Recent Charm Results from CLEO-c

XXI Rencontres de Physique de la Vallée d'Aoste La Thuile, Italy – March 4-10, 2007

CLEO-c Physics Program

The CLEO detector is taking data at the CESR symmetric e⁺e⁻ collider operating as a charm factory since 2003

Main physics scope:

- Provide important test and validation of strong interaction (QCD) theory in the charm sector
- Precise charm measurements are critical to extract weak physics from observables (precision CKM measurements)
- Other exciting physics possibilities (even search for new physics)

Testing the lattice at CLEO-c

LABORATORIES SLAC reorganizes for the future p.6 FRED HOYLE The life of a pioneer in nuclear astrophysics p 15 LAKE BAIKAL The next step towards higher energies p24

Selected topics

Very diverse physics topics at CLEO: D, D_s , $c\overline{c}$, $b\overline{b}$ etc.

• D^0 , D^+ , and D_s hadronic decays

- absolute BF are important to normalize D decays and for precision B measurements
- help to understand strong (final state) interactions better
- D⁺ and D_s purely leptonic decays and $f_{D(s)}$
 - test non-perturbative QCD (especially Lattice QCD) calculations of $f_{D(s)}$
 - helps to determine CKM matrix elements $|V_{td}|$, $|V_{ts}|$
- Spectroscopy: D⁰ mass and χ_{cJ} 3-body decays
 - help with interpretation of X(3872) charmonium-like state;
 - light meson spectroscopy

CLEO-c detector and data

Absolute Charm Meson Branching Fractions

D⁰ and D⁺ hadronic Branching Fractions PRL 95, 121801 (2005) with 56 pb⁻¹ DD data Preliminary results with 281 pb⁻¹ data presented here

D_s hadronic Branching Fractions Preliminary results with 195 pb⁻¹ D_s*D_s data: CLEO CONF 06-13 (hep-ex/0607079)

Tagging technique

• DD production at threshold:

no extra particles, low multiplicity, very clean final state

 Use tagging technique (pioneered by Mark III) to fully reconstruct one (single tag) or both (double tag) D greatly reduces combinatoric background

$e^+e^- \rightarrow \psi(3770) \rightarrow D\overline{D}$

 $D^+ \rightarrow K^- \pi^+ \pi^+ \quad D^- \rightarrow K^+ \pi^- \pi^-$

D⁰ and D⁺ absolute BF: method

D⁰ and D⁺ absolute BF: results

- Absolute BF's based on 56 pb⁻¹ data are published (and included in PDG06)
- Updating the results with 281 pb⁻¹

D_s absolute BF

D_s absolute BF

D_s absolute BF: results in 195 pb⁻¹

D⁺ and D_s leptonic decays and decay constants

 $D^+ \rightarrow \mu^+ \nu$ and f_D :

PRL 95, 251801 (2005): $D^+ \rightarrow \mu^+ \nu$ BF and $D^+ \rightarrow e^+ \nu$ UL PRD 73, 112005 (2006): $D^+ \rightarrow \tau^+ \nu$ UL with 281 pb⁻¹ DD data

 $D_s \rightarrow \mu^+ \nu$ and $\tau^+ (\pi^+ \nu) \nu$:

CLEO CONF 06-17 (hep-ex/0607074) with 195 pb⁻¹ Preliminary results with 314 pb⁻¹ D_s*D_s data

 $D_s \rightarrow \tau^+ (e^+ v v) v$:

Preliminary results with 195 $pb^{-1} D_s^* D_s$ data

$D_{(s)} \rightarrow \ell^+ \nu$: Motivation

 $V_{qq'}$: CKM matrix element (weak interaction)

 f_P : pseudoscalar decay constant (strong interaction between quarks)

n SM

- Measurement of f_{D(s)} help to calibrate and validate Lattice QCD
- Impact on heavy flavor physics to constrain the CKM matrix: validated (L)QCD can calculate $f_B(f_{Bs})$ to determine $|V_{td}| (|V_{ts}|)$ from $B^0(B_s)$ mixing (very hard to measure since B⁺ $\rightarrow \ell^+ \nu$ BF is very small and $|V_{ub}|$ has large, ~15%, uncertainty)
- New physics: relative decay rate to different lepton flavors can be modified by other particle contributions (e.g. Higgs)

$$D^{+} \rightarrow \ell^{+} v : \qquad \Gamma(e^{+} v) : \Gamma(\mu^{+} v) : \Gamma(\tau^{+} v) = 2.3 \times 10^{-5} : 1.0 : 2.7$$

$$D_{s} \rightarrow \ell^{+} v : \qquad \Gamma(e^{+} v) : \Gamma(\mu^{+} v) : \Gamma(\tau^{+} v) = 2.5 \times 10^{-5} : 1.0 : 9.7$$

