

Latest CLEO-c Results

OUTLINE

The role of charm in particle physics

Testing the Standard Model with precision quark flavor physics

Direct Searches for Physics Beyond the Standard Model

Ian Shipsey, Purdue University CLEO-c Collaboration

Big Questions in Flavor Physics

Dynamics of flavor?	Why generations? Why a hierarchy of masses & mixings?		(² 3) charm	(23) top
Origin of Baryogenes	is?	$\left(-\frac{1}{3}\right)$	(-1/3) strange	(- <u>1</u>) bottom
Sakharov's criteria: CP violation No	Baryon number violation on-equilibrium	G		

3 examples: Universe, kaons, beauty but Standard Model CP violation too small, need additional sources of CP violation

Connection between flavor physics & electroweak symmetry breaking?

Extensions of the Standard Model (ex: SUSY) contain flavor & CP violating couplings that should show up at some level in flavor physics, but *precision* measurements and *precision* theory are required to detect the new physics

Precision Quark Flavor Physics

Precision Quark Flavor Physics

→ measurements of absolute rates for D semileptonic & leptonic decays yield decay constants & form factors to *test* and hone QCD techniques into *precision theory* which can be applied to the B system enabling improved determination of the apex (ρ , η)

+ Br(B \rightarrow D)~100% *absolute* D hadronic rates normalize B physics important for V_{cb} (scale of triangle) - also normalize D physics

CLEO CESR Precision theory + charm = large impact Now γ CKM fitter Summer 2007 Am_s & Am_d has CL > 0.95 0.6 2 Theoretical ε_κ Δm_d 0.5 sin2β Υ errors (ρ,η) sol. w/ cos2B < 0 (excl. at CL > 0.95) _{...}η 0.4 excluded dominate 0.3 ~∆m_{d,s} C width of 0.2 bands ′l_{ub} 0.1 $|V_{ub}|$ β/ α 0 -0.4 -0.2 0.2 0.4 0.6 0.8 0 1 ρ

Precision theory + charm = large impact

CLEO

CESF

Theoretical errors dominate width of bands

Few % precision QCD Calculations tested with few % *precision* charm data → theory errors of a few % on B system decay constants & semileptonic form factors

Precision theory? Lattice QCD

Charm decay constants $f_{D^+} \& f_{Ds}$

psev

Charm semileptonic Form factors Understanding strongly coupled systems is important beyond flavor physics. LHC might discover new strongly interacting physics

CLEO-c: World's largest data sets at charm threshold

CLEO-c: Oct. 2003 – March 2008, CESR (10GeV) → CESR-c at 4GeV CLEO III detector →CLEO-c

$$\sqrt{s} \text{ (MeV) Ldt (pb}^{-1})$$
3686 54 $N(\psi(2S)) \approx 27M$
3773 800 $\psi(3770) \rightarrow D\overline{D} \approx 5.1 \times 10^6 D\overline{D}$ X84 MARK III
4170 314 $D_{(s)}^{(*)} \overline{D_{(s)}^{(*)}} \approx 3 \times 10^5 D_s^* \overline{D_s}$ Expect to collect x2 by end of running

 \Box Pure DD, no additional particles ($E_D = E_{beam}$). $\Box \sigma$ (DD) = 6.4 nb (Y(4S)->BB ~ 1 nb) \Box Low multiplicity ~ 5-6 charged particles/event

 \rightarrow high tag efficiency: ~25% of events Compared to $\sim 0.1\%$ of B's at the Y(4S)

A little luminosity goes a long way: **Tagging ability:** # D tags in 300 pb⁻¹ @ charm factory ~ # B tags in 500 fb⁻¹ @ Y(4S)

 $\psi(3770) \rightarrow D^+ D^ D^+ \rightarrow K^- \pi^+ \pi^+, \ D^- \rightarrow K^+ \pi^- \pi^-$

$$E_D \Rightarrow E_{beam}$$
: $\Delta E = E_{beam} - E_D$ $M_{BC} = \sqrt{E_{beam}^2 - |p_D|^2}$

281/pb

D_s Hadronic BRs

 D_s hadronic BFs serve to nomalize many processes in D_s & B_s physics This is the 1st high statistics study @ threshold arXiv:0801.0680 (4 Jan 2008)

 E_{cm} =4170 MeV. 298/pb. Optimal energy for $D_s D_s^*$ production. Analysis technique same as for DDbar at 3770.

