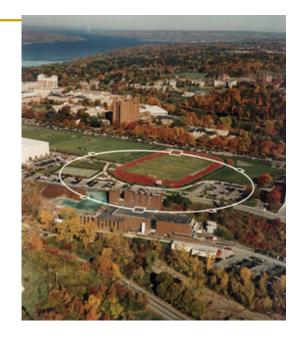
Flavour physics at CLEO-c

Jim Libby (University of Oxford) On behalf of the CLEO-c collaboration


- Introduction to CLEO-c
- Measurements related to D-mixing
- Measurements related to the determination of γ via $\rm B^{\pm} \rightarrow \rm DK^{\pm}$
 - $D \rightarrow K^- \pi^+ \pi^+ \pi^-$
 - $D \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$

Introduction to CLEO-c

- Detector at the Cornell Electron Storage Ring (CESR)
- Operating at energies around $c\overline{c}$ threshold
- Relevant data sets for flavour measurements:
 - $E_{CM} = 4170 \text{ MeV}$ $\mathscr{L}_{int} \sim 600 \text{ pb}^{-1}$ Determination of form factor f_{Ds} at CLEO-c is a critical test of lattice QCD and sensitive to new physics

CLEO c arXiv:0712.1175v1 [hep ex] f_{Ds}=(274 ± 10 ± 5) MeV

LQCD- arXiv:0706.1726 [hep lat] f_{Ds}=(241 ± 3) MeV

• $\psi(3770)$ $\mathscr{L}_{int} = 818 \text{ pb}^{-1}$ [This talk]

$$e^+e^- \rightarrow \psi(3770) \rightarrow D^0 \overline{D}^0$$
 $C = -1$

Quantum correlated state:

For example, reconstruct one *D* decay to a *CP* eigenstate uniquely identifies the other *D* to be of opposite *CP*

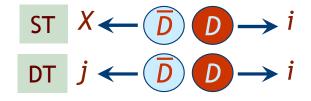
CLEO-c results on D-mixing

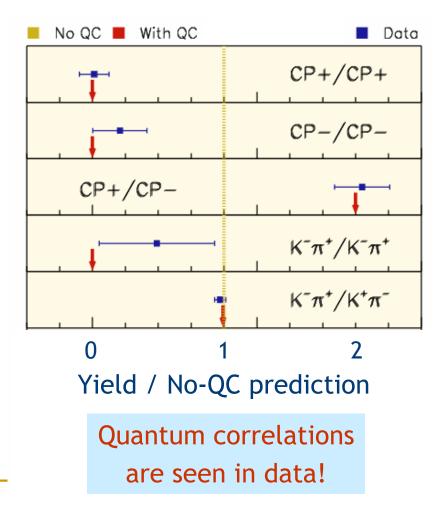
D mixing

Rate of D mixing parameterised by:

$$x = 2\frac{M_{+} - M_{-}}{\Gamma_{+} + \Gamma_{-}} \text{ and } y = \frac{\Gamma_{+} - \Gamma_{-}}{\Gamma_{+} + \Gamma_{-}}$$

where $M_{\pm}(\Gamma_{\pm})$ are mass (width) of the CP = ± 1 eigenstates

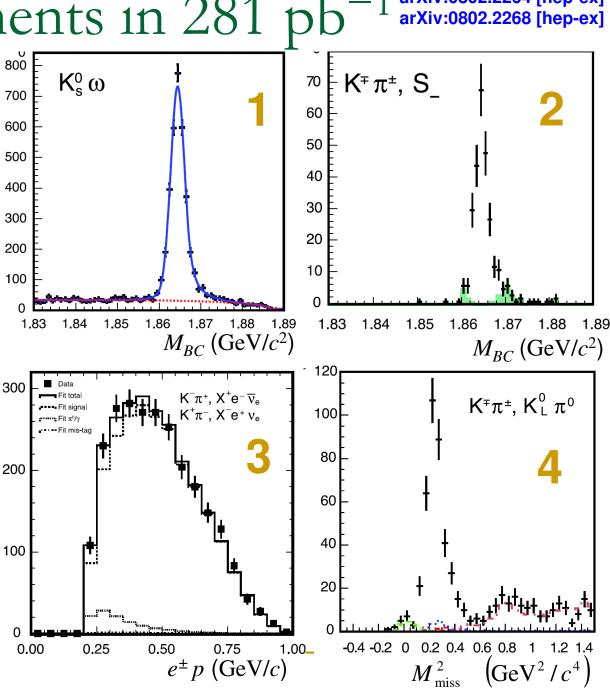

- Time-dependent wrong-sign rate $D^0 \rightarrow K^-\pi^+$:
 - Sensitivity via interference between DCS and mixing amplitudes
 - Ambiguity from strong phase: $y' = y \cos \delta x \sin \delta$


