HEAVY QUARK SPECTRA

CLEO (+ some other) results and prospects
Thanks to collaborators E. Eichten, S. Godfrey, H. Mahlke (hep-ph/0701208)

J. Rosner - University of Chicago - 12/10/07 at Fermilab Lattice Workshop

 Heavy quarks Q provide an exceptional window into tests of QCD: (1) Through perturbative description of $Q \bar{Q}$ decays;(2) As "nuclei" for $Q \bar{q}$ and $Q q q$ hadrons ($q=$ light quark u, d, s) where many interesting questions involve non-perturbative effects.

Many hadrons discovered recently require that one understand nearby thresholds: see Fano (1935), Wigner (1948), Feshbach (1958).

Hadron spectra often are crucial in separating electroweak physics from strong-interaction effects.

QCD may not be the only instance of important non-perturbative effects: Composite Higgs? Composite quarks/leptons??
Today's topics (with challenges to lattice QCD):
Charmed and beauty hadrons, heavy quarkonium ($c \bar{c}, b \bar{b}$), future

CHARMED STATES

Today: D^{0} mass and $X(3872)$; excited $D_{s J}$ and light quarks BaBar: $\Omega_{c}^{*} 70.8 \pm 1.0 \pm 1.1 \mathrm{MeV}$ above $\Omega_{c}: \sqrt{ }$ quark models

D^{0} MASS MEASUREMENT

Relevant to $X(3872)$ as possible $D^{0} \bar{D}^{* 0}+$ c.c. bound state or molecule $M\left(D^{0}\right)=1864.847 \pm 0.150 \pm 0.095 \mathrm{MeV}$ using $D^{0} \rightarrow \bar{K}^{0} \phi$ [C. Cawlfield et al. [CLEO], Phys. Rev. Lett. 98, 092002 (2007)] implies $M\left(D^{0} \bar{D}^{* 0}\right)=3871.81 \pm 0.36$ MeV , so $M(X)=3872.4 \pm 0.6 \mathrm{MeV}$ is $0.6 \pm 0.6 \mathrm{MeV}$ heavier. Bound state?

Belle saw $X(3872) \rightarrow \pi^{+} \pi^{-} J / \psi$ in $B \rightarrow K X(3872)$ (BaBar, CDF, D0, $\ldots \sqrt{ }$)

$J^{P C}=1^{++}$favored (angular dists.; $\rho J / \psi$ and $\omega J / \psi$ decays)
Could be S-wave bound state of $\left(D^{0} \bar{D}^{* 0}+\bar{D}^{0} D^{* 0}\right) / \sqrt{2} \sim c \bar{u} u \bar{c} ; c \bar{d} d \bar{c}$ channel closed. Decays to $\gamma J / \psi \Rightarrow$ some $c \bar{c}$ in wave function.

Can lattice QCD tell us about binding/molecular dynamics?

UNEXPECTEDLY LIGHT D_{s}

Two orbitally-excited $c \bar{s}$ mesons were lighter than expected (by most)
 j^{P} : light-quark angular momentum $\left(\overrightarrow{S_{q}}+\vec{L}\right)$, parity $D_{s 0}^{*}$ below $D K$ threshold; $D_{s 1}^{*}$ below $D^{*} K$ threshold Allows EM and I-violating transitions to dominate Low masses of $D_{s 0,1}^{*}$ suggested by chiral models as parity-doublets of $D_{s}^{(*)}$ ($\Delta M \simeq 350 \mathrm{MeV}$)
Bound states of $D^{(*)} K$?
$(c \bar{q})(q \bar{s}) \leftrightarrow(c \bar{s})$: Binding energy $\simeq 41 \mathrm{MeV}$; similarly for $\bar{B}^{(*)} K$?