8 D_s single tag modes ~1000 double tags (all modes) (~3.5% stat.)

Absolute D_s hadronic *B*'s arXiv:0801.0680 (4 Jan 2008)

CLEO-c, 4170MeV, 298pb⁻¹

Errors already << PDG

Branching Fraction (%)

			P vr+		PDG 2007 fit
Mode	This Result \mathcal{B} (%)	PDG 2007 fit \mathcal{B} (%)	s K		CLEO Preliminary, 298 pb1
$K_{S}^{0}K^{+}$	$1.49 \pm 0.07 \pm 0.05$	2.2 ± 0.4	Κ⁺ Κ ⁻ π⁺		8-8-8
$K^-K^+\pi^+$	$5.50 \pm 0.23 \pm 0.16$	5.3 ± 0.8	Κ* Κ ⁻ π * π ⁰		
$K^-K^+\pi^+\pi^0$	$5.65 \pm 0.29 \pm 0.40$		К <mark>°</mark> К [°] π⁺ π⁺	101	
$K_{S}^{0} K^{-} \pi^{+} \pi^{+}$	$1.64 \pm 0.10 \pm 0.07$	2.7 ± 0.7	π+ π+ π-		
$\pi^{+}\pi^{+}\pi^{-}$	$1.11 \pm 0.07 \pm 0.04$	1.24 ± 0.20			
$\pi^+\eta$	$1.58 \pm 0.11 \pm 0.18$	2.16 ± 0.30	π•η	Hell	
$\pi^+\eta'$	$3.77 \pm 0.25 \pm 0.30$	4.8 ± 0.6	π*η'		HH
$K^{+}\pi^{+}\pi^{-}$	$0.69 \pm 0.05 \pm 0.03$	0.67 ± 0.13	Κ⁺ π ⁺ π⁻		

K⁺K⁺π⁺ in good agreement with PDG We do not quote B(D_s→ $φπ^+$) Requires amplitude analysis Results soon Importance of *absolute* charm leptonic branching ratios 1

CLEO

CESF

3

$$\Gamma(D_q^+ \to | \upsilon) = \frac{1}{8\pi} G_F^2 M_{D_q^+} m_l^2 (1 - \frac{m_l^2}{M_{D_+}^2}) f_{D_+}^2 |V_{cq}|^2$$

- Check lattice calculations of decay constants 1
- 2 Improve constraints from B mixing

$$B_{d} = Const. \left[f_{Bd} \right]^{2} \left| V_{td} \right|^{2} \left| V_{tb} \right|^{2}$$

$$rate = (const.) \left[f_{Bd} \right]^{2} \left| V_{td} \right|^{2} \left| V_{tb} \right|^{2}$$

$$\sim 10\% \text{ (HPQCD)} \sim 12\%$$

$$PRL95 212001 (2005)$$

$$f_{Bd} \text{ to } 3\% \rightarrow \left| V_{td} \right| \left| V_{tb} \right| \text{ to } \sim 5\%$$

In 2HDM effect is largest

for Ds

 f_{B+} V_{ub} but rate low & V_{ub} not well known B τν ∞ \rightarrow

$$\begin{aligned} f_{D} \ CLEO-c \ and \ (f_{B}/f_{D})_{lattice} \rightarrow f_{B} \\ (And \ f_{D}/f_{Ds} \ CLEO-c \ checks \ f_{B}/f_{Bs}) \ lattice \end{aligned} \qquad precise \ |V_{td}| \\ important \ for \ |V_{td}|/|V_{ts} \\ Sensitive to new physics \ p^{+} \qquad (M^{+}, H^{+}, H^{+}, H^{+}) \\ \end{bmatrix}$$

۶

Importance of *absolute* charm leptonic branching ratios 2

A new charged Gauge Boson

SM Ratio of leptonic decays could be modified (e.g.)

$$\frac{\Gamma\left(\mathbf{P}^{+} \rightarrow \tau^{+} \nu\right)}{\Gamma\left(\mathbf{P}^{+} \rightarrow \mu^{+} \nu\right)} = m_{\tau}^{2} \left(1 - \frac{m_{\tau}^{2}}{M_{P}^{2}}\right)^{2} / m_{\mu}^{2} \left(1 - \frac{m_{\mu}^{2}}{M_{P}^{2}}\right)^{2}$$

(If H^{\pm} couples to M^2 no effect)

Hewett [hep-ph/9505246] Hou, PRD 48, 2342 (1993).