Measurement of $D^+ \rightarrow \mu^+ \nu$ and f_D

e⁺e⁻ →ψ(3770)→D⁻D⁺

Tag side

Reconstruct D^- in six decay modes

Mode	Signal	
$K^+\pi^-\pi^-$	77387 ± 281	
$K^+ \pi^- \pi^- \pi^0$	24850 ± 214	
$K_S \pi^-$	11162 ± 136	
$K_S \pi^- \pi^- \pi^+$	18176 ± 225	
$K_S \pi^- \pi^0$	20244 ± 170	
$K^+K^-\pi^-$	6535 ± 95	
Sum	158354 ± 496	
30000 All six mod 20000 	les	5-004
1000 1.84 1.85 1	.86 1.87 1.88 m _{BC} (GeV	1.89

• A single muon candidate (E_{CC}<300 MeV)

• No extra track or shower with E_{CC} >250 MeV

Signal side

Calculate missing mass

$D_s \rightarrow \mu^+ \nu$ and $\tau^+ (\pi^+ \nu) \nu$ (1)

- At E_{cm} =4170 MeV: use $e^+e^- \rightarrow D_s^*D_s \rightarrow \gamma D_s D_s$ [B($D_s^* \rightarrow \gamma D_s$) \approx 94%]
- Reconstruct one D_s decaying into 8 hadronic modes (tag)
- Require an additional photon and calculate recoil mass against the γD_{s-tag}

$D_s \rightarrow \mu^+ \nu$ and $\tau^+ (\pi^+ \nu) \nu$ (2)

- Require one additional track and no extra shower in CC with > 300 MeV
- Calculate missing mass in the event to infer the neutrino(s):

$$MM^{2} = (E_{CM} - E_{D_{S}-tag} - E_{\gamma} - E_{\mu(\pi)})^{2} - (-p_{D_{S}-tag} - p_{\gamma} - p_{\mu})^{2}$$

 $D_s \rightarrow \mu^+ \nu$ and $\tau^+ (\pi^+ \nu) \nu$ (3)

 $D_{s} \rightarrow \tau^{+}(e^{+}vv)v$

• Complimentary analysis using $D_s \rightarrow \tau^+ \nu$, $\tau^+ \rightarrow e^+ \nu \nu$

 $B(D_s \rightarrow \tau^+ v)B(\tau^+ \rightarrow e^+ vv) \approx 1.3\%$ significant [compare to $B(D_s \rightarrow Xe^+ v) \approx 8\%$]

f_D and f_{Ds} : comparison with theory

• Summary of CLEO-c results:

 $f_D = (223 \pm 17 \pm 3) \text{ MeV}$

 f_{Ds} = (273 ± 10 ± 5) MeV

(*f*_{Ds} weighted average of the two methods - syst. error is mostly uncorrelated)

 $f_{Ds}/f_D = 1.22 \pm 0.09 \pm 0.03$

- Consistent with most models
- Statistically limited more data is on the way!
- Lattice QCD (unquenched) PRL 95, 122002 (2005):

 $f_D = (201 \pm 3 \pm 17) \text{ MeV}$

 f_{Ds} = (249 ± 3 ± 16) MeV

 $f_{Ds}/f_D = 1.24 \pm 0.01 \pm 0.07$

Ρ

systematics limited!

