Measurement of R at CLEO

Jim Libby University of Oxford

Measurement of R at CLEO - Jim Libby

Outline

- CLEO-III and CLEO-c
- Motivation
- Two recent results
 - □ CLEO-III data (s^{1/2} =6.96–10.54 GeV):
 - "Measurement of the Total Hadronic Cross Section in e⁺e⁻ Annihilations Below 10.56 GeV", D. Besson et al., Phys. Rev. D76, 072008 (2007)
 - □ CLEO-c data (s^{1/2} =3.97-4.26 GeV):
 - "Measurement of Charm Production Cross Sections in e⁺e⁻ Annihilation at Energies between 3.97 and 4.26 GeV", submitted to Phys. Rev. D, arXiv:0801.3418 (2008)
- Conclusion

CLEO-III(c) and CESR-b(c)

•e⁺e⁻ collisions •CESR-b (10.6 GeV): L=1.2 10³³ cm⁻²s⁻¹ •CESR-c (4.0 GeV): L=0.7 10³² cm⁻²s⁻¹

Motivation

■ R(s) in the continuum (s^{1/2} = 6.96-10.54 GeV): CLEO-III □ determine α_s

$$R(s) = R_0 \left[1 + C_1 \frac{\alpha_s(s)}{\pi} + C_2 \left(\frac{\alpha_s(s)}{\pi} \right)^2 + C_3 \left(\frac{\alpha_s(s)}{\pi} \right)^3 + O(\alpha_s^4(s)) \right]$$

$$C_1 = 1, \ C_2 = 1.525 \text{ and } C_3 = -11.686$$

- R(s) in the resonance region ($s^{\frac{1}{2}} = 3.95-4.25$ GeV):
 - needed for dispersion integrals of hadronic vacuum polarization
 - ∎ g-2,
 - α_{QED}(s) used in fits to SM Higgs and

CLEO-c

 $R(s) = \frac{\sigma_o(e^+e^- \to hadrons)}{\sigma_o(e^+e^- \to \mu^+\mu^-)}$

- precision QED MC generators for $e^+e^- \rightarrow l^+l^-$
- In addition, exclusive & inclusive open charm final state decomposition

CLEO-III - $s^{\frac{1}{2}} = 6.96 - 10.54 \text{ GeV}$

Measurement of R at CLEO - Jim Libby

Measurement of R at CLEO - Jim Libby

Data Analysis

Corrections:

- $\hfill \ensuremath{\, \text{o}}$ for the remaining $e^+e^-{\rightarrow}\ensuremath{\, \tau^+\tau^-}$ etc. background
- energy-dependant efficiency
 - Variation 82.1-87.4%
- radiative corrections:
 - soft photon and vacuum polarisation
 - hard photon emission: low mass resonances and continuum
- \Box interference with Υ resonances
- Measure luminosity for normalization
 - □ 3 processes: $e^+e^- \rightarrow \gamma\gamma$, $e^+e^- \rightarrow \mu^+\mu^-$, $e^+e^- \rightarrow e^+e^-$
- Evaluate systematic errors

Systematic uncertainties

Energy (GeV)	10.538	10.330	9.996	9.432	8.380	7.380	6.964
Luminosity	1.00	1.10	1.10	1.10	0.90	0.90	1.00
Trigger	0.09	0.09	0.11	0.08	0.12	0.13	0.19
Radiative	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Correction	Dominated by hadronic vacuum polarisation						
Multiplicity	1.06	1.38	0.99	0.84	0.43	0.38	0.38
Correction	MC/data efficiency reweighting						
Event	1.51	1.09	1.31	1.31	1.05	1.02	0.79
$\operatorname{selection}$	Efficiency and background subtraction						
Total	2.32	2.30	2.21	2.15	1.76	1.74	1.68
Common	1.87	1.67	1.85	1.87	1.62	1.64	1.58
Uncorrelated	1.37	1.59	1.22	1.05	0.70	0.57	0.55