In 2HDM predict
SM decay width is x by
$$r_q = \left[1 - M_D^2 \left(\frac{\tan \beta}{M_{H^{\pm}}}\right)^2 \left(\frac{m_q}{m_c + m_q}\right)\right]^2$$

Akeryod [hep-ph/0308260]

Since m_d is ~0, effect can be seen only in D_s

CLEO-c has made absolute measurements of $B(D^+ \rightarrow \mu \nu), B(D^+ \rightarrow \tau \nu), B(D_s^+ \rightarrow \mu \nu), B(D_s^+ \rightarrow \tau \nu)$ Aspen Jan 14 2008 CLEO-c Results Ian Shipsey

f_{D^+} from Absolute $Br(D^+ \rightarrow \mu^+ \nu)$

 $\nu^+ \rightarrow \tau^+ \nu, \tau^+ \rightarrow \pi^+ \nu$

First measurement of R

 \rightarrow lepton universality in purely leptonic D+ decays is satisfied at the level of current experimental precision.

PRD73 112005 (2006)

3000

2000

1000

300

of Events/ 2 MeV

*

600

40

20

Method 1: $D_s \rightarrow \mu^+ \nu, D_s \rightarrow \tau^+ \nu, \tau^+ \rightarrow \pi^+ \nu$ & f_{Ds}

D_s (tag) 8 modes # D_s tags 31302<u>+</u>472

400

200

1000

1000

800

600

400

200

Invariant Mass of D_s Candidates (GeV)

1.90 1.92 1.94

K^⁰sK⁻

n'π

 $\pi^{+}\pi^{-}\pi^{-}$

η'ρ**-**

K⁺K⁻π⁻

ηπ

 $\phi \rho^{-}$

K[⊷]K*⁰

1,98 2,00 2,02

from K.K

Cabibbo favored decay compensates for smaller cross section @ 4170 MeV

@4170
$$D_s D_s^*, D_s^* \rightarrow D_s \gamma$$

Calculate MM^2 for D_s tag plus photon.

Peaks at D_s mass. N(tag+ γ)=18645<u>+</u>426

$$MM^{*2} = (E_{CM} - E_{D_S - tag} - E_{\gamma})^2 - (-\vec{p}_{D_S - tag} - \vec{p}_{\gamma})^2 \approx M{D_S}^2$$

We search simultaneously for $D_s \rightarrow \mu v \& D_s \rightarrow \tau v$

- * For the signal: require one additional track and no unassociated extra energy
- * Calculate missing mass (next slide)

 $D_s \rightarrow \mu^+ \nu$ and $\tau^+ (\pi^+ \nu) \nu$

PRL 99 071802 (2007) **PRD** 76 072002 (2007)

Three cases depending on particle type:

A $B(D_s \rightarrow \mu^+ \nu)$ 92 events (3.5 bkgd) $B(D_s \rightarrow \mu^+ \nu)$ = (0.597 ± 0.067 ± 0.039)%

B+C $B(D_s \rightarrow \tau^+ \nu)$: 31+25 = 56 events (3.6+5= 8.6 bkgd) $B(D_s \rightarrow \tau^+ \nu) = (8.0 \pm 1.3 \pm 0.4)\%$

A+B+C: By summing both cases and using SM τ/μ ratio $B^{eff}(D_s \rightarrow \mu^+ \nu) = (0.638 \pm 0.059 \pm 0.033)\%$

 $B(D_s \to e^+ v) < 1.3 \times 10^{-4}$

300/pb @4170 MeV

Require D_s tag

Require 1 electron and no other tracks

Primary bkgd semileptonic ($D_s \rightarrow X e v$).

Suppress X by requiring low amount of extra energy in calorimeter. Shown on right.

Signal region E_{cc}(extra)< .4 GeV. Backgrounds from scaled MC.

