Charm

Hanna Mahlke Cornell University

TM & @Nelvana

BEPC

中国人民邮政

Physics In Collision June 26-29, 2007 LAPP, Annecy, France

<mark>E8</mark>31

FERMILAB E835 CHARMONIUM

BELLE

charm

Pronunciation: 'charm

Function: noun

Etymology: Middle English charme, from Anglo-French, from Latin carmen song, from canere to sing -- more at CHANT

1 a : the chanting or reciting of a magic spell : $\mathbb{N}^{\mathbb{N}}$

b : a practice or expression believed to have magic power

2 : something worn about the person to ward off evil or ensure good fortune :

3 a : a trait that fascinates, allures, or delights

b: a physical grace or attraction -- used in plural <her feminine ^{charms>}

c : compelling attractiveness < the island possessed great ^{*charm>*}

4 : a small ornament worn on a bracelet or chain

5 : a fundamental quark that has an electric <u>charge</u> of + 2/3and a measured energy of approximately 1.5 GeV;

^{*also*}: the flavor <u>characterizing</u> this particle

The role of charm for QCD

Why charm: heavy enough for theory to have an easier time $(m_c \sim 1.5 GeV)$, large data samples available.

- Study of charm provides important testing ground for theory, to apply in heavier systems.
- Charm decay provides the opportunity to study properties of lighter particles

Two scenarios:

OPEN CHARM

Leptonic and semileptonic decays

Motivation: study QCD effects in a weak decay Goal: Determine form factors and decay constants

Precision experiments meet precision theory predictions Verify calculations in the D system to apply in the B system

Overview: (Semi-)Leptonic Decays

* BR measurements \Rightarrow Decay constants

* BR measurements* Form factors

Decay Constants, Status

Leptonic charm decays:

 $D \rightarrow \mu \nu$: fairly precise measurement of f_D (8%)

 D_s →µν,τν: two nice new measurements of f_{Ds} (5% CLEO, 8% BaBar)

Dominant experimental errors are statistical (BaBar also normalization) ⇒ error reduction "easy"

Decay Constants, Status

Leptonic charm decays:

 $D \rightarrow \mu \nu$: fairly precise measurement of f_D (8%)

 D_s →µν,τν: two nice new measurements of f_{Ds} (5% CLEO, 8% BaBar)

Dominant experimental errors are statistical (BaBar also normalization) ⇒ error reduction "easy"

arXiv:0705.4276 [hep-ex], subm to PRL

 $D^{0} \rightarrow K^{-}\pi^{+}\pi^{-} + e^{+} v$, 281/pb:

BR measurements 10 Signal Events/0.01 (GeV/c²)² candidates **~**4σ on ~1 bgd PDG 2004 Bgd D0 π⁻e⁺v pred $CLEO-c (281 \text{ pb}^{-1})$ K⁻e+v preliminary BES $K^{*-}(K^{-}\pi^{0})e^{+}\nu$ -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 $K^{*-}(K_{S}^{-}\pi^{-})e^{+}v$ MM² (GeV/c²)² $\rho e^+ v$ 2 K₁ (1270) e⁺v ■ 1.8 K127018 $\pi^0 e^+ v$ Events/0.02 (GeV/c²) 1.6 K{e+ν 1.4 K^{*0}(K⁻π[†])e⁺ν .2 $\rho^0 e^+ v$ 0.8 $\omega e^+ v$ 0.6 $\eta e^+ v$ 0.4 0.2 0 2 0 0.8 1.2 1 1.4 1.6 1.8 M_{Kππ} (GeV/c²) Substantial improvement over PDG04.