$$A_{DCS}/A_{CF} = \langle K^{-}\pi^{+} | \overline{D^{0}} \rangle / \langle K^{-}\pi^{+} | D^{0} \rangle = -re^{-i\delta}$$

- Direct comparison with y measurements from CP-eigenstate lifetimes and time-dependent measurements of $D \rightarrow K^0{}_S \pi \pi$ Dalitz plot **not possible** without determination of δ
- δ and other mixing parameters can be measured in quantum correlated DD decay at CLEO-c
 - D. Asner and W. Sun, Phys. Rev. D73, 034024 (2006)

Coherent vs. Incoherent Decay

We use yields for single tags (one *D* reconstructed) double tags (D and \overline{D} reconstructed) CP CP DT $K^{-}\pi^{+}$ e^+ + $K^{-}\pi^{+}$ R_M/R_{WS} QC rate $1 + 2R_{WS} - 4r\cos\delta (r\cos\delta + y)$ $K^+\pi^$ incoherent rate $1 - r(y\cos\delta + x\sin\delta)$ *e*⁻ 1 $1 + (2r\cos\delta + y) / (1 + R_{WS})$ CP+1 + y0 CP- $1 - (2r\cos\delta + y) / (1 + R_{WS})$ 2 0 1 - yST 1 1 1 1 $R_{M} = (x^{2} + y^{2})/2$ and $R_{WS} = r^{2} + ry' + R_{M}$ Compare coherent/incoherent BFs Sources of incoherent BFs: Externally measured BFs Single tags at $\psi(3770)$



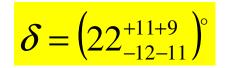
Yield measurements in 281 $pb^{-1} arXiv:0802.2264 [hep-ex]} arXiv:0802.2268 [hep-ex]$

- 1. Fully-reconstructed single tags:
 - Fit beam-constrained mass distribution

 $M_{BC} = \sqrt{E_{beam}^2 - |p_D|^2}$

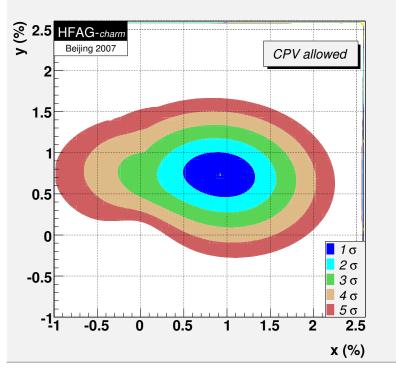
- 2. Fully-reconstructed double tags: 200
 - Two fully-reconstructed STs
- 3. Inclusive semileptonic DTs:
 - One fully-reconstructed ST
 - Plus one electron candidate
 - □ Fit *e*[±] momentum spectrum
- 4. $K_{L}^{0}\pi^{0}$ double tags:
 - One fully-reconstructed ST
 - □ Plus one π^0 candidate
 - Compute missing mass²
 - Signal peaks at $M^2(K^0)$.

