0.0002
$K^{*}(892)^{+}$	0.152 ± 0.003	-37.5 ± 1.3	0.0054
$K_0^*(1430)^+$	0.541 ± 0.019	91.8 ± 2.1	0.0047
$K_2^*(1430)^+$	0.276 ± 0.013	-106 ± 3	0.0013
$K^{*}(1410)^{+}$	0.33 ± 0.02	-102 ± 4	0.0013
$K^*(1680)^+$	0.73 ± 0.16	103 ± 11	0.0004
$\rho(770)$	1 (fixed)	0 (fixed)	0.2111
$\omega(782)$	0.0380 ± 0.0007	115.1 ± 1.1	0.0063
$f_0(980)$	0.380 ± 0.004	-147.1 ± 1.1	0.0452
$f_0(1370)$	1.46 ± 0.05	98.6 ± 1.8	0.0162
$f_2(1270)$	1.43 ± 0.02	-13.6 ± 1.2	0.0180
$\rho(1450)$	0.72 ± 0.04	41 ± 7	0.0024
σ_1	1.39 ± 0.02	-146.6 ± 0.9	0.0914
σ_2	0.267 ± 0.013	-157 ± 3	0.0088
NR	2.36 ± 0.07	155 ± 2	0.0615

Fit case	Parameter	Fit result	95% C.L. interval
No	x(%)	$0.80\ \pm 0.29\ {}^{+0.09}_{-0.07}\ {}^{+0.10}_{-0.14}$	(0.0, 1.6)
CPV	y(%)	$0.33\ \pm 0.24\ ^{+0.08}_{-0.12}\ ^{+0.06}_{-0.08}$	(-0.34, 0.96)
CPV	x(%)	$0.81\ \pm 0.30\ {}^{+0.10}_{-0.07}\ {}^{+0.09}_{-0.16}$	x < 1.6
	y(%)	$0.37\ \pm 0.25\ {}^{+0.07}_{-0.13}\ {}^{+0.07}_{-0.08}$	y < 1.04
	q/p	$0.86^{+0.30}_{-0.29}{}^{+0.06}_{-0.03}\pm0.08$	-
	$\arg(q/p)(^\circ)$	-14^{+16}_{-18}	-

$D \rightarrow K\pi (x'^2, y')$ contours

$$x'^{2} = (0.018^{+0.021}_{-0.023})\% \quad x'^{2} = (-0.22 \pm 0.30 \pm 0.21)\% \quad x'^{2} = (-0.012 \pm 0.035)\%$$

$$y' = (0.06^{+0.40}_{-0.39})\% \quad y' = (9.7 \pm 4.4 \pm 3.1)\% \quad y' = (0.85 \pm 0.76)\%$$

Phys.Rev.Lett.96:151801,2006

Phys.Rev.Lett.98:211802,2007

Phys.Rev.Lett.100:121802,2008

$$\Gamma(D^0(t) \to K^+\pi^-) \propto e^{-\Gamma t} \left[\frac{R_D}{R_D} + \sqrt{R_D} y' (\Gamma t) + \frac{x'^2 + y'^2}{4} (\Gamma t)^2 \right]$$

Jonas Rademacker (University of Bristol) for CLEO; Heavy Quarks & Leptons, Melbourne, 5 June 2008. 40

Mixing with time-dependent Dalitz

wrong-sign

D.06

0.04

0.02

-0.02

-0.04

stat.+syst.

+ no-mix

x best fit

preliminary

95%

99% 99.9%

BABAR

oreliminarv

1.5

• Time-dependent Dalitz analysis

- Equivalent to $K\pi$ analysis
- Measure $(x'', y'') = \text{Rotate}(\delta_{K\pi\pi0})$ (x,y) where $\delta_{K\pi\pi0} = \text{strong}_{x'} p_{=}^{+0.06} (2.39 \pm 0.61 \text{ (stay.})' = -0.02 \ 0 \ 0.02 \ 0.04 \ 0.06}$ $x'' = 2.39 \pm 0.61 \text{ (stat)} \pm 0.32 \text{ (stat)} \pm 0.32 \text{ (sys.})\%$ between CF and DCS. $y'' = (-0.14 \pm 0.60 \text{ (stat.}) \pm 0.40 \text{ (syst.}))\%$ world average

William Lockman for the BaBar Collaboration Lepton-Photon 2007, Daegu, S. Korea

Compatible with no mixing at <0.8% CL

Charm mixing with time-dependent Dalitz Plots at BELLE

Best result on x.