 $\mathcal{B}(D^0 \to K^- \pi^+ \pi^- e^+ \nu_e) = [2.8^{+1.4}_{-1.1}(\text{stat}) \pm 0.3(\text{syst})] \times 10^{-4}$ $\mathcal{B}(D^0 \to K^-_1(1270) \ e^+ \nu_e) = [7.6^{+4.1}_{-3.0} \ (\text{stat}) \pm 0.6 \ (\text{syst}) \pm 0.7] \times 10^{-4}$

10

CLEO **semi**leptonic

$D \rightarrow \pi, K\ell v$ branching fractions

transfer to the W* $f_+(q^2)$: form factor function

Cannot calculate from first principles
Many different parametrizations on the

market

- Quantities of interest: shape and normalization
- Experiment can determine $|V_{cq} \times f_{+}(0)|^{2}$
- •Unitarity constrains V_{cq}, hence stringent tests possible
- HQET links D and B decay

E687, PLB 364, 127 (1995

$D \rightarrow \pi/Ke_V$: Which Form Factor Parameterization?

World data on π/KI_V form factors

Generally good agreement between experiments

LQCD πev points a bit high

Theory prediction more precise than experiment

BELLE: PRL 97, 061804 (2006) [hep-ex/0604049] BaBar: hep-ex/0607077 FOCUS: PLB607, 233 (2005) [hep-ex/0410037] CLEO preliminary

LQCD unquenched: FNAL/MILC/HPQCD, PRL 94, 011601 (2005)

Comparison between form factor normalization determinations

OPEN CHARM

Hadronic Branching Fractions

Normalizing modes – need precision Suppressed modes: assess level of suppression in 2-body and 3-body systems Compare D and D_s

> Multibody decays understand decay dynamics

Absolute hadronic D⁺ and D⁰ BR's

CLEO preliminary

Mode	B (%)				
$D^0 o K^- \pi^+$	$3.87 \pm 0.04 \pm 0.08$				
$D^0 o K^- \pi^+ \pi^0$	$14.6\pm0.1\pm0.4$				
$D^0 ightarrow K^- \pi^+ \pi^- \pi^+$	$8.3\pm0.1\pm0.3$				
$D^+ ightarrow K^- \pi^+ \pi^+$	$9.2\pm0.1\pm0.2$				
$D^+ ightarrow K^- \pi^+ \pi^+ \pi^0$	$6.0\pm0.1\pm0.2$				
$D^+ o K^0_S \pi^+$	$1.55 \pm 0.02 \pm 0.05$				
$D^+ o K^0_S \pi^+ \pi^0$	$7.2\pm0.1\pm0.3$				
$D^+ ightarrow { m K}^0_S \pi^+ \pi^+ \pi^-$	$3.13 \pm 0.05 \pm 0.14$				
$D^+ o K^+ K^- \pi^+$	$0.93 \pm 0.02 \pm 0.03$				

CLEO, hep-ex/0702021

$D^0 \rightarrow \pi^- \pi^+ \pi^0$, K⁻K⁺ π^0 / K⁻ $\pi^+ \pi^0$

Starting point: PDG 06

- CF: $D^0 \rightarrow K^-\pi^+$: 3.80 ± 0.07 %
- CS: $D^0 \rightarrow K^+K^-: 0.384 \pm 0.010 \%$
- CS: $D^0 \rightarrow \pi^+\pi^-$: 0.1364 ± 0.0032 %

Compare rates, adjust for phase space

Surprisingly small $\pi^+\pi^-$ rate.

↔ Check 3body decays: add a π^0

Branching ratios:

 K⁻π⁺π⁰: 14% (CF), π⁻π⁺π⁰ ~1.3% (CS), K⁻K⁺π⁰ ~0.13% (CS)

Cabibbo-suppression at the quark level.

Results support this at the level of 30%.

Doesn't solve puzzle of corresponding 2-body decays...

PRD 74, 091102 (2006)R Belle prelim, 357/fb, hep-ex/0610062 21

BaBar 232/fb,

m (K⁻K⁺ π^{0}) [GeV/c²]

Results CLEO Preliminary

Suppressed / favored:

 $(D_s \rightarrow \pi^+ \pi^0)/(D_s \rightarrow K^+K^0) < 0.04$

Compare with $(V_{cd}/V_{cs})^2$ of 1/20

Statistics limited – more data to come

Substructure analysis of multibody decays

Goal – learn about intermediate states and decay dynamics

Modern data samples afford the opportunity to study these decays in detail (many x10³ well-reconstructed events)

Need to find a way to parametrize the intermediate states

Industry of formalisms:

- - -

Breit-Wigner resonance shapes, K-Matrix formalism, projective weighting technique,

Issues:

Quality control

- Theoretical basis
- Knowledge of intermediate states, esp. consistency with scattering experimens
- Final state interactions

TABLE II. Comparison with other experiments.