CLEO D _s $\rightarrow \mu\nu, \tau\nu$ ($\tau \rightarrow \pi\nu$) Final March07, 314/pb	Hei		
CLEO D _s →TV (T→0VV) prelim ICHEP 2006, 195/pb	₩	Artuso,	
CLEO average	Iei	HeH	H
	273 ± 10 ± 5	$223 \pm 17 \pm 3$	$1.22 \pm 0.09 \pm 0.03$
Unquenched LQCD Aubin, PRL 95, 122002 (2005)	HeH	HOH	⊢ →
Quenched L. (QCDSF) Ali Khan, hep-lat/0701015	HOH	H	101
Quenched L. (Taiwan) Chiu, PLB 624, 31 (2005)	HeH	HOH	нен
Quenched L. (UKQCD) Lellouch, PRD 64, 094501 (2001)	HeH	нөн	HOH
Quenched Lattice Becirevic, PRD 60, 074501 (1999)	Hei	Hel	
QCD Sum Rules Bordes, hep-ph/0507241	H H I	HeH	Hei
QCD Sum Rules Narison, hep-ph/0202200	HHH	HeH	Hei
Quark Model Ebert, PLB 635, 93 (2006)	•	•	•
Quark Model Cvetic, PLB 596, 84 (2004)	H •	H H H	•
Light Front QM Linear Choi, hep-ph/0701263	•	•	•
Light Front QM HO Choi, hep-ph/0701263	•	•	•
Potential Model Wang, Nucl. Phys. A744, 156 (2004)	•	•	•
Light Front QCD Salcedo, Braz. J. Phys. 34, 297 (2004)	•	•	•
Isospin Splittings Amundsen, PRD 47, 3059 (1993)			
	200 250 300	200 300	1 1.2 1
	f _{Ds} (MeV)	f _D (MeV)	f _{Ds} / f _D

0182

Spectroscopy

D⁰ mass measurement and X(3872) PRL 98, 092002 (2007) with 281 pb⁻¹ DD data

 $\chi_c \rightarrow h^+h^-h^0$ decays PRD 75, 032002 (2007) using 3 million ψ (2S) decays

Precise D⁰ mass measurement

 $\chi_c \rightarrow h^+ h^- h^0$ decays

• χ_{cJ} production from $\psi(2S)$ via radiative decay:

 $e^+e^- \rightarrow \psi(2S) \rightarrow \gamma \chi_{cJ} \quad (J=0,1,2)$

 $N[\psi(2S)] \approx 3M$ CLEO III+c

 $B[\psi(2S) \rightarrow \gamma \chi_{cJ}] \approx 9\%$ (for each J)

- Motivation for studying χ_{cJ} decay
 - Hadronic decays are not well known
 - Complimentary information on light hadrons and possible glueball dynamics (besides J/ψ and $\psi(2S)$ decays)

Study 8 exclusive 3-body final states – most of them are first observations:

~				$BF \times 10^{3}$
Mode	χ_{c0}	χ_{c1}	χ_{c2}	
$\pi^+\pi^-\eta$	< 0.21	$5.0 \pm 0.3 \pm 0.4 \pm 0.3$	$0.49 \pm 0.12 \pm 0.05 \pm 0.$	03
$K^+K^-\eta$	< 0.24	$0.34 \pm 0.10 \pm 0.03 \pm 0.02$	< 0.33	
$par{p}\eta$	$0.39 \pm 0.11 \pm 0.04 \pm 0.02$	< 0.16	$0.19 \pm 0.07 \pm 0.02 \pm 0.$	01
$\pi^+\pi^-\eta^\prime$	< 0.38	$2.4 \pm 0.4 \pm 0.2 \pm 0.2$	$0.51 \pm 0.18 \pm 0.05 \pm 0.$	03
$K^+K^-\pi^0$	< 0.06	$1.95 \pm 0.16 \pm 0.18 \pm 0.14$	$0.31 \pm 0.07 \pm 0.03 \pm 0.$	02
$par{p}\pi^0$	$0.59 \pm 0.10 \pm 0.07 \pm 0.03$	$0.12 \pm 0.05 \pm 0.01 \pm 0.01$	$0.44 \pm 0.08 \pm 0.04 \pm 0.$	03
$\pi^+ K^- \overline{K}^0$	< 0.10	$8.1 \pm 0.6 \pm 0.6 \pm 0.5$	$1.3 \pm 0.2 \pm 0.1 \pm 0.1$	
$K^+ \bar{p} \Lambda$	$1.07 \pm 0.17 \pm 0.10 \pm 0.06$	$0.33 \pm 0.09 \pm 0.03 \pm 0.02$	$0.85 \pm 0.14 \pm 0.08 \pm 0.$	06

$\chi_c \rightarrow h^+ h^- h^0$ decays

Statistics in $\chi_{c1} \rightarrow \pi^+ \pi^- \eta$, $K^+ K^- \pi^0$, $K_s K^- \pi^+$ sufficient for Dalitz analysis of resonant substructure (next two slides)

