Bottomonium and Charmonium at CLEO

Ryan Mitchell (*on behalf of CLEO*) Indiana University Moriond QCD 2007

Bottomonium and Charmonium as a QCD Laboratory

- *spectroscopy*: energy levels and types of QCD bound states
- *hadronic decays*: hadronization of gluons
- *hadronic transitions*: access to "soft" gluons
- *di-lepton widths*: probing wave-functions at the origin
- *EM transitions*: interpreting the nature of bound states
- *light quark dynamics*: narrow "onia" states provide a clean and well-understood source of light quark states
- *interesting comparisons*: bottomonium vs. charmonium vs. the $q\bar{q}$ continuum.
- etc... etc...

This Talk

Ryan Mitchell (Indiana University)

Bottomonium at CLEO-III

Dedicated running at the Y(1S), Y(2S), Y(3S) (and off-resonance regions): November 2001 - December 2002. CESR at Cornell University e^+e^- collisions at $\sqrt{s} \sim 10$ GeV

2000 - 2003

Samples:

 $Y(1S) \sim 21M$ events

 $Y(2S) \sim 10M$ events

 $Y(3S) \sim 5M$ events

Analysis efforts include:

- quark and gluon hadronization
- hadronic transitions
- radiative transitions
- spectroscopy
- di-lepton widths
- searches for exotic particles

Charmonium at CLEO-c

I. Bottomonium and Fragmentation

- Compare particle production in a "glue-rich" environment: *Upsilon decays:* Y → ggg, ggγ to a "quark-rich" environment: *the continuum:* e⁺e⁻ → qq
 qq
 qqγ.
- Study the production of (anti-)deuterons in Upsilon decay ("coalescence" of p and n in a dense environment).

Comparing Quark and Gluon Environments

• In 1984, CLEO I found an excess of baryons per event in $Y(1S) \rightarrow ggg$ over $e^+e^- \rightarrow q\overline{q}$.

Hard to interpret: *comparing 3 partons vs. 2 comparing 3 strings vs. 1*

- Recent analysis:
 - Confirms and extends 1984 results.
 - Plus, compares $gg\gamma$ to $q\bar{q}\gamma$ in bins of E_{γ} by tagging photons (compares 2 partons vs. 2, 1 string vs. 1):

Comparing Quark and Gluon Environments

Ryan Mitchell (Indiana University)Moriond QCD 2007Bottomonium and Charmonium at CLEO

Anti-Deuterons in Y(1S) Decays

PRD 75, 012009 (2007)

- CLEO observes an enhancement of anti-deuterons in Y(1S) decays.
- Use anti-deuterons to reduce backgrounds (and use deuterons as a cross check).
- Cleanly select anti-deuterons using dE/dx.
- We find:

$$\frac{B(Y(1S) \rightarrow ggg, gg\gamma \rightarrow \overline{d}X)}{B(Y(1S) \rightarrow ggg, gg\gamma \rightarrow X)} = (3.36 \pm 0.23 \pm 0.25) \times 10^{-5}$$

• Comparing to the continuum:

$$\sigma(e^+e^- \to \overline{d}X) < 0.031 pb \qquad \qquad \frac{\sigma(e^+e^- \to \overline{d}X)}{\sigma(e^+e^- \to hadrons)} < 1 \times 10^{-5}$$

• Theoretical models are based on "coalescence".

Ryan Mitchell (Indiana University)

II. Heavy Charmonium

Exciting times in charmonium spectroscopy.

Hybrids? Molecules? Four quark states?

- Y(4260)
- X(3872)
- ψ(3770)

Y(4260)

First observed by BaBar in Initial State Radiation (ISR) decaying to $\pi^+\pi^-J/\psi$.

Must have $J^{PC} = 1^{--}$.

But no convenient spot for it in conventional $c\overline{c}$ charmonium.