*http://www.slac.stanford.edu/xorg/hfag/charm/FPCP08/results_mix+cpv.html

Mixing with D/Dbar \rightarrow K⁺ $\pi^{-}\pi^{0}$

- Requires Dalitz fit since each point in Dalitz space has different δ(m₁₂, m₂₃).
- Can fit for relative phases within Dalitz plot, but an overall phase difference remains between the plots, hence measure (x", y") = Rotate(δ_{Kππ0}) (x,y)

CPV in $D \rightarrow \pi^+\pi^-\pi^0$, $D \rightarrow K^+K^-\pi^0$?

- Four approaches (BaBar): Look for differences between D, D...
 - across Dalitz space (plot \rightarrow)
 - in fit to Dalitz model
 - angular distributions
 - total decay rates (also BELLE)
- No evidence for CPV. Limits CPV in SCS charm to < few % level.

BaBar result: arXiv:0801.2439, submitted to PRL BELLE result: arXiv:0801.2439, submitted to PRD

Normalised residuals (Difference/error) between D→π⁺π⁻π⁰ and its CP conjugate

CPV in SCS decay $D^+ \rightarrow K^+K^-\pi^+$?

Jonas Rademacker (University of Bristol) for CLEO; Heavy Quarks & Leptons, Melbourne, 5 June 2008. 45

Mixing with time-dependent Dalitz

preliminary

68% 95%

99% 99.9%

$$\begin{array}{c} CF \\ D \\ DCS \\ x'' = (2.39 \pm 0.61 (\text{stat})' \pm 0.32 (\text{sys})'') \\ x'' = (2.39 \pm 0.61 (\text{stat})' \pm 0.32 (\text{sys})'') \\ Measure (x'', y'') = Rotate (S(x_{011}0) \pm 0.60 (\text{stat}) \pm 0.40 (\text{syst})) \\ (x,y) \text{ where } \delta_{K\pi\pi0} = \text{strong phase} \\ \text{between CF and DCS.} \\ \end{array}$$

Jonas Rademacker (University of Bristol) for CLEO; Heavy Quarks & Leptons, Melbourne, 5 June 2008. 46

$D \rightarrow K\pi y', x'^2$ contours

$$\Gamma(D^0(t) \to K^+ \pi^-) \propto e^{-\Gamma t} \left[\frac{R_D}{R_D} + \sqrt{R_D} y' (\Gamma t) + \frac{x'^2 + y'^2}{4} (\Gamma t)^2 \right]$$

CPV in $D \rightarrow \pi^+\pi^-\pi^0$, $D \rightarrow K^+K^-\pi^0$

- Dalitz fit allows to differentiate the contributions of different resonances, CP and flavour eigenstates, etc
- Tables (unreadable, but included for completeness) differences between D and D amplitudes at BaBar. Results: ~percent, none significant.
- So, no evidence for CPV.