Flavour physics at CLEO-c - Jim Libby

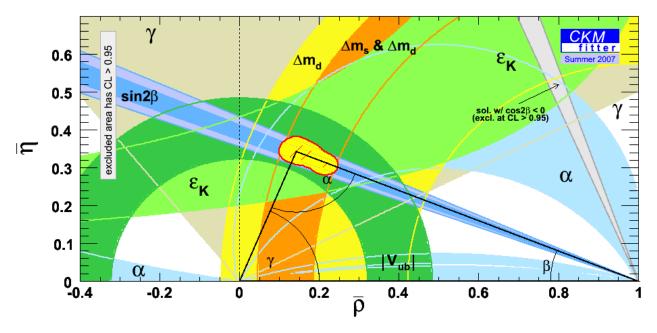

External inputs

- External inputs improve y and $\cos \delta$ precision
- All correlations among measurements included in fit
- Standard fit includes:
 - Info on *r* needed to obtain $\cos\delta$:
 - $R_{WS} = r^2 + ry' + R_M$
 - $R_M = (x^2 + y^2)/2$
 - Assume $x\sin\delta = 0 \Rightarrow y' \approx y\cos\delta$
 - $K\pi$ and CP-eigenstate BFs
- Extended fit averages y and y':
 - CP+ lifetimes (y)
 - $K_{S}^{0}\pi^{+}\pi^{-}$ Dalitz analysis (x, y)
 - $K\pi$ CP-conserving fits (y', r^2, R_M)

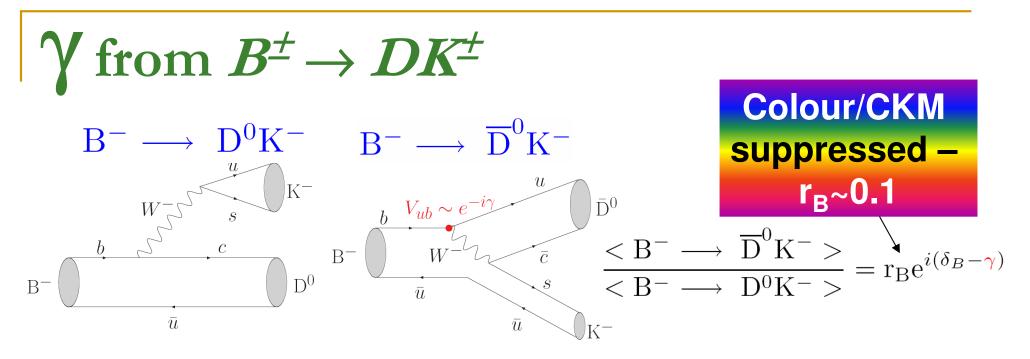
Parameter	Average (%)			
$R_{\rm WS}$ 0.409 ± 0.022				
$R_{\rm M} = 0.0173 \pm 0.0387$				
Parameter	Value (%)			
$\mathcal{B}(K^-\pi^+)$	3.81 ± 0.09			
$\mathcal{B}(K^0_S\pi^0)$	1.15 ± 0.12			
$\mathcal{B}(K^0_S\eta)$	0.380 ± 0.060			
$\mathcal{B}(K^0_S\omega)$	1.30 ± 0.30			
$\mathcal{B}(K_L^0\pi^0)$	1.003 ± 0.083			
$\mathcal{B}(K^-K^+)/\mathcal{B}(K^-\pi^+) = 10.10 \pm 0.16$				
$\mathcal{B}(\pi^-\pi^+)/\mathcal{B}(K^-\pi^+) = 3.588 \pm 0.057$				
Parameter	Value (%)			
$y = 0.662 \pm 0.211$				
$x = 0.811 \pm 0.334$				
r^2 0.339 ± 0.012				
$y' = 0.34 \pm 0.30$				
$x^{\prime 2} 0.006 \pm 0.018$				


D = ===1+=	Parameter	Standard Fit	Extended Fit
Results	$y (10^{-3})$	$-45\pm59\pm15$	$6.5 \pm 0.2 \pm 2.1$
First	$r^{2}(10^{-3})$	$8.0 \pm 6.8 \pm 1.9$	$3.44 \pm 0.01 \pm 0.09$
	$\cos \delta$	$1.03 \pm 0.19 \pm 0.06$	$1.10 \pm 0.35 \pm 0.07$
determination	$x^2 (10^{-3})$	$-1.5 \pm 3.6 \pm 4.2$	$0.06 \pm 0.01 \pm 0.05$
arXiv:0802.2264 [hep-ex]	$x\sin\delta\ (10^{-3})$	0 (fixed)	$4.4 \pm 2.4 \pm 2.9$
arXiv:0802.2268 [hep-ex]	$\chi^2_{\rm fit}/{ m ndof}$	30.1/46	55.3/57

- Standard fit result important component in average of charm mixing
- Extended fit leads to measurement of:

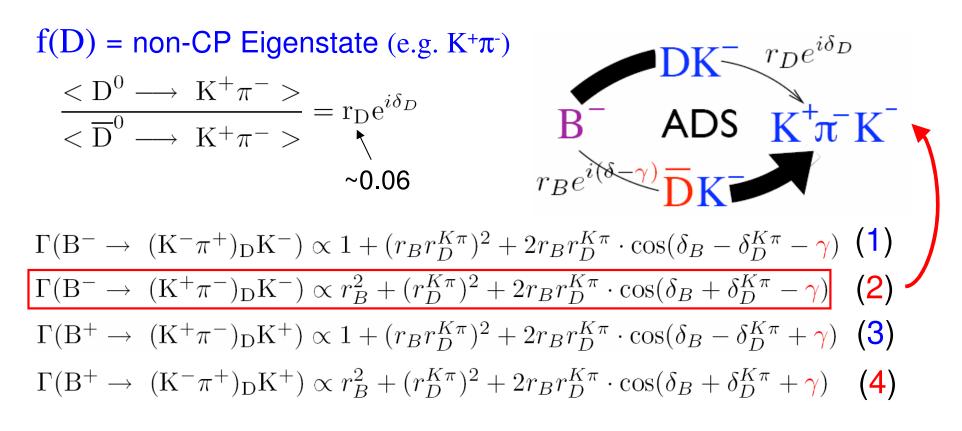

From likelihood scan of physically allowed region

- Future improvements:
 - □ Full $\psi(3770)$ data set 818 pb⁻¹
 - \square WS semileptonics vs. $K\pi$
 - **D** Additional K^0_L modes
 - C-even information from 4170 MeV data



CLEO-c results related to γ determination

Status of direct determination of γ


- γ is the least well determined angle of the unitarity triangle with an uncertainty of ~30° from direct measurements
 σ_β = 1°
- Comparison of measurements of γ in tree and loop processes sensitive to new physics
 - **Side opposite B-mixing measurements loop only**

- Extraction through interference between $b \rightarrow c$ and $b \rightarrow u$ transitions
- Require decay of D^0 and $\overline{D^0}$ to a common final state, f(D)
- A theoretically clean determination of γ
 - SM 'standard candle'

j(ð

Atwood-Dunietz-Soni (ADS) Method

- From counting these 4 rates, together with those from CP eigenstates (*KK*, $\pi\pi$), a determination of γ can be made
- Key measurement of LHCb and future e⁺e⁻ B-factories
 For example ~10° precision with one year of LHCb running [LHCb-2008-011]

Four-body ADS

- $B \rightarrow D(K\pi\pi\pi)K$ can also be used for ADS style analysis
 - Double the branching fraction of $B \rightarrow D(K\pi)K$
- However, need to account for the resonant substructure
 - □ $D \rightarrow K^* \rho, K^- a_l (1260)^+$, etc
 - in principle each point in the phase space has a different strong phase associated with it
- Atwood and Soni (hep-ph/0304085) showed how to modify the usual ADS equations for this case
 - Introduce coherence parameter $R_{K3\pi}$ which dilutes interference term sensitive to γ

$$\Gamma(B^{-} \to (K^{+}\pi^{-}\pi^{-}\pi^{+})_{D}K^{-}) \propto r_{B}^{2} + (r_{D}^{K3\pi})^{2} + 2r_{B}r_{D}^{K3\pi}R_{K3\pi}\cos(\delta_{B} + \delta_{D}^{K3\pi} - \gamma)$$

- $R_{K3\pi}$ ranges from
 - 1=coherent (dominated by a single mode) to
 - 0=incoherent (several significant components)

Measuring $R_{K3\pi}$ at CLEO-c

- Determinations of $R_{K3\pi}$ and $\delta_D^{K3\pi}$ can be are made from analysis of double-tagged $D^0 \overline{D^0}$ at CLEO-c.
- The coherent production of this state causes the double-tagged rates of $K\pi\pi\pi$ vs. X to be altered in the following ways:

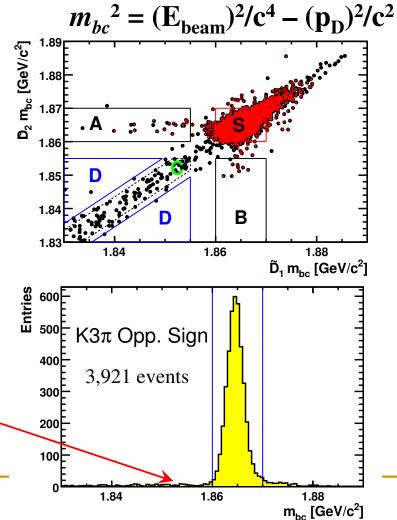
Double Tag Rate

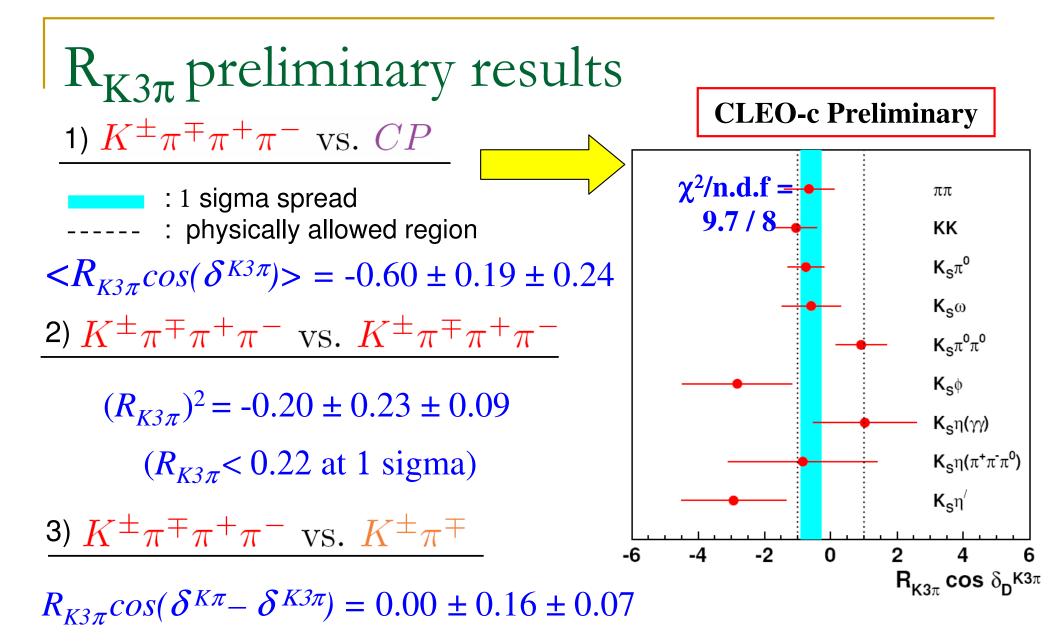
Sensitive To

$$K^{\pm}\pi^{\mp}\pi^{+}\pi^{-} \text{ vs. } K^{\pm}\pi^{\mp}\pi^{+}\pi^{-} (\mathbf{R}_{K3\pi})^{2}$$

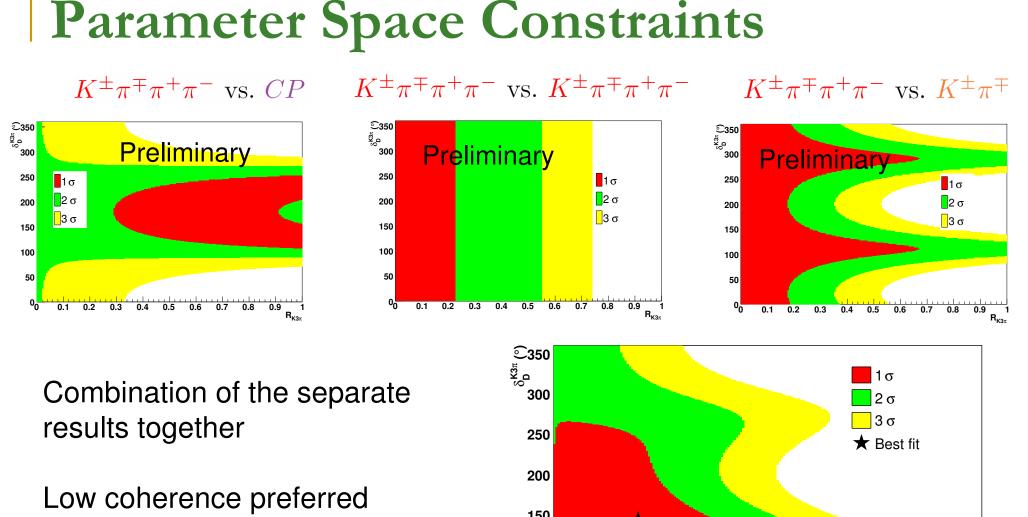
$$K^{\pm}\pi^{\mp}\pi^{+}\pi^{-} \text{ vs. } CP \qquad \mathbf{R}_{K3\pi}cos(\delta^{K3\pi})$$