Is it a hybrid? $(c\overline{c}g?)$

CLEO-c e+e- energy scan:

- $J/\psi\pi^+\pi^-: J/\psi\pi^0\pi^0$ ratio favors isoscalar
- evidence for $J/\psi K^+K^-(3.7\sigma)$

X(3872)

New D⁰ Mass = $1864.847 \pm 0.150 \pm 0.095$ MeV

New mass difference = $M(X(3872)) - M(D^0) - M(D^{0*})$

$$= -0.6 \pm 0.6 \text{ MeV}$$

 \Rightarrow Coincidence is less likely.

$\psi(3770)$

- The radiative decays $\psi(3770) \rightarrow \gamma \chi_{cJ}$ reinforce its interpretation as the 1³D₁ state of charmonium.
- New CLEO measurements are in good agreement with *relativistic* calculations.

combined CLEO results

 $\mathbf{B}(\psi(3770) \rightarrow \gamma \chi_{cJ})$

		$\psi(3770) \rightarrow \gamma \chi_{cJ}$			
		J = 0	J = 1	J = 2	
B (%)		0.73 ± 0.09	0.29 ± 0.06	< 0.09	
Г (keV)		172 ± 30	70 ± 17	< 21	
Theory Γ predictions					
Rosner non-relativistic		523 ± 12	73 ± 9	24 ± 4	
Ding-Qin-Chao					
non-relativistic		312	95	3.6	
relativistic		199	72	3.0	
Eichten-Lane-Quigg					
non-relativistic		254	183	3.2	
coupled-channel		225	59	3.9	
Barnes-Godfrey-S	Swanson				
non-relativistic		403	125	4.9	
relativistic		213	77	3.3	

Ryan Mitchell (Indiana University)

Moriond QCD 2007

III. χ_c Decays to Light Mesons

- χ_{cJ} decays are:
 - Interesting in their own right;
 χ_{cJ} hadronic decays are not well known, in general.
 - A "controlled" source of light hadrons, complementary to other sources (e.g. J/ψ radiative decays).
 - Produced copiously (~9% BF's each) in the reaction: $e^+e^- \rightarrow \psi(2S) \rightarrow \gamma \chi_{cJ}$
- CLEO's new ~25M $\psi(2S)$ dataset is ready for analysis.

$\chi_c \rightarrow h^+h^-h^0$

PRD 75, 032002 (2007)

A selection of 3-body decays based on 3M $\psi(2S)$.

Many first observations.

 $\chi_{c1} \rightarrow \pi^+\pi^-\eta$, K+K- π^0 , and K_SK- π^+ have sufficient statistics for a substructure analysis.

Mode	χ_{c0}	χ_{c1}	X <i>c</i> 2
$\eta \pi^+ \pi^-$	< 0.021	$0.52 \pm .03 \pm .03 \pm .03$	$0.051 \pm .011 \pm .004 \pm .003$
η <i>Κ+Κ</i> -	< 0.024	$0.034 \pm .010 \pm .003 \pm .002$	< 0.033
η <i>p</i> p	$0.038 \pm .010 \pm .003 \pm .02$	< 0.015	$0.019 \pm .007 \pm .002 \pm .002$
$\eta' \pi^+ \pi^-$	< 0.038	0.24 \pm .03 \pm .02 \pm .02	< 0.053
$\pi^0 K^+ K^-$	< 0.006	$0.200\pm.015\pm.018\pm.014$	$0.032 \pm .007 \pm .002 \pm .002$
$\pi^0 p \overline{p}$	0.059 \pm .010 \pm .006 \pm .004	$0.014\pm.005\pm.001\pm.001$	0.045 \pm .007 \pm .004 \pm .003
$\overline{K}^{0}K^{+}\pi^{-}*$	< 0.010	0.84 \pm .05 \pm .06 \pm .05	0.15 \pm .02 \pm .01 \pm .01
	0.114 \pm .016 \pm .009 \pm .007	$0.034\pm.009\pm.003\pm.002$	$0.088 \pm .014 \pm .007 \pm .006$

* includes charge conjugate

Ryan Mitchell (Indiana University)

Moriond QCD 2007

Bottomonium and Charmonium at CLEO

$\chi_c \rightarrow h^+h^-h^0 (\pi^+\pi^-\eta)$

PRD 75, 032002 (2007)

Substructure in $\chi_{c1} \rightarrow \pi^+\pi^-\eta$

- Use a simple model of noninterfering resonances coming from a spin-1 parent. (this describes the dominant structure, but will be refined with more statistics).
- Find significant contributions from $a_0\pi$, $f_2\eta$, and $\sigma\eta$.
- No exotic structures apparent.