Experiment	$\Gamma(D^0 \to \pi^- \pi^+ \pi^- \pi^+) / \Gamma(D^0 \to K^- \pi^+ \pi^- \pi^+)$	Events
FOCUS (this result)	$0.0914 \pm 0.0018 \pm 0.0022$	6360 ± 115
CLEO-c [20]	$0.097 \pm 0.002 \pm 0.003$	7331 ± 130
BES [21]	$0.079 \pm 0.018 \pm 0.005$	162 ± 20
E687 [22]	$0.095 \pm 0.007 \pm 0.002$	814 ± 26

FOCUS, PRD 75, 052003 (2007)

 $D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^-$

Amplitude analysis, 1st time: Motivation:

- Just because,
- to study FSI,
- to gain experience with 4π[±] structure and in particular a₁(1260) lineshape and decays
 → B⁰ to 4π[±]

Model, 10 baseline components:

- 3: $D^0 \rightarrow a_1(1260)^+ \pi^-$, $a_1^+ \rightarrow \rho^0 \pi^-$ (S and D) and $\sigma \pi^+$
- 3: $D^0 \rightarrow \rho^0 \rho^0$ in three helicity states
- 4: $D^0 \rightarrow \pi^+\pi^- + \mathcal{R}, \mathcal{R} = \sigma, \rho^0, f_0(980), f_2(1270)$

Fit result, dominant contributions:

- a₁(1260) 60%, a₁(1260) dominance also seen in K⁺π⁺π⁻π⁺ and K⁰π⁺π⁻π⁺
- $\rho^0 \rho^0 25\%$, $D^0 \rightarrow V_1 V_2$ also not uncommon
- $\pi^+\pi^-$ + resonance 11%

Simplified model gets gross features right, but CL is low.

"It is very unlikely that the poor CL is caused by problems with the representation of signal amplitudes." – model too simplistic? FSI?

Information on $a_1(1260)$

Width

MC simulation of the $\pi^+\pi^-$ mass distribution for the $a_1(1260)^+$ decay modes used in the FOCUS fit

Compare $a_1(1260)$ decay: here – 3 decays are enough, tau $\rightarrow v3\pi - 7$ amplitudes were needed (CLEO), but still, dominant features were like found here.

This work PDG Kuehn et al. Isgur et al.

CLEO PRL 98, 092002 (2007)

D⁰ mass measurement

 $M(D^0) = 1864.847 \pm 0.150(\text{stat}) \pm 0.095(\text{syst}) \text{ MeV}$

LQCD D mass calculation

 D^0

D⁺

1869.5 \pm 0.5 OUR AVERAGE

 $1870.0 \pm 0.5 \pm 1.0$

 1869.4 ± 0.6

1869.62± 0.20 OUR FIT Error includes scale factor of 1.1.

317

BARLAG

¹ TRILLING

90C ACCM π^- Cu 230 GeV

81 RVUE e⁺e⁻ 3.77 GeV

აი

OPEN CHARM

Production

Issues: measure rate as function of center-of-mass energies for inclusive hadron production as well as exclusive D-pair combinations

Determine charmonium resonance parameters

Study dependence of production rate on center-of-mass energy

Charmonium

 $J^{PC} = 1^{--}$

More quantum numbers:

- Transitions: low energy release (<1GeV)
- Decay: perturbative methods apply
- Spectrum of bound states an important test for models

Charmonium States

? Masses ? Widths ? Production and decay dynamics

Charm system is very similar to bottom system, (v/c)² for charm is 0.25, 0.08 for bottom

589MeV

Non-perturbative regime

Partly discovery, partly precision measurements

Above DD threshold:

Observed & Predicted States

R., å

> Charmonium $4S^{-}$ 4.253S4.00 $2P^{2}$ 3.75 2S1P3.50 3.25 1S -3.00 V(r)~log r

States not accessible in e⁺e⁻ can be reached through transitions, in pp, or in $\gamma\gamma$ production a systematic approach to identify the missing states is needed.

