Accomplishments of the CESR/CLEO Program

Sheldon Stone, Syracuse University

Introduction

- Context: Late 1970's, J/ψ had been discovered in Nov. 1974, we knew about open charm & τ, but not about existence of b, t, W or Z !
- Idea: explore e⁺e⁻ collisions in 8 -16 GeV center-of-mass range, hope for something new
- Competition: PEP/Petra at higher energy (up to 32 GeV) at SLAC & DESY, later ARGUS at DESY
- CESR proposal May 1975 for single ring collider with *L*=10³² cm⁻¹s⁻¹
- Surprise After detector design started discovery of b quark 1977 (Lederman) at FNAL via Y(1S) & Y(2S) (hint of Y(3S)). Could there be a nice state for threshold BB production like the ψ(3770) for D's?

Uneno et. al, FNAL $\mu^+\mu^-$, background subtracted (1979)

b Physics Goals

- Would b's decay as "predicted" or could we see new phenomena?
- Could we learn something seminal about QCD studying Y transitions & decays?
- Was there anything to learn from charm decays, since e⁺e⁻ → cc̄ is 1 nb, 40% of total?
- Is there anything unexpected?

Machine

 On the Cornell Campus

Two interaction regions originally

CUSB

CLEO

 CHESS: Vigorous synchrotron radiation program
 Storage Ring very new & lots to learn

Stacking Scheme

Use 8 GeV Synchrotron Diameter of CESR larger than Synch by exactly two bunch spacings; allows for stacking

Inside the Tunnel

First impedance controlled storage ring

Luminosity Progress: Early Years

CESR Highlights

1986: First "Micro-beta" collision

point with permanent magnets

1994: 1st crossing angle for bunched beams

1990-2000: Highest L collider
2003: First wiggler dominated collider

Peak luminosity (cm⁻²s⁻¹ **KEK·B** 10 34 Peak Luminosity trends in last 30 years 10 33 CES 10³² LEP2 ISR DORIS CESR.c HERA 10 31 TEVATRON TRISTAL DORIS $10^{\ 30}$ 1975 1980 1985 2000 2005 1990 1995 Year

CLEO I Detector

- Built on the cheap ~10M\$, lots to learn
 - Components
 - Developing technologies widely adopted applied to upgraded detectors CLEO II, II.V, III
 Example: PID in outer dE/dx → in

CLEO I Detector (circa 1981)

American Physical Society, St. Louis, A

 $DR \rightarrow RICH$

A Photo of CLEO I

First Results (Narrow Upsilons)

Xmas card 1979

Observation of a Fourth Upsilon State in e^+e^- Annihilations

b-quarks Decay As Expected

First observation of semileptonic decays Exotic decays not dominant – We are still looking for non-SM decays. New Physics, must produces these & their pattern will tell us a great deal about the NP.

FIG. 3. The histogram is the raw momentum spectrum of the electrons from the $\Upsilon(4S)$ peak. The curve is a Monte Carlo estimate of the combined electron spectrum expected from $B \rightarrow De\nu$, $B \rightarrow D^*(2000)e\nu$, and $D \rightarrow Xe\nu$ decays. The peak at ~1.4 GeV/c is due to B decays; the one at ~0.5 GeV/c to daughter D decays. No events appear below 1 GeV/c due to our cut at that momentum.

Further Expectations (~1983)

- B meson lifetime will be short
 B^o mixing will be small
 CP violation will be small
 B's will decay in very high multiplicities making full reconstruction difficult
- But in 1983, the B meson lifetime was measured as relatively long ~1 ps by PEP experiments

Fully Reconstructed B Mesons (1983)

- Br's too large (partially due to ~x2 wrong D^o rate)
 - Two-body modes had real events
- 3-body were wrong
- Many new techniques developed learned better tracking software was in order

Better *L*, Competition From ARGUS

B physics

Confirm ARGUS discovery of B°-B° mixing.
 ARGUS has better lepton identification (1989)

First observation of $B \rightarrow \psi X$, & $B \rightarrow \psi K^{(*)}$, (ARGUS just about simultaneously)

In 1984: dE/dx in Drift Chamber, new 10 layer Vertex Detector (wires), a total of 119 pb⁻¹
Later in 1986 new 51 layer DR installed, called "CLEO I.V"

Discovery of the $b \rightarrow u$ Transition

Look for semileptonic decays $b \rightarrow u \ell v$ beyond endpoint of $b \rightarrow c \ell v$; there must be a D meson ($B \rightarrow D \ell v$) so the lepton cannot be as energetic First measurement of $|V_{ub}/V_{cb}| \sim 0.1$, side of **CKM** triangle

FIG. 1. Sum of the *e* and μ momentum spectra for ON data (filled squares), scaled OFF data (open circles), the fit to the OFF data (dashed line), and the fit to the OFF data plus the $b \rightarrow clv$ yield (solid line). Note the different vertical scales in (a) and (b).