Correlated uncertainties dominate

Determination of α_s

 Determination, using massless quarks and 4-quark flavours

 $\alpha_{s}\left(M_{Z}^{2}\right) = 0.110_{-0.012}^{-0.010} + 0.010_{-0.012}^{-0.010}$

- Alternate determination using
 - quark mass effects and
 - matching between 4 and 5 flavour effective theories

 J.H. Kuhn, M. Steinhauser and T. Teubner, Phys. Rev. D76, 074003 (2007)

 $\alpha_{s}\left(M_{Z}^{2}\right) = 0.126 \pm 0.005_{-0.011}^{+0.015}$

The world average determination

 $\alpha_{s}(M_{Z}^{2}) = 0.1189 \pm 0.0010$

CLEO-c - $s^{\frac{1}{2}} = 3.97-4.26$ GeV

Measurement of R at CLEO - Jim Libby

Decomposition of charm cross section

- Resonant region above $\psi(3770)$
 - 12 scan points between 3.97-4.26 GeV
 - Integrated luminosity normally between 1.5 and 13.1 pb⁻¹
 - Exception: 179 pb⁻¹ at 4.17 GeV
- Find candidate with ±15MeV of the nominal D⁰, D⁺ or D_s mass:
 - $\Box \quad D^{0} \rightarrow K^{-}\pi^{+}$
 - $\Box \quad D^+ \rightarrow K^- \pi^+ \pi^+$
 - $\begin{array}{lll} & D_s \rightarrow \phi[K^-K^+]\pi^+~(\rho^+), D_s \rightarrow \eta[\gamma\gamma]~\pi^+(\rho^+), \\ & D_s \rightarrow K^{*0}[K^-\pi^+]\pi^+, ~D_s \rightarrow \eta'[\eta\pi^+\pi^-]\pi^+(\rho^+) \text{ and } \\ & D_s \rightarrow K^0{}_SK^+~(16\% \text{ of total BF}) \end{array} \end{array}$
- For each scan point, fit mass-sideband subtracted momentum spectrum of the D⁰, D⁺ or D_s candidates to determine production channel

Comparison to coupled-channel model

Model (solid lines):

- E. Eichten, K. Gottfried, T. Kinoshita, K.D. Lane, T.M. Yan, Phys. Rev. D21, 203 (1980)
- Updated predictions presented at QWG workshop at BNL, June 2006
- Reasonable qualitative agreement for most of the exclusive channels
 Worst in D*D*

Inclusive Charm Cross Section

- Exclusive D-meson: sum of all determined exclusive cross-sections
- Inclusive D-meson: sum of inclusive D⁰,D⁺,D_s divided by 2
- Hadron Counting: similar to the analysis of the $s^{\frac{1}{2}} = 6.96 10.54$ GeV data
 - Subtract uds contribution from the scaled continuum data taken below $\psi(2S)$
 - Subtract tails of the $J/\psi,\psi(2S),\psi(3770)$ resonances

Measurement of R at CLEO - Jim Libby

R(s) in charm threshold region

- Use the inclusive charm cross-section determined via the hadron counting method
- Add back uds contribution from a 1/s fit to the world data on R(s) in 3.2-3.72 GeV range (2.285 ±0.03 nb)
- Apply radiative corrections

Most accurate determinations in this region

Conclusion

- R measured for s^{1/2} = 6.96–10.54 GeV
 - Most precise
 - Determines $\alpha_{s}(M_{z}^{2})$ with ~10% uncertainty
 - Consistent with world average from alternate techniques
- Exclusive & inclusive charm for E_{CM}=3.97-4.26 GeV
 - Region of many thresholds & much structure
 - Exclusively deconstructed its composition
 - Multi-body open charm measured for the first time
 - This deconstruction is useful input for model builders
 - Qualitative agreement with coupled channel predictions
 - Precision of R is improved at 13 points