Re-analysis of BES R data and extraction of charmonium resonance parameters

Below-threshold Charmonium

SPECTROSCOPY Goal: describe the observed spectrum of states and study their properties

Charmonium States $2^{1}s_{0}^{2}$

mass recently remeasured,

only one decay mode seen

3.0

2.8

η_c(1S)

3.2

3.4

 $M(K\varsigma K\pi)$ (GeV)

3.6

width a moving target,

M1 rates not measured,

<u>χ_{cJ}</u>: masses, width, dominant decay modes reasonably well measured. Beginning to study substructure.

h

 $\begin{array}{c} \text{Source} \\ \text{Source} \\$

1620204-07

<u>h_c</u>: Newest member of the family, seen in $\psi(2S) \rightarrow \pi^0 h_c \rightarrow \gamma \eta_c$ and in pp production, product BR measured. That's it!

 χ_c

 $\underline{\eta_{c}(1S)}$: mass and width known to MeV's, most urgent project: M1 transition rate J/ $\psi \rightarrow \gamma \eta_{c}$

70

60

50

40

CLEO III Data

 $\eta_{c}(2S)$

3.8

40

<u>ψ(2S), J/ψ</u>: accessible in e⁺e⁻. Masses, total width, dominant decay modes well measured. Studying BR's in the range of <0.01%, and substructure.

E1 rates, theory vs experiment

$\psi(2S)$ width measurements

Overall mission: Improve our understanding of the strong interaction.

Study charm for charm's sake

Calibration playground for heavier systems

Production site for lighter states

Charmonium

DECAY

Many channels have been discovered for the "easy to produce" charmonia. We are down to levels of 10⁻⁵ in finding new ones.

We are moving from mere branching fraction measurements to investigating resonant substructure, in particular for $\psi(\text{2S})$ and χ_{cJ} . Two examples:

a) Radiative multibody decays of $\psi(2S)$

b) Multibody decays of χ_{cJ}

$\psi(2S) \rightarrow \gamma$ + light hadrons

 ψ (2S) to light hadrons, PDG07:

 $\gamma \pi^0$ $\gamma \eta'$ (958) $\gamma f_{2}(1270)$ $\gamma f_0(1710)$ $\gamma f_0(1710) \rightarrow \gamma \pi \pi$ $\gamma f_0(1710) \rightarrow \gamma K \overline{K}$ $\gamma \gamma$ $\gamma \eta$ All limits $\gamma \eta \pi^+ \pi^ \gamma \eta$ (1405) or meast's $\gamma \eta$ (1405) $\rightarrow \gamma K \overline{K} \pi$ at 10^{-4..5} $\gamma \eta$ (1405) $\rightarrow \eta \pi^+ \pi^ \gamma \eta (1475)$ $\gamma \eta (1475) \rightarrow K \overline{K} \pi$ $\gamma \eta (1475) \rightarrow \eta \pi^+ \pi^- /$