					-
State	f_r (%)) $\Delta a_r (\%)$	$\Delta \phi_r$ (°)	Δf_r (%)	
$K^{*}(892)^{+}$	45	$2\pm3\pm2$	$10 \pm 12 \pm 3$	$0.8{\pm}1.1{\pm}0.4$	
$K^{*}(1410)$	+ 4	$101 \pm 65 \pm 37$	$1 \pm 21 \pm 6$	$1.7{\pm}1.8{\pm}0.6$	Ĕ
$K^{+}\pi^{0}(S)$	16	$-130\pm64\pm51$	$1 -9 \pm 10 \pm 6$	$-2.3 \pm 4.7 \pm 1.0$	
$\phi(1020)$	19	$-1\pm 2\pm 1$	$-10 \pm 20 \pm 5$	$-0.4 \pm 0.8 \pm 0.2$	5
$f_0(980)$	7	$14 \pm 16 \pm 6$	$-12 \pm 25 \pm 8$	$0.4 \pm 2.6 \pm 0.2$	ð
$[a_0(980)^0]$	[6]	$[19 \pm 16 \pm 6]$	$[-7\pm 16\pm 8]$	$[0.6 \pm 1.9 \pm 0.2]$	Ĕ
$f_2'(1525)$	0.1	$-38 \pm 74 \pm 8$	$6 \pm 36 \pm 12$	$0.0\pm0.1\pm0.3$	Ε
$K^{*}(892)^{-}$	16	$1 \pm 3 \pm 1$	$-7 \pm 4 \pm 2$	$1.7 \pm 1.3 \pm 0.4$	qn
$K^{*}(1410)$	- 5	$133 \pm 93 \pm 68$	3 -23±13±9	$1.7{\pm}2.8{\pm}0.7$	S
$K^{-}\pi^{0}(S)$	3	$8 \pm 68 \pm 36$	$32 \pm 39 \pm 14$	$0.4{\pm}2.4{\pm}0.5$	о С
					4
State	f_r (%)	$\Delta a_r \ (\%)$	$\Delta \phi_r$ (°)	Δf_r (%)	- വ
$\rho^+(770)$	68 -	$3.2 \pm 1.7 \pm 0.8$	$-0.8 \pm 1.0 \pm 1.0$	$-1.6 \pm 1.1 \pm 0.4$	5
$\rho^{0}(770)$	26	$2.1 \pm 0.9 \pm 0.5$	$0.8{\pm}1.0{\pm}0.4$	$1.6{\pm}1.4{\pm}0.6$	80
$\rho^{-}(770)$	35	$2.0 \pm 1.1 \pm 0.8$	$-0.6 {\pm} 0.9 {\pm} 0.4$	$0.7{\pm}1.1{\pm}0.5$	2
$\rho^{+}(1450)$	0.1	$2\pm 11\pm 8$	$-30 \pm 25 \pm 9$	$0.0{\pm}0.1{\pm}0.1$	Ň
$\rho^{0}(1450)$	0.3	$13 \pm 8 \pm 6$	$-1 \pm 14 \pm 3$	$0.1{\pm}0.2{\pm}0.1$	a
$\rho^{-}(1450)$	1.8	$-3 \pm 6 \pm 5$	$8 \pm 7 \pm 3$	$-0.2 {\pm} 0.3 {\pm} 0.1$	
$\rho^+(1700)$	4	$19 \pm 27 \pm 9$	$9 \pm 7 \pm 3$	$0.4{\pm}1.0{\pm}0.4$	ñ
$\rho^0(1700)$	5	$-31 \pm 20 \pm 12$	$-7\pm6\pm2$	$-1.3 \pm 0.8 \pm 0.3$	a M
$\rho^{-}(1700)$	3	-3±14±11	$-3\pm8\pm3$	$-0.5 \pm 0.6 \pm 0.3$	ц
$f_0(980)$	0.2	$0.0 \pm 0.1 \pm 0.2$	$-3\pm7\pm4$	$0.0 \pm 0.1 \pm 0.1$	0
$f_0(1370)$	0.4 -	$0.3 \pm 1.3 \pm 1.2$	$7 \pm 14 \pm 5$	$-0.2 \pm 0.1 \pm 0.1$	Ţ
$f_0(1500)$	0.4	$0.4 \pm 1.1 \pm 0.7$	$-1 \pm 12 \pm 1$	$0.0 {\pm} 0.1 {\pm} 0.1$	lts
$f_0(1710)$	0.3	$-3 \pm 3 \pm 2$	$-25 \pm 13 \pm 11$	$0.0 {\pm} 0.1 {\pm} 0.1$	SU
$f_2(1270)$	1.3	$8 \pm 4 \pm 5$	$2\pm 5\pm 2$	$0.1 \pm 0.1 \pm 0.1$	ě
$\sigma(400)$	0.8 -	$0.3 \pm 0.7 \pm 2.0$	$-4 \pm 7 \pm 3$	$-0.1 \pm 0.1 \pm 0.1$	ш
Nonres	0.8	$12 \pm 7 \pm 8$	$11 \pm 9 \pm 4$	$0.2 \pm 0.3 \pm 0.2$	

CPV in $D \rightarrow KK\pi$, $D \rightarrow 3\pi$

• $A_{CP}(3\pi)$ BaBar = $(-0.31 \pm 0.41 \text{ (stat)} \pm 0.17 \text{ (syst)})\%$

 $A_{CP}(3\pi) \text{ BELLE} = (-0.43 \pm 1.30 \text{ (stat+sys)})\% (0.43 \pm 0.41(\text{stat}) \pm 1.01(\text{track}) \pm 0.70(\text{other syst}))\%$

• $A_{CP}(KK\pi)$ BaBar = (1.00 ± 1.67 (stat) ± 0.25 (syst)) %

BaBar result: arXiv:0801.2439, submitted to PRL BELLE result: arXiv:0801.2439, submitted to PRD

Model-independent Fit

- Binned analysis allows model independent fit* for γ at Bfactories, LHCb.
- CLEO-c's quantum-correlated data provide crucial input **:
 - CP-tagged Dalitz plots $D_a \rightarrow CP \pm, D_b \rightarrow K_s \pi \pi$
 - Simultaneous Dalitz analysis of $D_a \rightarrow K_s \pi \pi$, $D_b \rightarrow K_s \pi \pi$

*Giri, Grossmann, Soffer, Zupan, Phys Rev D 68, 054018 (2003).

**Bondar, Poluektov hep-ph/0703267v1 (2007)

Comparing the $\pi\pi$ projections

D→K_sππ Dalitz plot

450 400

350

300

250

200 150

100

m₁₂

2.5

1.5

0.5

°ò

0.5 1 1.5 2 2.5 3

2.5

2

1.5

0.5

0 0

0.5

1 1.5 2 2.5 3

 $\sigma(\gamma) \propto 1/r_{\sf B}$

Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D70 (2004) 072003

450

400

350

300 250

200

150

100

50

m₁₂

Same trick works with $B \rightarrow DK^*$ $\gamma [\circ]$

• K* tags flavour of B at decay.

