Heavy Meson Spectroscopy at CLEO-c

Matthew Shepherd Indiana University

(for the CLEO Collaboration)

April 10, 2008 International Workshop on e^+e^- Collisions from Φ to ψ

The Charmonium System: An Outline

- Utilize the ~25 M Ψ' sample collected at CLEO-c to study QCD in heavy quark systems
- New results on:
 - η_c(IS) production in hindered and allowed MI transitions
 - properties of the h_c
 - purely electromagnetic decays of the χ_c and J/ψ

$J/\psi, \psi' \rightarrow \gamma \eta_c$

- Precision determination of the hindered MI $(\Psi' \rightarrow \gamma \eta_c)$ and allowed MI $(J/\Psi \rightarrow \gamma \eta_c)$ rates are critical for understanding radiative transitions in charmonium and measuring η_c branching fractions
- Measure the $\psi' \rightarrow \gamma \eta_c$ rate by a fit to the inclusive photon spectrum in ψ' decay
- II4 MeV photon line in $J/\psi \rightarrow \gamma \eta_c$ is dominated by background -- extract $J/\psi \rightarrow \gamma \eta_c$ rate by measuring ratio of allowed to hindered MI using exclusive η_c decays, then multiply by inclusive $\psi' \rightarrow \gamma \eta_c$ rate.

0.1.2++ $B(J/\psi \rightarrow \gamma \eta_c) =$ $\frac{B(J/\psi \rightarrow \gamma \eta_c) \times B(\eta_c \rightarrow X)}{B(\psi' \rightarrow \gamma \eta_c) \times B(\eta_c \rightarrow X)} \times B(\psi' \rightarrow \gamma \eta_c)$ **CLEO** Preliminary Inclusive Spectrum 60000 40000 Ψ'→γη₅ 20000 0.60 0.80 0.40 E_v [GeV ...but there is one wrinkle

3700

Mass (MeV) 3200 $\eta_{\rm C}^{\prime \rm S}_0$

M. R. Shepherd PHIPSI 08, INFN Frascati April 10, 2008

DD Threshold

DEPARTMENT OF PHYSICS

3

- Tag η_c decay using 13 signal-rich decay modes (some new)
- Perform full event kinematic fit to sharpen photon resolution
- <u>The η_c line shape in hindered MI</u> <u>transitions is nontrivial</u> and cannot be easily fit by a Breit-Wigner (even when energy-dependent phase space and matrix element terms are included)

$$\Gamma_{n^{3}S_{1} \to n^{\prime 1}S_{0}\gamma} = \frac{4}{3} \alpha e_{Q}^{2} \frac{k_{\gamma}^{3}}{m^{2}} \left| \int_{0}^{\infty} dr \, r^{2} \, R_{n^{\prime}0}(r) \, R_{n0}(r) \, j_{0} \right|^{2}$$

$$j_0(k_{\gamma}r/2) = 1 - (k_{\gamma}r)^2/24 + \dots$$

c.f.: Brambilla *et al.*, PRD 73, 054005 (2006)

 $\begin{array}{l} \Gamma(\psi' \! \rightarrow \! \gamma \eta_c) \; [n \! \neq \! n'] \propto E_Y^7 \\ \Gamma(J/\psi \! \rightarrow \! \gamma \eta_c) \; [n \! = \! n'] \propto E_Y^3 \end{array} \end{array}$

$$\frac{3900}{3700} - \frac{3}{9} \frac{D_{1}}{\psi^{*3}S_{1}} - \frac{DD Threshold}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{$$

M. R. Shepherd PHIPSI 08, INFN Frascati April 10, 2008

DEPARTMENT OF PHYSICS

$J/\psi \rightarrow \gamma \eta_c$

- $J/\psi \rightarrow \gamma \eta_c$ photon line shape spectrum also shows distortion
- Constrain background shapes using MC
 - falling hadronic shower background (floating scale factor)
 - free rising polynomial background
- Breit-Wigner alone provides poor fit to data
- Nominal fit is a Breit-Wigner modified by E_{Y}^{3} and damped by $exp(E_{Y}^{2}/\beta)$

and Modified BW fits

DEPARTMENT OF PHYSICS

INDIANA UNIVERSITY College of Arts and Sciences Bloomington

T

η_c Properties (PDG '06)