Discovery of the F≡D_S

 Mass of 1970 MeV (1983)

- Previously thought to be at 2020 MeV (See . arXiv:hep-ph/0010295 for details)
- Much charm physics: continuum production of D's & D*'s
 Much τ physics

Upsilon Spectroscopy

Exclusive

Inclusive

(Left-hand Scale)

(Right-hand Scale)

1500%

00 VENTS

500 k

10

UIMBER

MeV/

T(35) - #*# T(IS)

T Exclusive

Inclusive

0.4

0.6

0.8

MeV/c²

EVENTS / 80 /

20 EXCLUSIVE

Ъ

NUMBER O

0

0.2

Y(1S)→yaa **Direct Photons** Determines α_s QCD 180 ···· Photiadis - Field 160 140 20 0 0 Photons / 100 80 60 40 20 0 0.2 0.0 0.4 0.6 0.8 1.0 1.2 $x_y = E_y / E_{BEAM}$

DIPION INVARIANT MASS (GeV/c2) 00-3830535 800 $T(3S) - \pi^{+}\pi^{-}T(2S)$ T(25) - #*# T(15) 150 T Exclusive MeV/c² MeV/c² - Exclusive 35 Inclusive /40 MeV/c² Inclusive EVENTS/10 M 600 🕹 30 EVENTS/ EVENTS 100 400 EXCLUSIVE NCLUSIVE EXCLUSIVE 15 200 50 Р Ц Ь NUMBER IIMBER NUMBER - 5 0.33 0.35 0.55 0.27 0.29 0.3 0.35 0.45 0.25 DIPION INVARIANT MASS (GeV/c2) DIPION INVARIANT MASS (GeV/c2) Mysterious differences

FIG. 3. Background-subtracted photon spectrum and fits to the various theoretical spectra. Errors are statistical only.

Both Results Improved Immensely

What we learned not to do

- Magnet coil is a thick barrier: put particle ID & EM cal inside
- Muon system is too thick at front, p acceptance full only >1.4 GeV/c
- EM calorimeter has too many cracks, not enough segmentation & poor Energy resolution ~17%/√E
- Too few tracking layers: tracking problems, pid...

CLEO II Requirements

Improve B physics capabilities Detect photons with ~same ability as charged tracks; identify e⁻ cleanly Improve resolution on charged tracks B goes from 1.0 T to 1.5 T Improve dE/dx and tracking flaws by filling up Drift chamber gas with detection layers Lower muon id threshold

CLEO II

- All particle id: TOF & dE/dx inside coil
 Csl(Tl) inside coil
- Lower p threshold on muons to ~ 1 GeV/c
- Problems
 - poor pid > 0.9 GeV/c (some with dE/dx)
 - DR endcaps too thick
 - Vertex Detector not silicon based

Csl Performance

 Csl angular resolution & energy resolution close to MC prediction

CLEO II Performance Benchmarks

Excellent

 overall
 detector
 performance

Not very good at high momentum

Most Important (& Fun) Results from CLEO II

NEW CONTRACTOR AND A CARD AND A CONTRACTOR A

Detector

E CONTRACTORISTICA AND A DECEMBER OF THE REPORT OF THE REPORT

- CsI was copied by B factory detectors
 - BaBar resolution slightly worse
 - Belle resolution slightly better
 - Acceptances both worse due to asymmetric beams
- Another upgrade: CLEO II.V replace wire chamber with Silicon strip VD
 - Best upper limits for a long time on D^o mixing
 - Lifetime measurements of charm particles

Some Important B Physics Measurements

NEW REPORT REPORT AND A REPORT OF A VERY AND A REPORT OF A REPORT

1) η 2) V_{ubl} from B mixing 0 $|V_{cbl}$ ρ

28

Main goals were to
1) Measure rare decays
2) Determine sides of CKM triangle

VOLUME 71, NUMBER 5

Evidence for Penguin-Diagram Decays: First Observation of $B \to K^*(892)\gamma$

 S(B°→K*°γ) =(4.0±1.7±0.8)x10⁻⁵
 S(B⁻→K*⁻γ) =(5.7±3.1±1.1)x10⁻⁵
 But theory wants inclusive rate b→sγ

First Measurement of the Rate for the Inclusive Radiative Penguin Decay $b \rightarrow s\gamma$

- Two new techniques developed
 - one used event shapes & inclusive distributions
 - the other was based on full B reconstruction for K+nπ+γ

■ *8*=(2.32±0.57±0.35)x10⁻⁴

 More recent: CLEO 𝔅 (b→sγ)=(3.21±0.43±0.30)x10⁻⁴ +ALEPH, Belle & Babar, =(3.55±0.26)x10⁻⁴
 Theory: 3.5±0.5 x10⁻⁴ ⇒Limits on many non-Standard Models: minimal supergravity, supersymmetry, etc...