0.1

- Same Ks $\pi\pi$ analysis, but different r, δ .
- BaBar analysis (May 2008): arXiv:0805.2001

$$\gamma = (162 \pm 56)^{\circ} \text{ or } (342 \pm 56)^{\circ};$$

 $\delta_S = (62 \pm 57)^{\circ} \text{ or } (242 \pm 57)^{\circ};$
 $r_S < 0.55 \text{ at } 95\% \text{ probability.}$

Model independent y fit

Giri, Grossmann, Soffer, Zupan, Phys Rev D 68, 054018 (2003).

- Binned decay rate: $\Gamma \left(B^{\pm} \to D(K_s \pi^+ \pi^-) K^{\pm}\right)_i = T_i + r_B^2 T_{-i} + 2r_B \sqrt{T_i T_{-i}} \left\{c_i \cos\left(\delta - \gamma\right) + s_i \sin\left(\delta - \gamma\right)\right\}$ $\cos(\delta_D(s_{12}, s_{34})) \text{ and } \sin(\delta_D(s_{12}, s_{34})) \text{ averaged over bin } i$
- Binning such that such that $c_i = c_{-i}$, $s_i = -s_{-i}$
- Can in principle fit c_i , s_i , δ and γ .
- However, not feasible with with statistics at BaBar, BELLE, or even LHCb.
- Need external input from CLEO.

Jonas Rademacker (University of Bristol) for CLEO; Heavy Quarks & Leptc

CLEO-c's impact on y

- CPV-sensitive factor in $B^{\pm} \rightarrow D(K_s \pi \pi) K^{\pm}$ Dalitz analysis: $C_i \cos(\delta - \gamma) + s_i \sin(\delta - \gamma)$ $cos(\delta_D(s_{12}, s_{34}))$ and $sin(\delta_D(s_{12}, s_{34}))$ averaged over bin i
- CLEO-c can
 - Measure c_i with CP-tagged D $\rightarrow K_{S,L}\pi\pi$ Dalitz plot
 - Measure both c_i , s_i with simultaneous Dalitz plot analysis $D_1 \rightarrow K_s \pi \pi$, $D_2 \rightarrow K_s \pi \pi$

Bondar, Poluektov hep-ph/0703267v1 (2007) Belle Collaboration, A. Poluektov *et al.* Phys. Rev. **D73**, 112009 (2006) Jonas Rademacker (University of Bristol) for CLEO; Heavy Quarks & Leptons, Melbourne, 5 June 2008. 55

Optimal binning

Bondar, Poluektov hep-ph/0703267v1 (2007)

C_i cos
$$(\delta - \gamma)$$
 + S_i sin $(\delta - \gamma)$
cos($\delta_{D}(s_{12}, s_{34})$) and sin($\delta_{D}(s_{12}, s_{34})$)
averaged over bin i

- Best if strong phase δ_D is as constant as possible over each bin, since then $S_i^2 = 1 - C_i^2$
- Plot shows CLEO-c's 8 bins (based on BELLE model)

Jonas Rademacker (University of Bristol) for CLEO; Heavy Quarks & Leptons, Melbou 56 5 June 2008.

LHCb-reach (with CLEO's input)

- Result will benefit BaBar and BELLE's measurement;
- But above all, future measurements of γ with high stats, such as LHCb.

LHCb's γ reach from $B^{\pm} \rightarrow D(K_s \pi \pi)K^{\pm}$, assuming $r_B=0.1$ (note: $\sigma_{\gamma} \approx 1/r_B$)

Achasov references

Privat communications with the authors of Phys. Rev. D 76, 012001 (2007) and:
N. N. Achasov and G. N. Shestakov, Phys. Rev. D 67, 114018 (2003)
N. N. Achasov, S. A. Devyaniibn, G. N. Shestakov, Yad. Fiz. 32, 1098 (1980)
[Sov. J. Nucl. Phys, 32, 566 (1950)
N. N. Achasov and A. A. Kozhevnikov, Phys. Rev. D 55, 2663 (1997)
N. N. Achasov and V. V. Gubin, Phys. Rev. D 56, 4084 (1997);
Yad. Fiz. 61, 274 (1998) [Phys. Atom. Nucl. D61, 224 (1998)]
N. N. Achasov abnd A. V. Kiselev, Phys. Rev. D 70 111901(R) (2004)
N. N. Achasov and A. V. Kiselev, Phys. Rev. D 73 054029 (2006)