$\begin{array}{l} BR(\psi(2S) \to ggg + \gamma gg) \\ = 1 - \pi \pi, \eta, \pi^0 J/\psi - \Sigma M1, E1 = \sim 20\% \\ J/\psi: \gamma gg/ ggg \sim 6\% \\ BR(\psi(2S) \to \gamma gg) \sim 1\% \\ Where are they? \end{array}$									
BES: s	urvey of	γ-	⊦n($(\pi^+\pi^-)$	-) +	∙ m(K+ł	(-)		
	Mode	N^{Tot}	N^{Bg}	N^{Sig}	$\epsilon(\%)$	$\mathcal{B}(imes 10^{-5})$	ů		
	$\gamma p \bar{p}$	329	187	142 ± 18	35.3	$2.9{\pm}0.4{\pm}0.4$	nr		
	$\gamma 2(\pi^+\pi^-)$	1697	1114	583 ± 41	10.4	$39.6 {\pm} 2.8 {\pm} 5.0$	or		
S	$\gamma K_S^0 K^+ \pi^- + c.c.$	_	_	115 ± 16	4.83	$25.6 \pm 3.6 \pm 3.6$	₹		
	$\gamma K^+ K^- \pi^+ \pi^-$	361	229	132 ± 19	4.94	$19.1 \pm 2.7 \pm 4.3$	le		
	$\gamma K^{*0}K^+\pi^- + c.c.$	_	_	237 ± 39	6.86	$37.0 \pm 6.1 \pm 7.2$	Ĩe		
	$\gamma K^{*0} \overline{K}^{*0}$	58	17	41 ± 8	2.75	$24.0 \pm 4.5 \pm 5.0$	Ľ		
	$\gamma \pi^+ \pi^- p \bar{p}$	55	38	17 ± 7	4.47	$2.8{\pm}1.2{\pm}0.5$	ē.		
	$\gamma K^+K^-K^+K^-$	15	8	< 14	2.93	< 4.0	ar		
	$\gamma 3(\pi^+\pi^-)$	118	95	< 45	1.97	< 17	<u> </u>		
	$\gamma 2 (\pi^+\pi^-) K^+ K^-$	17	13	< 15.5	0.69	< 22	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		

The corresponding list for the J/ψ is almost 50 entries long...

Also included $\pi^0+2(\pi^+\pi^-)$ [and K⁺K⁻], rich resonant substructure

$\chi_c \rightarrow h^+h^-h^0 (\pi^+\pi^-\eta)$

PRD 75, 032002 (2007)

Substructure in $\chi_{c1} \rightarrow \pi^+ \pi^- \eta$

- Use a simple model of noninterfering resonances coming from a spin-1 parent. (this describes the dominant structure, but will be refined with more statistics).
- Find significant contributions from a₀π, f₂η, and ση.
- No exotic structures apparent.

η(') Branching Ratios

58M J/ ψ , B(J/ $\psi \rightarrow \eta$ (') ϕ) = 7.4 (4.0) ×10⁻⁴ B($\phi \rightarrow K^+K^-$) = 50%

η branching ratios, CLEO l^+ l^- J/ψ (2S) U(2S) U(2S)U(2S)

Fully reconstruct five final states: $\gamma\gamma + 3\pi^0 + \pi^+\pi^-\pi^0 + \pi^+\pi^-\gamma + e^+e^-\gamma$

 $\begin{array}{l} \text{Constrain } \ell^{+}, \, \ell^{-} \Longrightarrow J/\psi, \\ \text{constrain } J/\psi, \, \eta \text{ products} \Rightarrow \psi(2S) \end{array}$

Excellent data/MC agreement

Measurement of ratios allow cancellation of systematics

Follow PDG procedure: sum of the above five modes is ~ 100% \Rightarrow build absolute Br's from ratios

CLEO η branching fractions

CLEO η Mass Measurement

$$\begin{split} \text{M}(\eta) = & 547.785 \pm 0.017 \pm 0.057 \text{ MeV} \\ \text{CLEO preliminary} \end{split}$$

Recommended Reading

Leptonic D decays: Belle, $D^0 \rightarrow \pi^-, K^- l^+ \nu$, PRL 97, 061804 (2006) BaBar, $D^0 \rightarrow K^- l^+ \nu$, 0704.0020v1 BES, $D^+ \rightarrow K^0 \mu^+ \nu$ and $\Gamma(D^0 \rightarrow K^- \mu^+ \nu) / \Gamma(D^+ \rightarrow K^{0bar} \mu^+ \nu)$, PLB 644, 20 (2007) CLEO, f_{Ds}, 0704.0629 and 0704.0437 CLEO, f_D, PRL 95, 251801 (2005) BaBar, f_{Ds}, PRL 98, 141801 (2007)