Results: $B(D_s \rightarrow \tau^+ \nu) = (6.17 \pm 0.71 \pm 0.36)\%$ [PDG06: $B(D_s \rightarrow \tau^+ \nu) = (6.4 \pm 1.5)\%$] $f_{Ds} = (273 \pm 16 \pm 8) \text{ MeV}$

This is the most precise determination of $B(D_s \rightarrow \tau^+ \nu)$

400 MeV

arXiv:0712.1175

(Submitted to PRL Dec 12 2007)

 $f_{Ds} \& f_{Ds} / f_{D^+}$

Combining method 1
$$D_s \rightarrow \mu v \& D_s \rightarrow \tau v, \tau \rightarrow \pi v$$

& method 2
$$D_s \rightarrow \tau \nu, \tau \rightarrow e \nu$$

weighted average: $f_{Ds} = (274 \pm 10 \pm 5) \text{ MeV}$

(syst. uncertainties are mostly uncorrelated between methods)

combine with $f_{D^+} = (222.6 \pm 16.7^{+2.3}_{-3.4})$ MeV (CLEO)

 $f_{Ds/}f_{D^+} = 1.23 \pm 0.10 \pm 0.03$

$$R = \frac{\Gamma(\mathrm{D}_{\mathrm{s}}^{+} \to \tau^{+} \nu)}{\Gamma(\mathrm{D}_{\mathrm{s}}^{+} \to \mu^{+} \nu)} = 11.0 \pm 1.4 \pm 0.6$$

compared to:

$$R = \frac{\Gamma(D_{s}^{+} \rightarrow \tau^{+}\nu)}{\Gamma(D_{s}^{+} \rightarrow \mu^{+}\nu)} = 9.72 \text{ (Standard Model)}$$

 \rightarrow lepton universality in purely leptonic D_s decays is satisfied at the level of current experimental precision.

Comparison with theory

- CLEO f_{Ds} higher than most calculations indicating an absence of the suppression expected for a H+
- Our f_{Ds} is ~3σ above the most recent & precise LQCD calculation (HPQCD).

This discrepancy needs to be studied.

- 1) HPQCD is checking against Γee for $J/\psi \& \varphi$
- 2) Radiative corrections are not made to LQCD results. Expected magnitude a few %. Needs to be investigated with high priority.

If all checks hold up, it is evidence for new physics that interferes constructively with the SM

Comparing measured f_{Ds}/f_{D+} with HPQCD mH+>2.2 GeV tanβ @90% CL

Using HPQCD f_{Ds}/f_{D+} find: |Vcd /Vcs|=0.217±0.019 (exp)±0.002(theory)

Assuming V_{cs} and V_{cd} known, we can check theoretical calculations of the form factors

Absolute Semileptonic Branching Fractions

 $\psi(3770) \to D^0 \overline{D^0}$ $\overline{D^0} \to K^+ \pi^-, D^0 \to K^- e^+ \nu$

Tagging creates a single D beam of known 4-momentum

The neutrino direction is determined to 1^0

no kinematics ambiguity

28

CLEO-c semileptonic tagging analysis technique: big impact

1st Observations:

CLEC

note: use PDG2004 as PDG2006 is dominated by CLEO-c measurements

PRL 95, 181801 (2005); PRL 95, 181802 (2005) PRL. 99, 191801 (2007)

Precision Measurements:

CLEO's measurements most precise for ALL modes; *4 modes* observed for the first time

$D \rightarrow K / \pi e^+ v$ without tagging

Preliminary results FPCP 2006 now superseded

ArXiv 0712.1020 and 0712.1025

[analogous to neutrino reconstruction @ Y(4S)]

Uses neutrino reconstruction:

Identify semileptonic decay.

Reconstruct neutrino 4-momentum from all measured energy in the event.

Use K(π), e, and missing 4-momentum and require consistency in energy and beam-energy constrained mass.

Higher efficiency than tagging but larger backgrounds

 $M_{\rm bc}$ distributions fitted simultaneously in 5 q^2 bins to obtain $d({\rm BF})/dq^2$. Integrate to get branching fractions and fit to get form factors

$D \rightarrow K, \pi ev$ Branching Fractions

Precision measurements from BABAR/Belle/CLEO-c. CLEO-c most precise. Theoretical precision lags experiment.

