

Measurement of R in various energy regions at CLEO

Tomasz Skwarnicki

Two recent papers

- CLEO-III data (s^{1/2} = 6.96–10.54 GeV):
 - "Measurement of the Total Hadronic Cross Section in e⁺e⁻
 Annihilations Below 10.56 GeV", D. Besson et al., Phys. Rev. D76, 072008 (2007)

- CLEO-c data (s^{1/2} = 3.97-4.26 GeV) :
 - "Measurement of Charm Production Cross Sections in e⁺e⁻
 Annihilation at Energies between 3.97 and 4.26 GeV", submitted to Phys. Rev. D, arXiv:0801.3418 (2008)

Motivation

$$R(s) = \frac{\sigma_o(e^+e^- \to hadrons)}{\sigma_o(e^+e^- \to \mu^+\mu^-)}$$

- R(s) in the continuum (the high-s data):
 - Test predictions of perturbative QCD for α_s dependence

$$R(s) = R_0 \left[1 + C_1 \frac{\alpha_s(s)}{\pi} + C_2 \left(\frac{\alpha_s(s)}{\pi} \right)^2 + C_3 \left(\frac{\alpha_s(s)}{\pi} \right)^3 + O(\alpha_s^4(s)) \right]$$

$$C_1 = 1, \ C_2 = 1.525 \text{ and } C_3 = -11.686$$

- R(s) in the resonance region (the low-s data):
 - needed for dispersion integrals of hadronic vacuum polarization (matters for g-2, $\alpha_{QED}(s)$ used in fits of the SM higgs mass to the precision EW data, precision QED MC generators for $e^+e^- \rightarrow l^+l^-$,...)
- Present also exclusive & inclusive open charm decomposition in the low-s data:
 - test phenomenological models, contribute to classification of resonances in this region

Suppress backgrounds by cutting loosely around the edges

Data Analysis

- Correct for the remaining $e^+e^-\!\!\to \tau^+\tau^-$ background

- Correct for tails of narrow lower mass resonances (0.03-2.1%)
- Correct for energy-dependent efficiency (82-88%)
- Make radiative corrections
- Measure luminosity for normalization (using e⁺e⁻ $\rightarrow \gamma\gamma$,e⁺e⁻ $\rightarrow \mu^+\mu^-$,e⁺e⁻ \rightarrow e⁺e⁻)
- Evaluate systematic errors

Errors given in %

Energy (GeV)	10.538	10.330	9.996	9.432	8.380	7.380	6.964	-
Luminosity	1.00	1.10	1.10	1.10	0.90	0.90	1.00	
Trigger	0.09	0.09	0.11	0.08	0.12	0.13	0.19	Sources
Radiative	1.00	1.00	1.00	1.00	1.00	1.00	1.00	oferror
Correction Multiplicity Correction	1.06	1.38	0.99	0.84	0.43	0.38	0.38	spread around
Event	1.51	1.09	1.31	1.31	1.05	1.02	0.79	
selection (eff+bgd)								
Total	2.32	2.30	2.21	2.15	1.76	1.74	1.68	~2%
Common	1.87	1.67	1.85	1.87	1.62	1.64	1.58	
Uncorrelated	1.37	1.59	1.22	1.05	0.70	0.57	0.55	Mostly common

Test of QCD corrections

Quantify the test with a α_s value

S.

Our determination, using massless quarks and 4-quark flavors: $\alpha_s(M_Z^2) = 0.126 \pm 0.005_{-0.011}^{+0.015}$

9

Different theoretical approach, using quark mass effects & ulletmatching between 4 & 5 flavor effective theories J.H. Kuhn, M. Steinhauser and T. Teubner, Phys. Rev. D76, 074003 (2007)

$$\alpha_{s}\left(M_{Z}^{2}\right) = 0.110^{-0.010 + 0.010}_{-0.012 - 0.011} \alpha_{s}(Q)$$

$$a_{s}(Q)$$

$$bifferent by ~13\%$$
Both consistent with the world
average determination
S. Bethke, Prog. Part. Nucl. Phys. 58, 351 (2007)

$$\alpha_{s}\left(M_{Z}^{2}\right) = 0.1189 \pm 0.0010$$

$$a_{s}\left(M_{Z}^{2}\right) = 0.1189 \pm 0.0010$$

Low-s data: resonant region above $\psi(3770)$ Decomposition of charm cross-section

- Find candidate with ±15MeV of the nominal $D(^{0,+,}{}_{s})$ mass among: $D^{0} \rightarrow K^{-}\pi^{+}$, $D^{+} \rightarrow K^{-}\pi^{+}\pi^{+}$, $D_{s} \rightarrow \phi(K^{-}K^{+})(\pi^{+} \text{ or } \rho^{+})$, $\eta(\gamma\gamma)(\pi^{+} \text{ or } \rho^{+}), K^{*0}(K^{-}\pi^{+})\pi^{+}, \dots (8 D_{s} \text{ modes})$
- For each s-scan point, fit mass-sideband subtracted momentum spectrum of the D(^{0,+,}s) candidates to determine production channel

CLEO R Measurements Moriond'08 T. Skwarnicki 12

Inclusive Charm Cross Section

- Exclusive D-meson: sum of all determined exclusive cross-sections
- Inclusive D-meson: sum of inclusive D⁰, D⁺, D_s divided by 2
- Hadron Counting: like the analysis of the high-s data
 - Subtract uds contribution from the scaled continuum data taken below $\psi(2S)$
 - Subtract tails of the J/ ψ , ψ (2S), ψ (3770) resonances

Comparison to coupled-channel potential model by Eichten et al

- Model (solid lines):
 - E. Eichten, K. Gottfried, T. Kinoshita,
 K.D. Lane, T.M. Yan, Phys. Rev.
 D21, 203 (1980)
 - Updated predictions presented at QWG workshop at BNL, June 2006
 - Different particle momenta in various decay channels probe different parts of the wave functions (nodes!) of 3S and 2D states, on top of opening $D(_{s}^{*})D(_{s}^{*})$ thresholds, spin counting factors and $(m_{u,d}/m_{s})^{4}$ suppression of D_{s} production
- Reasonable qualitative agreement for most of the exclusive channels

R(s) in charm threshold region

- Use the inclusive charm cross-section determined via the hadron counting method
- Add back uds contribution from a 1/s fit to the world data on R(s) in 3.2-3.72 GeV range (2.285 ±0.03 nb)
- Apply radiative corrections

Summary

- Precise R measured for E_{cm} =6.96–10.54 GeV
 - Region of no structure as expected
 - Perturbative QCD corrections verified within the experimental and theoretical errors
 - Most precise; removes any doubts about old Mark I points
- Exclusive & inclusive charm for E_{CM} =3.97-4.26 GeV
 - Region of many thresholds & much structure
 - We have exclusively deconstructed its composition
 - Multi-body open charm measured for the first time
 - This deconstruction is useful input for model builders
 - Qualitative agreement with the coupled channel potential model predictions by Eichten et al.
 - Precision of R is improved at 13 points