Ryan Mitchell (Indiana University)

 $\chi_c \rightarrow h^+h^-h^0 (K_S K^-\pi^+)$

PRD 75, 032002 (2007)

Substructure in $\chi_{c1} \rightarrow K_S K^- \pi^+$

- Use the same non-interfering resonance model.
- Simultaneously fit $K_SK^-\pi^+$, $K_SK^+\pi^-$, and $K^+K^-\pi^0$ using isospin constraints.
- Find significant contributions from $a_0\pi$, K*(892)K, K₂*(1430)K, and K₀*(1430)K.
- No exotic structures apparent.

$\chi_{c0} \rightarrow KK\pi\pi$ (BES)

- χ_{cJ} substructure analyses will soon move to full partial wave analyses.
- Example:
 - $\chi_{c0} \rightarrow KK\pi\pi$ is an excellent source of scalars (f_0) and tensors (f_2) .
 - This work was pioneered by BES.

 $f_0(1710)$

 $f_0(2200)$

60

(a)

Ryan Mitchell (Indiana University)

Moriond QCD 2007

Bottomonium and Charmonium at CLEO

f₀(980)

(b)

$\chi_{c0} \rightarrow KK\pi\pi$ (Building on BES)

LL CLEO-c $\psi(2S)$ data (~26M) in 6 KK $\pi\pi$ modes! Events / 5 MeV/c² 4000 K+K π+π-450 K+K-π⁰π⁰ Building on the BES results. 3500 400 350 3000E 300 2500 Use isospin constraints to 250 2000 200 1500 simultaneously fit 6 KK $\pi\pi$ 150 1000 100 modes. 500 50 3.35 3.35 3.45 3.4 3.45 3.6 3.4 3.55 3.6 3.5 3.55 Mass(KKππ) GeV/c² Mass(KKππ) GeV/c² Events / 5 MeV/c Events / 5 MeV/c 600 K·Ksπ+π⁰ <u>BES: 14M $\psi(2S)$ </u> 600 [↓] K+K_Sππ⁰ 500 500 F PRD72, 092002 (2005) 400E 400 EVENTS / 0.005GeV/c² 00 00 300 300F $K^+K^-\pi^+\pi^-$ 200 E 200 $(1371 \chi_{c0})$ 100 100 0 0[3.45 3.5 3.55 3.6 3.55 3.35 3.35 3.45 3.5 3.6 3.4 3.4 Mass(KKππ) GeV/c² Mass(KKππ) GeV/c² 140<u></u> Events / 5 MeV/c ⁸⁰⁰ K_SK_Sπ⁺π[−] Events / 5 MeV/c² KsKsn⁰n⁰ 700 | 120 600E 100F 500 E 80 **400** ⊨ 60 300E 0 200E 3.4 3.2 3.6 100 $M(\pi^{+}\pi^{-}K^{+}K^{-})$ (GeV/c²) 0 3.35 3.55 3.55 3.4 3.45 3.5 3.6 3.45 3.5 3.6 3.35 3.4 Mass(KKππ) GeV/c² Mass(KKππ) GeV/c²

Ryan Mitchell (Indiana University)

Moriond QCD 2007

Bottomonium and Charmonium at CLEO

"first look"

Summary

- The bottomonium and charmonium efforts at CLEO are very active, and span a very wide range...
 - Fragmentation in Upsilon decays.
 - Heavy Charmonium States.
 - Light Quark Dynamics.

• Many exciting results to come.