EXCITED D_{s} AND D STATES

D_{s} state at 2708 MeV
Seen in $M\left(D^{0} K^{+}\right)$spectrum in $B^{0} \rightarrow \bar{D}^{0} D^{0} K^{+}$[Belle arXiv:0707.3491 for PRL]
$M=\left(2708 \pm 9_{-10}^{+11}\right) \mathrm{MeV} ; \Gamma=\left(108 \pm 23_{-31}^{+36}\right) \mathrm{MeV}$
$J^{P}=1^{-}, 596 \pm 14 \mathrm{MeV}$ above $D_{s}^{*}(2112)$ vs $\mathrm{M}(2 \mathrm{~S})-\mathrm{M}(1 \mathrm{~S})=681 \pm 20 \mathrm{MeV}$ for $s \bar{s}$ and 589 MeV for $c \bar{c}$: Good $c \bar{s}\left(2^{3} S_{1}\right)$ candidate. BaBar also sees similar state.
D_{s} state at 2857 MeV
Seen decaying to $D^{0} K^{+}$and $D^{+} K_{S}$ [BaBar PRL 97, 222201 (2006)]
$M=(2856.6 \pm 1.5 \pm 5.0) \mathrm{MeV} ; \Gamma=(48 \pm 7 \pm 10) \mathrm{MeV}$
Interpreted as first radial excitation of $D_{s 0}(2317)$ (shown) or $J^{P}=3^{-}\left({ }^{3} D_{3}\right)$ state

Excited charmed-nonstrange states

Established: $j^{P}=3 / 2^{+}$states (narrow); candidates: $j^{P}=1 / 2^{+}$states (broad)
Broad $J^{P}=1^{+}$candidates: CLEO, Belle in range $2420-2460 \mathrm{MeV}$ Broad $J^{P}=0^{+}$candidates: Belle, FOCUS in range $2300-2400 \mathrm{MeV}$

What can lattice say about radial, orbital excitations?

BEAUTY HADRONS

CLEO: O. Aquines et al., PRL 96, 152001: $\Rightarrow B_{s}^{*}-B_{s}=45.9 \pm 1.2 \mathrm{MeV}$ Almost same as $B^{*}-B=45.78 \pm 0.35 \mathrm{MeV}$: Can lattice explain this?

$Q \bar{Q}$ CLEO/LATTICE ISSUES

CHARMONIUM STATUS

Spectroscopy of states above $D \bar{D}$ threshold is making progress. Even though states can decay to charm pairs in some cases, other modes are being seen.

BES, CLEO: specific $\chi_{c J}, \psi(2 S)$ decays including wealth of multi-body modes

DECAY $\psi(2 S) \rightarrow \gamma \eta_{c}$

CLEO is studying exclusive and inclusive $\psi(2 S) \rightarrow \gamma \eta_{c}$

Exclusive:

Inclusive:

Measure $\mathcal{B}\left[\psi(2 S) \rightarrow \gamma \eta_{c}\right]=(4.02 \pm 0.11 \pm 0.52) \times 10^{-3}$ (preliminary)
Unusual η_{c} line shape: enhancement at large E_{γ}. Can lattice reproduce this?

h_{c} OBSERVATION

Hyperfine splittings test spin-dependence and spatial behavior of $Q \bar{Q}$ force S-wave ΔM 's: $M(J / \psi)-M\left(\eta_{c}\right) \simeq 115 \mathrm{MeV}(1 \mathrm{~S}), M\left(\psi^{\prime}\right)-M\left(\eta_{c}^{\prime}\right) \simeq 49 \mathrm{MeV}(2 \mathrm{~S})$. Expect \leq few MeV P-wave splittings (Coulombic vector $c \bar{c}$ interaction; $\sqrt{ }$ lattice)

CLEO: Observation in $\psi(2 S) \rightarrow \pi^{0} h_{c}$, $h_{c} \rightarrow \gamma \eta_{c}$) [PRL 95, 102003 (2005);
PRD 72, 092004 (2005)]
Inclusive, exclusive analyses saw a signal near $\left\langle M\left({ }^{3} P_{J}\right)\right\rangle=3525.36 \pm 0.06 \mathrm{MeV} / c^{2}$

Exclusive analysis reconstructed η_{c} in 7 decay modes ($\sim 10 \%$ of all η_{c} decays)