V_{cb}: Measure $B \rightarrow D^* \ell v$

Measure the decay rate as a function of invariant 4-velocity transfer (Isgur – Wise function) (1995)Value of V_{cb} depends on theoretical model of $\mathcal{F}(1)$

Model

Neubert [39]

Shifman et al. [58]

31

V_{ub} From Inclusive b $\rightarrow u\ell v$ Decays

ender andere eine Anterneten in Volgen und eine Anterneten versten die eine Anterneten aus die Anterneten und

 Inclusive lepton spectrum fit gives:
 |V_{ub}|= (4.08±0.63)x10⁻³
 circa 2002

First Observations of $B \rightarrow \pi(\rho)(\omega) \ell \nu$

FIG. 12. Measured branching fractions in the restricted q^2 intervals for $B^0 \rightarrow \pi^- \ell^+ \nu$ (points) and the best fit to the predicted $d\Gamma/dq^2$ (histograms) for the three models used to extract both rates and $|V_{ub}|$. The data points have small horizontal offsets introduced for clarity. The last bin has been artificially truncated at 24 GeV² in the plot—the information out to q^2_{max} has been included in the work.

FIG. 14. Measured branching fractions in the restricted q^2 intervals for $B^0 \rightarrow \rho^- \ell^+ \nu$ (points) and the best fit to the predicted $d\Gamma/dq^2$ (histograms) for the models used to extract both rates and $|V_{ub}|$. The data points have small horizontal offsets introduced for clarity.

$$|V_{ub}| = (3.17 \pm 0.17 + 0.16 + 0.53 \pm 0.03) \times 10^{-3}$$

American Physical Society, St. Louis, April 12, 2008

circa 2003

Some of the More Important CLEO II Results

American Physical Society, St. Louis, April 12, 2008

Charm Decay Studies: Most important results

- Best limit in 2005 on D^o- \overline{D}^o mixing using a time dependent Dalitz analysis of D^o→K_S $\pi^+\pi^-$.
- First precision measurements of the D* BR's and isospin mass splittings (1992)
- First accurate measurement of $\mathcal{C}(D^{o} \rightarrow K^{-}\pi^{+})$
- First measurement of the D_s modes η^(')π⁺, η^(')ρ⁺ (1992), φπ⁺ (1996), and μ⁺ν/φπ⁺ (1994)
- First observations of many charm baryon states including the Σ_c^+ , Σ_c^{*+} , Σ_c^{**+} , $\Sigma_c^{*\circ}$, Ξ_c° , $\Xi_c^{*\circ}$, $\Xi_c^{*\circ}$, Ξ_c^{**+}
- 1st measurement of Γ(D*+) = 96±4±22 MeV (2001)
 Discovery of D_{sJ}(2460)

Discovery of the DsJ(2460)

BaBar sees a new state at 2317 MeV that decays into π°D_s (isospin violating)
 CLEO confirms & also sees analogous state

Upsilon & τ decays

A COMPANY A COMPANY A COMPANY AND A

Much interesting physics, but no time to discuss Also γγ collisions

CLEO III & CLEO-c

CLEO III adds a **RICH** detector for particle identification Replace CLEO III Si VD with a low mass wire chamber for CLEO-c Dr gas He-C₃H₈

CLEO-c

Techniques for D Decays

Most important measurements involve reconstructing a D⁻ & investigating the D^+ , (similarly for D_S) Absolute branching ratios Leptonic Decays Semileptonic Decays

40

Leptonic Decays: $D \rightarrow \ell^+ \nu$

Introduction: Pseudoscalar decay constants

c and \overline{q} can annihilate, probability is ∞ to wave function overlap Example :

In general for all pseudoscalars:

$$\Gamma(\mathbf{P}^+ \to \ell^+ \nu) = \frac{1}{8\pi} G_F^2 f_P^2 m_\ell^2 M_P \left(1 - \frac{m_\ell^2}{M_P^2} \right)^2 |V_{Qq}|^2$$

Calculate, or measure if V_{Oa} is known

Signals for D+ $\rightarrow \mu^+ \nu$ & D_S+ $\rightarrow \mu^+ \nu$

Fully Reconstruct a D^{-} or $D_{S^{-}}$, then compute Missing Mass squared

Measurement of f_D+ & f_{Ds}

U.S Experimental Publications

Information compiled by Fermilab

Conclusions

Other CLEO-c physics

- Charm weak decays: absolute br's, leptonic decays, semileptonic decays
- Charmonium discovery of h_c , properties of $\psi(4260)$
- CESR important path toward higher luminosity colliders
- CLEO pioneering efforts in heavy quark decay, many discoveries leading to future studies of CP violation and a path toward finding or classifying new physics (unless CLEO-c has found it already in leptonic decays)

The End

Progression in Flavor Physics