V_{cs} & V_{cd} Results

CLEO-c: the most precise *direct* determination of V_{cs} $\sigma(|V_{cs}|)/|V_{cs}| \sim 1.5\%(expt) \oplus 10\%(theory)$

CLEO – c	V_{cs}		
(tagged prelim)	$1.014 \pm 0.013 \pm$	$0.009 \pm$	0.106
(untagged final)	$1.015 \pm 0.010 \pm$	$0.011 \pm$	0.106
	stat	syst	theory

CLEO-c: $\sigma(|V_{cd}|)/|V_{cd}| \sim 4.5\%(expt) \oplus 10\%(theory)$ vN remains most precise determination (*for now*)

Tagged/untagged consistent 40% overlap, DO NOT AVERAGE

We measure $|V_{cx}|f_{+}(0)$ using Becher-Hill parameterization & $f_{+}(0)$ from *FNAL-MILC-HPQCD*.

PDG (Kev)*

LEP $W \rightarrow cs$

BESII (Kev)

CLEO-c (tagged)

Unitarity Test: Compatibility of charm & beauty sectors of CKM matrix

D semileptonic decay with theory uncertainties comparable to experimental uncertainty may lead to interesting competition between direct and indirect constraints

 Plots by Sebastien Descortes-Genon & Ian Shipsey

 See also talk by Descotres-Genon at joint BABAR-Belle-BESIII-CLEO-c Workshop 11/07, Beijing

 36

CLEO-c Searches for Direct CP violation in *D* decays

Many new modes: most promising in SM: Ds Cabibbo suppressed If CPV seen in Cabibbo allowed or DCSD it would be new physics

 $D_{S} \rightarrow PP \qquad PRL 99 \ 191805 \ (2007)$

Events / (0.004 GeV)

echnique: tag & cou	int separately D&I	
Mode	(B ₊ - A _{CP} - E	3_)(%)
$\mathcal{A}(D_s^+ \to K^+ \eta)$	-20 ± 18	1st Observation
$\mathcal{A}(D_s^+ \to K^+ \eta')$	-17 ± 37	of the Cabibbo
$\mathcal{A}(D_s^+ \to \pi^+ K_S^0)$	27 ± 11	suppressed
$\mathcal{A}(D^+_s \to K^+ \pi^0)$	2 ± 29	uccays

 $\rightarrow K^{+} n'$ $D_s^* \rightarrow K^* \eta^*$ (Mostly) Cabibbo Allowed: $(\eta' \rightarrow \pi^+ \pi^- \eta, \eta \rightarrow \gamma \gamma)$ Phys. Rev. D 76, 112001 (2007) Mode \mathcal{A}_{CP} (%) Mode A_{CP} (%) $K^0_S K^+$ $-4.9 \pm 2.1 \pm 0.9$ $D^0 \rightarrow K^- \pi^+$ $-0.4 \pm 0.5 \pm 0.9$ $K^-K^+\pi^+$ $D^0 \rightarrow K^- \pi^+ \pi^0$ $+0.3 \pm 1.1 \pm 0.8$ $0.2 \pm 0.4 \pm 0.8$ $K^-K^+\pi^+\pi^0$ $D^0 \rightarrow K^- \pi^+ \pi^+ \pi^ 0.7\pm0.5\pm0.9$ $-5.9 \pm 4.2 \pm 1.2$ $D_s^+ \rightarrow K^+ \pi^0$ $_{120} \stackrel{\text{L}}{=} D^+_{::} \rightarrow \pi^+ K^{\circ}_{::}$ $D^+ \rightarrow K^- \pi^+ \pi^+$ $-0.5 \pm 0.4 \pm 0.9$ $K^{0}_{S}K^{-}\pi^{+}\pi^{+}$ $-0.7 \pm 3.6 \pm 1.1$ $D^+ \rightarrow K^- \pi^+ \pi^+ \pi^0$ $1.0 \pm 0.9 \pm 0.9$ $\pi^{+}\pi^{+}\pi^{-}$ $+2.0 \pm 4.6 \pm 0.7$ $D^+ \rightarrow K^0_S \pi^+$ $-0.6\pm1.0\pm0.3$ $\pi^+\eta$ $-8.2 \pm 5.2 \pm 0.8$ $D^+ \rightarrow K^0_S \pi^+ \pi^0$ $0.3\pm0.9\pm0.3$ $\pi^+\eta'$ $-5.5 \pm 3.7 \pm 1.2$ $D^+ \rightarrow K^0_S \pi^+ \pi^+ \pi^ 0.1 \pm 1.1 \pm 0.6$ $K^{+}\pi^{+}\pi^{-}$ 1,90 1,92 1,94 1,96 1,98 2,00 2,02 2,0 $+11.2 \pm 7.0 \pm 0.9$ 1 92 1 94 1 96 1 98 2 00 2 02 $D^+ \rightarrow K^+ K^- \pi^+$ $-0.1 \pm 1.5 \pm 0.8$ arXiv 0801.0680

