D Hadronic Analyses at CLEO-c

Mikhail Dubrovin *Wayne State University*

CLEO Collaboration

Moriond QCD 2007, March 18

CLEO-c data samples

- CLEO-c: Oct.2003 Apr.2008
- $\sqrt{s}=3100$ MeV, J/ ψ is excluded from CLEO-c run plan
- **3686MeV**, 54pb⁻¹, N(ψ (2S))≈29M (in talk of R. Mitchell), e⁺e⁻ → ψ (2S) → $\pi\pi$ J/ ψ , $\gamma\chi_{cJ}$,etc
- **3773MeV**, 281pb⁻¹ processed, \rightarrow 560pb⁻¹, e⁺e⁻ \rightarrow ψ (3770) \rightarrow DD \approx 4M
- 4170MeV, 195pb⁻¹ \rightarrow 314pb⁻¹ \rightarrow more \rightarrow ~750pb⁻¹, $D_{(s)}^{(*)}\underline{D}_{(s)}^{(*)}$
- **3970–4260MeV** energy scan, 60pb⁻¹ in12 points

Recent D hadronic results

Absolute D⁰, D⁺ hadronic ℬ's
e⁺e⁻→D_(s)^(*)D_(s)^(*) Production Cross Section
Absolute D_s hadronic ℬ's
D⁰ / D⁺ / D_s→ (η,η',φ)X, inclusive ℬ's
D⁰ mass measurement

- PRL 95, 121801 (2005) for 56pb⁻¹
- Now, update for 281pb⁻¹
- Technique pionered by MARK III, using
 - Single Tag yields $D \to i \text{ and } \overline{D} \to X$ $N_i = N_{D\overline{D}} \mathcal{B}_i \varepsilon_i$
 - $\succ \text{ Double Tag yields } D \to i \text{ and } \bar{D} \to \bar{j} \quad N_{i\bar{j}} = N_{D\bar{D}} \mathcal{B}_i \mathcal{B}_{\bar{j}} \varepsilon_{i\bar{j}}$

> Compute:

$$\mathcal{B}_i = \frac{N_{i\bar{j}}}{N_{\bar{j}}} \frac{\varepsilon_{\bar{j}}}{\varepsilon_{i\bar{j}}} \text{ and } N_{D\bar{D}} = \frac{N_i N_{\bar{j}}}{N_{i\bar{j}}} \frac{\varepsilon_{i\bar{j}}}{\varepsilon_i \varepsilon_{\bar{j}}}$$

Use
$$\chi^2$$
 fit to extract \mathcal{B}_i and N_{DD}

• Signal variables:

$$\Delta E = E_D - E_{beam}$$
$$M_{BC} = \sqrt{E_{beam}^2 - p_D^2}$$

 $\sigma(\Delta E) \sim 7-10$ MeV, $\times 2$ with π^0

 $\sigma(M_{BC}) \sim 1.3$ MeV, $\times 2$ with π^0

Mikhail Dubrovin WSU CLEO Moriond QCD-2007

2007/03/18

Mikhail Dubrovin WSU CLEO Moriond QCD-2007

0140107-005

- Single Tag yields
- Fit to:
 - ARGUS for bkg.
 - "First principles" for signal:
 - ■M_{BC} resolution
 ■ISR
 - **□**ψ(3770) BW

$$M_{BC} = \sqrt{E_{beam}^2 - p_D^2}$$

- Little change from 56pb⁻¹ results to 281pb⁻¹
 - Systematic errors dominate now
- Final State Radiation included in efficiency

> Without FSR in MC \mathcal{B} 's decrease \leq 2%

2007/03/18

Mikhail Dubrovin WSU CLEO Moriond QCD-2007

D_s Production Cross Section

Absolute D_s hadronic \mathcal{B} 's: selection

Absolute D_s hadronic \mathcal{B} 's

Absolute D_s hadronic \mathcal{B} 's, ST yields:

Absolute D_s hadronic \mathcal{B} 's

CLEO-c, 4170MeV, 195pb⁻¹

Preliminary

The $\phi\pi^+$ problem in $D_s \rightarrow K^-K^+\pi^+$

- Historically $D_s \rightarrow \phi \pi^+$ used for normalization
- The process $f_0(980) \rightarrow K^-K^+$ contribute to any $\phi \rightarrow K^-K^+$ mass region
- Correction depends on experiment's mass window, resolution, angular distribution requirements
- We produce partial K⁻K⁺ π^+ branching for 10 and 20 MeV mass windows on each side of the ϕ mass:

BF	Result (%)
\mathcal{B}_{10}	$1.98\pm0.12\pm0.09$
\mathcal{B}_{20}	$2.25\pm0.13\pm0.12$

14% difference

 Amplitude analysis is most appropriate to disentangle this problem...