Inclusive: No η_{c} reconstruction: better statistics but more background

Small P-wave ΔM favored local $\nabla^{2} V_{V}(r)$

EXCLUSIVE h_{c} SIGNAL

19 candidates identified; 17.5 ± 4.5 events above background.
Excl.+incl.: $M\left(h_{c}\right)=(3524.4 \pm 0.6 \pm 0.4) \mathrm{MeV}, \mathcal{B}_{1} \mathcal{B}_{2}=(4.0 \pm 0.8 \pm 0.7) \times 10^{-4}$
Mass was $(1.0 \pm 0.6 \pm 0.4) \mathrm{MeV}$ below $\left\langle M\left({ }^{3} P_{J}\right)\right\rangle ; \mathcal{B}_{1} \mathcal{B}_{2} \sqrt{ }$ theory $\left(10^{-3} \cdot 0.4\right)$

NEW h_{c} RESULTS

Earlier results were based on $3 \mathrm{M} \psi(2 S)$; now 24.5 M additional

Inclusive:

Exclusive (18 modes):

New results confirm negligible $\left\langle{ }^{3} P_{J}\right\rangle-h_{c}$ splitting
Inclusive process yields product of branching ratios (preliminary) $\mathcal{B}\left[\psi(2 S) \rightarrow \pi^{0} h_{c}\right] \mathcal{B}\left[h_{c} \rightarrow \gamma \eta_{c}\right]=(3.96 \pm 0.41 \pm 0.55) \times 10^{-4}$

Y(4260): HYBRID?

BaBar: $\mathrm{Y}(4260)$ in radiative return to $\pi^{+} \pi^{-} J / \psi$: PRL 95, 142001 (2005).
CLEO (Q. He +, PR D 74, 091104), Belle (PRL 99, 182004): $\sqrt{ }$ radiative return

CLEO evidence for $Y(4260)$ in direct scan:
 $\pi^{0} \pi^{0} J / \psi(5.1 \sigma), K^{+} K^{-} J / \psi(3.7 \sigma)$
$\psi(4160) \rightarrow \pi^{+} \pi^{-} J / \psi(3.6 \sigma)$, $\pi^{0} \pi^{0} J / \psi(2.6 \sigma)$, consistent with $Y(4260)$ tail
$\psi(4040) \rightarrow \pi^{+} \pi^{-} J / \psi(3.3 \sigma)$
T. E. Coan +, PRL 96, 162003: $\pi^{0} \pi^{0} J / \psi$: not $\rho^{0} J / \psi$ molecule Small ΔR : not likely 4 S state
$c q \bar{c} \bar{q}$ also proposed; how to tell from hybrid $c \bar{c} g$?

$Y(4260)$ SIGNALS

If $Y(4260)$ is a hybrid ($c \bar{c}+$ gluon), one expects it to couple to $D \bar{D}_{1}+$ c.c., where D_{1} is a P-wave $c \bar{q}$ pair. Dip in $R_{e^{+} e^{-}}$just below threshold!
$D \bar{D}_{1}$ threshold is $\sim 4287 \mathrm{MeV}: Y(4260)$ a $D \bar{D}_{1}\left(\rightarrow D \pi \bar{D}^{*}\right)$ "molecule"?
B. Lang [for CLEO], arXiv:0710.0165: No $D \pi \bar{D}^{*}$ enhancement at 4260 MeV

DIP IN R AT 4250 MeV

Dip is just below threshold of lowestmass charmed meson pair $D^{0} \bar{D}_{1}^{*}$ produced in an S-wave.
(Lower thresholds: P-wave production.)
This channel is the expected decay of $Y(4260)$ if it is a hybrid. But it is closed, so other modes (such as $\pi \pi J / \psi)$ may be favored instead.

Many other dips are correlated with thresholds [e.g., in $\pi \pi$ S-wave near $2 M(K) ; \gamma^{*} \rightarrow 6 \pi$ near $2 M(p)$; see PR D 74, 076006 (2006).]