$$K^{\pm}\pi^{\mp}\pi^{+}\pi^{-} \text{ vs. } K^{\pm}\pi^{\mp} \qquad \mathbf{R}_{K3\pi}cos(\delta^{K\pi}-\delta^{K3\pi})$$

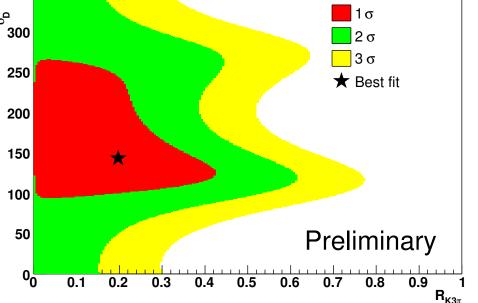

- We perform selections of these double-tags
- In addition, it is also necessary to perform selections of the opposite sign K[±] modes to determine normalisation factors


Event selection

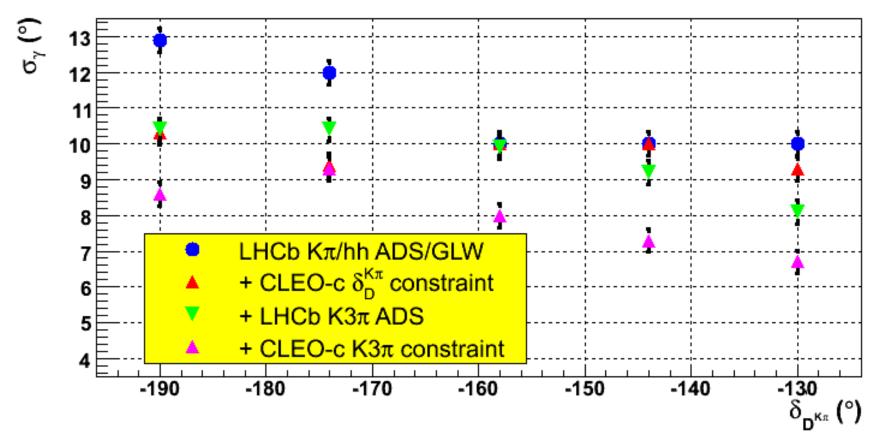
- Selections performed over all $\psi(3770)$ data, corresponding to 818 pb⁻¹.
- Consider 8 different CP tags:


758
695
251
260
31
157
31
2,183
ckground

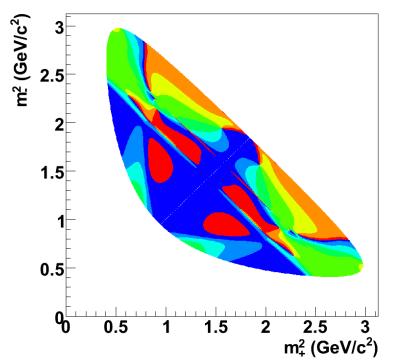
 Assess flat background from mass side bands and peaking from MC:



Used to constrain coherence factor by taking $\delta_D^{K\pi}$ from TQCA

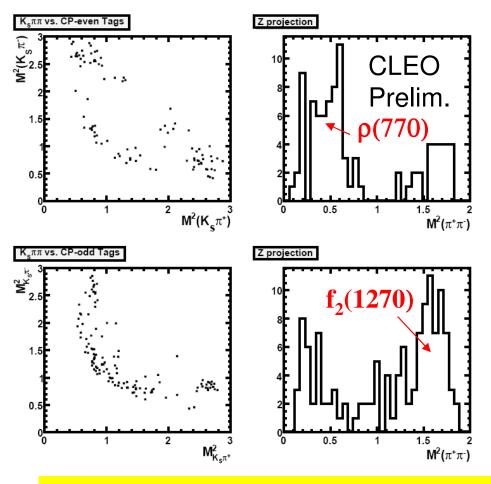


Allows accurate determination of r_B useful for all $B^{\pm} \rightarrow DK^{\pm}$