No statistically significant A_{CP} for any mode. CLEO-c best measurement of all modes except D+ \rightarrow KKpi. $\delta A_{CP} \sim 1\%$ (best case) for Cabibbo allowed, larger for Cabibbo suppressed.

Bmixing \rightarrow heavy top

How about charm?

If new particles are to appear

on-shell at LHC

they must appear in virtual loops

and affect amplitudes

 $\Delta Mbc \circ$

Ę

Aspen Jan 14 2008 CLEO-c Results Ian Shipsey

Tevatron may glimpse, study @ BES III, super B factories

Search for a non-SM-like pseudoscalar Higgs

Dermisek, Gunion, McElrath propose adding to the MSSM a non-SM-like

pseudoscalar higgs a_0 with $m_{a0} < 2m_b$ [hep-ph/0612031] "NMSSM"

"natural," avoids fine tuning

evades the LEP limit $M_h > 100$ GeV since $h \rightarrow a_0 a_0$, but $a_0 \not\rightarrow bb$ and LEP sought b jets

 $a_0^{} \rightarrow \tau^{\scriptscriptstyle +} \tau^{\scriptscriptstyle -}$ should predominate if $m_{a0}^{} > 2 m_{\tau}^{}$

Should be visible in $\Upsilon \to \gamma \, a_0$

Experimentally, CLEO seeks monochromatic γ

Use $\Upsilon(2S) \rightarrow \pi \pi \Upsilon(1S)$ tag to eliminate $e^+e^- \rightarrow \tau \tau \gamma$ background Flag presence of τ pair with two 1-prong τ decays (one lepton), missing energy

Summary Slide

CLEO-c hadronic D^0 , D^+ and D_s branching fractions more precise than

PDG averages: (for D^0 , $D^+2\%$ precision is syst.limited) CLEO establishes charm hadronic scale

most precise: $f_{D^+} = (222.6 \pm 16.7^{+2.3}_{-3.4})$ MeV consistent with LQCD $\rightarrow 3.7\%$ (8 MeV) full data

Most precise: $f_{Ds} = (274 \pm 10 \pm 5)$ MeV 3σ higher than LQCD. To interpret as "prosaic"

or "exciting": calculation checks underway & radiative corrections need to be estimated

project: f_{Ds} 2.6%(7 MeV) full data set

lepton universality in D, D_s decays is satisfied

most precise $|V_{cs}| = 1.015 \pm 0.010 \pm 0.011 \pm 0.106_{\text{theory}}$

 $|V_{cd}| = 0.217 \pm 0.009 \pm 0.004 \pm 0.023_{\text{theory}}$

most precise determination from semileptonic decay

Projections to full data set $\sigma(|V_{cd}|)/|V_{cd}| \sim 2.5\% \oplus \text{theory}$ $\sigma(|V_{cs}|)/|V_{cs}| \sim 1.0\% \oplus \text{theory}$

Best limits on direct CPV for many D modes

Best limits for a non-SM-like pseudoscalar Higgs

Best limit on $D \rightarrow \pi e^+ e^-$

CLEO-c has 800/pb @ 3770 (x3) & 600/pb at 4170 (x2) by 3/31/08 \rightarrow more stringent tests of theory: fD+, fDs, D \rightarrow K/ π ev f+(0),shape,Vcs & Vcd by summer. Longer term the charm factory mantle passes to BES III.

Precision theory + charm = large impact

CLEO

CESF

Theoretical errors dominate width of bands

Few % precision QCD Calculations tested with few % *precision* charm data → theory errors of a few % on B system decay constants & semileptonic form factors