Dalitz analysis: $\chi_{c1} \rightarrow \pi^+ \pi^- \eta$

Dalitz analysis: $\chi_{c1} \rightarrow K^+ K^- \pi^0 / K_s K^- \pi^+$

(d)

m²(KK⁰_c) (GeV/c²)²

- Combined analysis (using isospin symmetry)
- Contributions from

K*(892)K , K*(1430)K , $a_0(980)\pi$

Mode	a_R	Fit fraction (%)
K*(892)K	1	$31.4 \pm 2.2 \pm 1.7$
$K_0^*(1430)K$	$3.8 \pm 0.4 \pm 0.2$	$30.4 \pm 3.5 \pm 3.7$
$K_{2}^{*}(1430)K$	$0.44 \pm 0.06 \pm 0.04$	$23.1 \pm 3.4 \pm 7.1$
$a_0(980)\pi$	$6.1 \pm 0.6 \pm 0.6$	$15.1 \pm 2.7 \pm 1.5$

- Additional KK or non-resonant component does not improve the fit
- Need more data to do a complete PW analysis including interference

Conclusion

- Worlds best measurement of $D_{(s)}$ absolute branching fractions aim to achieve ~4% for D_s decays with more data
- Worlds best D_(s) decay constants provide test of Lattice QCD (and other models) and probe beyond-SM physics
- $\psi(2S)$ as well as χ_c decays provide rich opportunity to study charmonium spectroscopy, decay mechanisms, and light hadrons

More data on the way: taking data until April 2008 Stay tuned for more results from CLEO-c!

Extra slides

Constraint on new physics from $D_{(s)} \rightarrow \ell v$

- Relative decay rate to leptons can be modified by factor r due to H⁺
- In MSSM the extra factor is (Akeroyd, hep-ph/0308260)

 $r = \left[1 - m_{D_q}^2 \mathbf{R}^2 \left(m_q / m_c\right)^2\right]^2$

160 160 Larger effect for D_s : $r \propto (m_a/m_c)$ CLEO-c Excluded CDF Run II Excluded 140 140 Our results LEP Excluded Theoretically inaccessible for CDF $\Gamma(D_{s}^{+} \rightarrow \tau^{+} \nu) / \Gamma(D_{s}^{+} \rightarrow \mu^{+} \nu) = 9.9 \pm 1.7 \pm 0.7$ 120 100 (GeV (SM = 9.72)100 $\Gamma(D^+ \rightarrow \tau^+ \nu) / \Gamma(D^+ \rightarrow \mu^+ \nu) < 4.77 (90\% cl)$ 80 80 (SM = 2.65)LEP (ALEPH, DELPHI, L3 and OPAL) Assuming $H^+ \rightarrow \tau v$ or $H^+ \rightarrow c \overline{s}$ only 60 60 r = Ratio/SM > 1 (Higgs: r < 1)</p> 10⁻¹ 10^{2} tan β ¹⁰ 1

where R=tan $\beta/m_{\rm H}$

Can set limit on $tan\beta$ vs. m_H plane but depends on theory – do not take seriously yet!

Dalitz plot formalizm

- Log likelihood:
- PDF:

$$\mathcal{L} = -2\sum_{n=1}^{N} \log PDF(x_n, y_n)$$
$$PDF(x, y) = \begin{cases} \varepsilon(x, y) \\ B(x, y) \\ fN_S |\mathcal{M}(x, y)|^2 \varepsilon(x, y) + (1 - f)N_B B(x, y) \end{cases}$$

• Matrix element: $|M|^2 = \sum_R |A_R|^2 \Omega_R^2$

non-interfering resonances

- Amplitude of each resonance contribution A_R :
 - Breit-Wigner parametrization with mass-dependent width (for narrow resonances)
 - Complex pole for S-wave (σ , κ): $1/(m_R^2 m^2)$
 - Flatte parametrization for $a_0(980)$:

$$\frac{1}{m_{~R}^2-m^2-i(g_{\eta\pi}^2\,\rho_{--}^{--}+g_{K\bar{K}}^2\rho_{K\bar{K}})}$$

• Angular distribution Ω_R :

from V. Filippini, A. Fontana, A. Rotondi, PRD 51, 2247 (1995)