 $D^0 / D^+ / D_s \rightarrow (\eta, \eta', \phi) X$

$D^0 / D^+ / D_s \rightarrow (\eta, \eta', \phi) X$

η' yields, use **Μ(η') – Μ(η)** : $\rightarrow K^+K^$ $ightarrow \pi^{ o} \pi^{ o} \eta, \eta$ Ф $D^0 \rightarrow \eta' X$ D+→ŋ'X $D_s \rightarrow \eta' X$ 1630906-050 120 (a) (a) ΔE signal region events/2 MeV 100 $\Delta M(Ds)$ signal region 80 60 20 40 # events/2 MeV 0.35 0.40 0.45 0.50 0.35 0.40 0.45 0.50 0.35 0.40 0.45 0.50 1630906-049 (b) **ΔE sidebands** 16 (C) ΔM(Ds) sidebands 12 20 HT 0.35 0.45 0.35 0.40 0.45 0.50 0.40 0.50 0.40 0.45 0.35 0.50 Mass Difference (GeV) WSU CLEO 2007/03/18 Mikhail Dubrovin Moriond QCD-2007 16

 $D^0 / D^+ / D_s \rightarrow (\eta, \eta', \phi) X$

•Momentum dependence:

• Inclusive \mathcal{B} and their ratios depends on ss quark content:

Mode	D^0 (%)		D^+ (%)		D_{s}^{+} (%)	
	Our result	PDG	Our result	PDG	Our result	PDG
ηX	$9.5 \pm 0.4 \pm 0.8$	<13	$6.3 \pm 0.5 \pm 0.5$	<13	$23.5 \pm 3.1 \pm 2.0$	• • •
$\eta' X$	$2.48 \pm 0.17 \pm 0.21$	• • •	$1.04 \pm 0.16 \pm 0.09$	•••	$8.7 \pm 1.9 \pm 0.8$	•••
ϕX	$1.05 \pm 0.08 \pm 0.07$	1.7 ± 0.8	$1.03 \pm 0.10 \pm 0.07$	<1.8	$16.1 \pm 1.2 \pm 1.1$	•••
Ratio	η		η'		ϕ	
$\overline{D_s^+/D^0}$	$2.47 \pm 0.34 \pm 0.18$		$3.51 \pm 0.80 \pm 0.27$		$15.3 \pm 1.6 \pm 0.8$	
D_s^+/D^+	$3.73 \pm 0.57 \pm 0.27$		$8.37 \pm 2.23 \pm 0.64$		$15.6 \pm 1.9 \pm 0.8$	

2007/03/18

Mikhail Dubrovin WSU CLEO Moriond QCD-2007

17

D⁰ mass measurement

Non covered D hadronic results and analyses

- Recently published
 - > PRD 74, 071102, 2006, Branching fraction for the DCSD $D^+ \rightarrow K^+ \pi^0$
 - > PRD 74, 031108, 2006, Measurement of Interfering K^*+K^- and K^*-K^+ Amplitudes in the Decay $D^0 \rightarrow K^-K^+\pi^0$

In progress

- \succ D⁰ / D⁺ / D_s hadronic branchings for SCSD and DCSD
- > The Quantum correlation analysis of the $D^0 D^0$ decays
- Dalitz plot analyses D⁺→π⁻π⁺π⁺, D⁺→K⁻π⁺π⁺, D_s⁺→K⁻K⁺π⁺, D⁰→K⁰_(S,L)π⁺π⁻, D⁰→K⁰_Sπ⁰π⁰, etc... with and without CP and flavor tags

Summary

- CLEO-c experiment: Oct.2003 Apr.2008 successfully taking data:
 - > 3686MeV, N(ψ(2S))≈29M, done
 - **3773MeV**, ψ (3770), N(ψ (3770)→D<u>D</u>)≈4M, done
 - ► **4170MeV**, $D_{(s)}^{(*)}\underline{D}_{(\underline{s})}^{(*)}$ 195pb⁻¹→314pb⁻¹→ get more
- Selected published and preliminary results on D⁰ / D⁺ / D_s production and hadronic decays are presented in this talk
- CLEO plan:
 - Collect more statistics @ 4170MeV
 - Process all data
 - Get more published results