Impact of CLEO-c at LHCb

- These $D \rightarrow K3\pi$ measurements have been input to ADS simulation studies by LHCb
 - Estimated yields documented in LHCb-2006-066 and LHCb-2007-004
- One nominal year of running results see significant improvement with the addition of $B \rightarrow D(K3\pi)K$ and the CLEO-c constraints

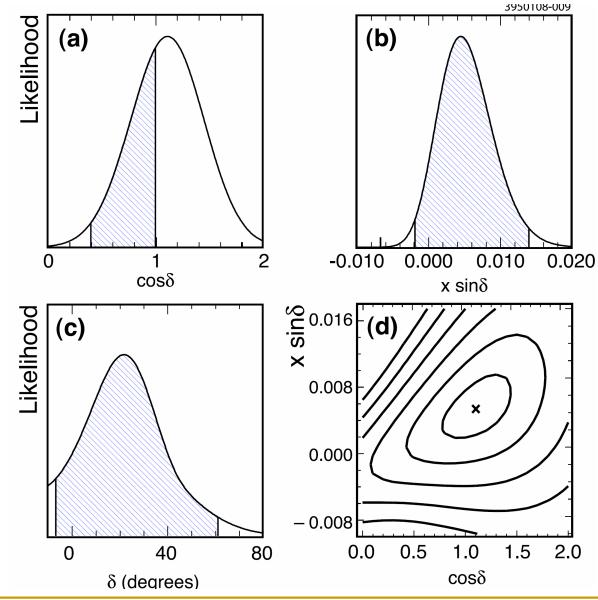
3-Body Dalitz: $B^{\pm} \rightarrow D(K_s \pi^+ \pi^-) K^{\pm}$


- Exploit interference over Dalitz space
- Amplitude fit to *D* Dalitz plots from B_+ and B_- to extract r_B , γ and δ_B .
- Need to assume an isobar model for D-decay amplitudes
 - Measure amplitudes well with flavour tag sample
- Current best constraints from the B-Factories
 - But model assumptions lead to a ~10° error

- Binned analysis of Dalitz space removes model error
 - Need to measure strong phases averaged over bins at CLEO-c
 - Most sensitive binning w.r.t. strong phase diff.

CLEO-c Impact on $B^{\pm} \rightarrow D(K_s \pi^+ \pi^-) K^{\pm}$

- As in the coherence factor analysis, CP tagged decays are the key to accessing the parameter of interest.
- Specifically, the average value of $\cos(\Delta \delta_D)$ in each bin of the CP tagged Dalitz plot can be accessed from measuring the number of events in that bin with different CP-tags
- Measurements of $K_s \pi^+ \pi^-$ vs. $K_s \pi^+ \pi^-$ give sensitivity to $sin(\Delta \delta_D)$


Preliminary studies presented at CHARM 07 indicate precisions that lead to 3-5° uncertainties on γ

Conclusion

- First determination of strong phase difference for $D \rightarrow K\pi$ •Essential for interpretation of *D*-mixing
- •CLEO-c data vital for for the purpose of γ extraction strategies with $B^{\pm} \rightarrow D(Multi-Body)K^{\pm}$
- A first determination of the $D \to K\pi\pi\pi$ coherence factor, $R_{K3\pi}$, has been made (and its associated global strong phase, $\delta_D^{K3\pi}$).
 - Further improvements to this result are foreseen with the addition of K_L CP modes in the selection.
 - Additional ADS modes are being studied ($D \rightarrow K\pi\pi^0$).
- In addition, CLEO-c is measuring the average cosine and sine of $K_s \pi \pi$ strong phase differences to allow model independent determination of γ with $B^{\pm} \rightarrow D(K_s \pi \pi)K^{\pm}$

Backup

TQCA extended fit likelihoods