• $\psi(1S,2S) \rightarrow \gamma \eta_c$

DEPARTMENT OF PHYSICS

ТIJ

• Systematically limited by understanding of line shape and background

ψ

h_c Properties

- E835 (2005): 3σ
 CLEO (2005): 5σ
 consistent but statistically limited h_c
 properties
- According to simple potential models one expects mass of h_c (¹P₁) to be at the spin-averaged mass of the χ_{cJ} (³P_J) states.
- Mass of h_c yields information on the hyperfine splitting for P-wave states of charmonium -- detailed info on qq interaction
- Study h_c using the decay chain: $\psi' \rightarrow \pi^0 h_c; h_c \rightarrow \gamma \eta_c$

Two experimental approaches for reducing background:

 $\begin{array}{l} \frac{Inclusive \ \eta_c}{Identify \ a \ candidate \ h_c \rightarrow \gamma \eta_c \ E1 \ transition} \\ photon \end{array}$

 $\begin{array}{l} \underline{\text{Exclusive }\eta_c}\\ \text{Identify the }h_c \!\rightarrow\!\! \gamma \eta_c \text{ transition photon}\\ \text{and use 18 different hadronic decay}\\ \text{modes of the }\eta_c \end{array}$

Extract h_c properties from a fit of the recoil mass against the π^0 .

DEPARTMENT OF PHYSICS

h_c Properties

- Inclusive η_c decay
- Tag EI photon by: 468 MeV < E_γ < 538 MeV
- Background shape derived from data by relaxing the EI photon requirement
- M(h_c) = 3525.35±0.24±0.21 MeV
- I0σ significance

DEPARTMENT OF PHYSICS

INDIANA UNIVERSITY

Bloomington

College of Arts and Sciences

hc Properties

20

2.70

- Exclusively reconstruct many hadronic decay modes of the η_c
- Perform full event kinematic fit
- M(h_c) = 3525.35±0.27±0.20 MeV
- I3σ significance
- Aside: not statistically sensitive to η_c line-shape

3900 r

3700

 $\eta_{\rm c}^{\prime} S_0$

DD Threshold

M. R. Shepherd PHIPSI 08, INFN Frascati April 10, 2008

h_c Properties

- Angular distribution is consistent with ${}^{1}P_{1} \rightarrow {}^{1}S_{0}$ transition
- Accounting for statistical correlations in samples one obtains: <u>M(h_c) = 3525.35±0.19±0.15 MeV</u>
- This is consistent at high precision with the spin averaged mass of the ³P_J states 3525.30±0.11 MeV (PDG).
- Is it surprising that the agreement is this good given the rather large spin orbit interaction in the ³P_J states?

DEPARTMENT OF PHYSICS

INDIANA UNIVERSITY

Bloomington

College of Arts and Sciences

- Two photon decays of χ_{cl} probe relativistic and radiative corrections known to be significant in the charmonium system
- Kinematically constrain three photons to the initial ψ' four momentum
- Fit EI photon distribution after selecting $\chi_{cJ} \rightarrow \gamma \gamma$

3900

3700

(Nass (MeV) 3300 3300

3100

 η_{C}

 $\eta_{\rm C}^{\prime \rm S}_0$

DD Threshold

M. R. Shepherd

April 10, 2008

PHIPSI 08, INFN Frascati

$$\mathcal{R}_{th} = \frac{\Gamma_{\gamma\gamma}(\chi_{c2}) = 4(|\Psi'(0)|^2 \alpha_{em}^2 / m_c^4) \times [1 - 1.70\alpha_s]}{\Gamma_{\gamma\gamma}(\chi_{c0}) = 15(|\Psi'(0)|^2 \alpha_{em}^2 / m_c^4) \times [1 + 0.06\alpha_s]} = (4/15) [1 - 1.76\alpha_s]$$
DEPARTMENT OF PHYSICS
Barbieri et al.