Hadronic D decays: BaBar, BR $D^0 \rightarrow \pi^- \pi^+ \pi^0$, K⁻K⁺ π^0 /K⁻ $\pi^+ \pi^0$, PRD74, 091102(R) (2006) Belle, BR $D^0 \rightarrow \pi^- \pi^+ \pi^0$ /K⁻ $\pi^+ \pi^0$ hep-ex/0610062 BaBar, BR $D^0 \rightarrow K^- \pi^+$, arXiv:0704.2080 CLEO, D absolute hadronic BR's, hep-ex/0702021 BES, BR D^{+,0} \rightarrow K(*)+X,PLB643, 246 (2006)

Dalitz analyses:

CLEO, $D^0 \rightarrow \pi^- \pi^+ \pi^0$, PRD 76, 012001 (2007) FOCUS, $D^+ \rightarrow K^- \pi^+ \pi^+$ K-matrix, 0705.2248 FOCUS, $D^+ \rightarrow K^- K^+ \pi^+$ non-parametric, hep-ex/0612032 CLEO, $D^0 \rightarrow \pi^- \pi^+ \pi^+ \pi^-$, PRD 75, 052003 (2007) Open-charm and charmonium spectroscopy: CLEO, D⁼ mass, PRL 98, 092002 (2007) Belle, $\Lambda_c(2880)$ J^P and $\Lambda_c(2940) \rightarrow \Sigma_c \pi$, hep-ex/0608043 Belle, $\Xi_c(2980)$, $\Xi_c(3077)$, PRL 97, 162001 (2006) BaBar, Ω_c^{0} prod/decay, PRL 97, 232001 (2006) BaBar, Ω_c^{*} to $\Omega_c^{0} \gamma$, PRL 97, 232001 (2006) Seth, $\psi(4040)$, $\psi(4160)$, $\psi(4415)$ parameters, PRD 72, 017501 (2005) BES, $\psi(4040)$, $\psi(4160)$, $\psi(4415)$ parameters, 0705.4500 BES, $\psi(2S)$ and $\psi(3770)$ scan, PRL 97, 121801 (2006) Belle, e⁺e⁻ \rightarrow D(*)D* cross-section (at sqrt(s) from threshold to ~5 GeV), PRL98, 092001 (2007) Belle, B^{0bar} \rightarrow D*** π^- ; (observation of D₀*), hep-ex/0611054 Belle, Y(4260) in ISR, hep-ex/0612006 E835, $\psi(2S)$ width, hep-ex/0703012

 ψ (2S) decay: BES, radiative multibody, hep-ex/0612016

CLEO, χ_{cJ} multibody decays and substructure analysis, PRD 75, 032002 (2007)

Light meson properties: BES, σ in $\pi^+\pi^-J/\psi$, PLB 45, 19 (2007) BES, $\eta(')$ to invisible, PRL 97, 202002 (2007)

 $D_s^+ \rightarrow \phi \pi^+$

Popular normalizing mode for D_s decays, easy to identify, substantial BR

- In practice, " ϕ " is K⁺K⁻ with $\Delta m = m(KK) m(\phi) = X \text{this is not purely } \phi$!
- Measuring $D_s^+ \rightarrow \phi \pi^+$ in a partial wave analysis is fine, but it's still not the relevant number for relative BR measurements: they need partial BR's

 $\begin{array}{l} \text{CLEO partial } \mathsf{D}_{s}^{+} \rightarrow \mathsf{K}^{+}\mathsf{K}^{-}\pi^{+} \ \text{BR's: } \Delta m\text{= 10 [20] } \text{MeV: } 1.98 \pm 0.15 \ \% \ [2.25 \pm 0.18 \ \%] \ , \\ \text{BaBar } \mathsf{D}_{s}^{+} \rightarrow \phi \pi^{+} \text{: } 4.62 \pm 0.62 \ \ \% \qquad \Rightarrow \text{Accuracy of normalizing mode BR: sub-10\%.} \end{array}$