INDIANA UNIVERSITY College of Arts and Sciences Bloomington

Barbieri et al. (PLB 95, 93 (1980))

$$\mathcal{B}_1 \equiv \mathcal{B}(\psi(2S) \to \gamma \chi_{c0,c2})$$
$$\mathcal{B}_2 \equiv \mathcal{B}(\chi_{c0,c2} \to \gamma \gamma)$$
$$\Gamma_{\gamma\gamma} \equiv \Gamma_{\gamma\gamma}(\chi_{c0,c2} \to \gamma \gamma)$$

 $\begin{array}{c} 3900 \\ 3700 \\ \hline \eta_{c}^{-1}S_{0} \\ \hline \eta_{$

Quantity	χ_{c0}	χ_{c2}	
$\mathcal{B}_1 \times \mathcal{B}_2 \times 10^5$	$2.22{\pm}0.32{\pm}0.10$	$2.70{\pm}0.28{\pm}0.15$	
$\mathcal{B}_2 imes 10^4$	$2.41{\pm}0.35{\pm}0.11{\pm}0.10$	$3.06{\pm}0.32{\pm}0.17{\pm}0.17$	arXiv:0803.2869
$\Gamma_{\gamma\gamma} \ ({\rm keV})$	$2.53{\pm}0.37{\pm}0.11{\pm}0.24$	$0.60{\pm}0.06{\pm}0.03{\pm}0.05$	(Submitted to FR
\mathcal{R}	$0.237 \pm 0.043 (\text{stat}) \pm 0.000$	$015(syst)\pm 0.031(PDG)$	

(PDG used for B_1 and $\Gamma_{tot}(\chi_{c0,2})$)

In pQCD quark mass and wave function uncertainties cancel, making R a key quantity -- at first order in α_s

$$\mathcal{R}_{th} = \frac{\Gamma_{\gamma\gamma}(\chi_{c2}) = 4(|\Psi'(0)|^2 \alpha_{em}^2 / m_c^4) \times [1 - 1.70\alpha_s]}{\Gamma_{\gamma\gamma}(\chi_{c0}) = 15(|\Psi'(0)|^2 \alpha_{em}^2 / m_c^4) \times [1 + 0.06\alpha_s]} = (4/15) [1 - 1.76\alpha_s] \\ \alpha_s = 0.32 \rightarrow \mathsf{R}=0.12$$

new world avg.: $R = 0.20 \pm 0.02$ higher order corrections significant

INDIANA UNIVERSITY College of Arts and Sciences Bloomington

DEPARTMENT OF PHYSICS

U

M. R. Shepherd PHIPSI 08, INFN Frascati April 10, 2008

$J/\psi \rightarrow \gamma\gamma\gamma$

- The only direct 3 photon decay ever observed in nature is in the ortho-positronium (³S₁) system
- Kwong et al. (PRD 37, 3210 (1988)) predict a rate of order 10⁻⁵
- Tag J/Ψ in ππ transition from Ψ' and reconstruct 3γ decay
- Explicitly cut background from
 γ + pseudoscalar decays

DEPARTMENT OF PHYSICS

INDIANA UNIVERSITY

Bloomington

College of Arts and Sciences

 Missing photons in 4γ tensor/scalar decays is dominant remaining background

8, INFN Frascatı April 10, 2008

14

$J/\psi \rightarrow \gamma\gamma\gamma$

- Perform a fit to the χ^2 distribution of the kinematic fit
 - signal peaks at zero
 - background from γπ⁰π⁰
 rises away from zero
- Preliminary result: $\mathcal{B} = (1.17^{+0.34}_{-0.29} \pm 0.14) \times 10^{-5} (6\sigma)$
- Agrees with Kwong *et al.* prediction

DEPARTMENT OF PHYSICS

INDIANA UNIVERSITY

Bloomington

College of Arts and Sciences

First 3γ decay of any hadron!

- The CLEO-c sample of ~25 M ψ ' decays provides an excellent laboratory to study QCD in the heavy quark sector
- Several new exciting results:
 - most precise measurements of $J/\psi, \psi' \rightarrow \gamma \eta_c$ -- non-trival line shape may shed light on the long-standing discrepancy in measured mass and width of the η_c
 - precision measurement of the h_c mass -- hyperfine splitting in the IP charmonium states is -0.05 ± 0.19 ± 0.16 MeV
 - measurement of purely electromagnetic decays of the χ_c and J/ψ -- the first observation of a 3γ decay of a meson
- Analysis of world's largest Ψ ' sample continues more results soon!

Thanks to the organizers for an enjoyable conference!

DEPARTMENT OF PHYSICS

College of Arts and Sciences

Bloomington

April 10, 2008

$J/\psi, \psi' \rightarrow \gamma \eta_c$

- γγ or p+p–
- γγ or p+p- (used for width, but not mass)
- $\psi(1S,2S) \rightarrow \gamma \eta_c$