Dip in $e^{+} e^{-} \rightarrow D^{*} \bar{D}^{*}$ (major charm channel) [Belle PRL 98, 092001] at 4250 MeV
$Y(4320) \rightarrow \pi^{+} \pi^{-} \psi(2 S)$ [BaBar PRL 98, 212001]: $\mathrm{M}=4324 \pm 24, \Gamma=172 \pm 33 \mathrm{MeV}$
Υ STATES

Masses $\sqrt{ }$ unquenched lattice QCD [G. P. Lepage, Ann. Phys. 315, 193 (2005)]. Transitions $\chi_{b}(2 P) \rightarrow \pi \pi \chi_{b}(1 P)$ [PR D 73, 012003 (2006)]. Lattice: rates? BaBar, PRL 96, 232001 (2006): $\Gamma\left[\Upsilon(4 S) \rightarrow \pi^{+} \pi^{-} \Upsilon(1 S)\right]=(1.8 \pm 0.4) \mathrm{keV}$; $\Gamma\left[\Upsilon(4 S) \rightarrow \pi^{+} \pi^{-} \Upsilon(2 S)\right]=(1.7 \pm 0.5) \mathrm{KeV}$ with CLEO $\mathcal{B}_{\mu \mu}(2 S)\left[M_{\pi \pi}\right.$: camel]
Belle, hep-ex/0512034: $\mathcal{B}\left[\Upsilon(4 S) \rightarrow \pi^{+} \pi^{-} \Upsilon(1 S)\right]=(1.1 \pm 0.2 \pm 0.4) \times 10^{-4}$

$M(\pi \pi)$ SPECTRA (CLEO)
 PR D 76, 072001 (2007)

Typical spectra in $\psi(2 S) \rightarrow \pi \pi J / \psi, \Upsilon(2 S) \rightarrow \pi \pi \Upsilon(1 S)$ are peaked at high $M(\pi \pi)$
This has usually been ascribed to an "Adler zero" associated with couplings of soft pions to other matter with factors p_{π} / f_{π} which vanish as $p_{\pi} \rightarrow 0$.

However, $M(\pi \pi)$ spectrum in $\Upsilon(3 S) \rightarrow \pi \pi \Upsilon(1 S)$ has a double-hump ("camel") structure. Nodes in wave functions; coupled channels?

This appears to be so for $\Upsilon(4 S) \rightarrow \pi \pi \Upsilon(2 S)$ whereas $\Upsilon(4 S) \rightarrow \pi \pi \Upsilon(1 S)$ spectrum peaks at high $M(\pi \pi)$. $\Upsilon(5 S) \rightarrow \pi \pi(1 S, 2 S, 3 S), K \bar{K} 1 S$: Belle, arXiv:0710.2517

CLEO Υ REMEASUREMENTS ${ }^{1822}$

New $\mathcal{B}\left(\Upsilon(n S) \rightarrow \mu^{+} \mu^{-}\right)$[PRL 94, 012001]; $\Gamma_{e e}(n S)$ values [PRL 96, 092003] agree with lattice ratios (absolute values?); lead to lower $\Gamma_{\text {tot }}(2 S, 3 S)$:

State	$B_{\mu \mu}(\%)$	$\Gamma_{e e}(\mathrm{keV})$	$\Gamma_{\text {tot }}(\mathrm{keV})$
$\Upsilon(1 S)$	$2.49 \pm 0.02 \pm 0.07$	$1.354 \pm 0.004 \pm 0.020$	$54.4 \pm 0.2 \pm 0.8 \pm 1.6$
$\Upsilon(2 S)$	$2.03 \pm 0.03 \pm 0.08$	$0.619 \pm 0.004 \pm 0.010$	$30.5 \pm 0.2 \pm 0.5 \pm 1.3$
$\Upsilon(3 S)$	$2.39 \pm 0.07 \pm 0.10$	$0.446 \pm 0.004 \pm 0.007$	$18.6 \pm 0.2 \pm 0.3 \pm 0.9$

Potential models do better with $\Gamma_{e e}$ ratios than with absolute values
Combine with new $\Upsilon(2 S, 3 S) \rightarrow \gamma \chi_{b J}(1 P, 2 P)$ branching ratios [CLEO, PRL 94, 032001] for E1 transition rates (a); vs. NR prediction of PR D 38, 3179 (b):

	$\Gamma(\mathrm{keV}), 2 S \rightarrow 1 P_{J}$ transitions		$\Gamma(\mathrm{keV}), 3 S \rightarrow 2 P_{J}$ transitions			
	$J=0$	$J=1$	$J=2$	$J=0$	$J=1$	$J=2$
(a)	1.14 ± 0.16	2.11 ± 0.16	2.21 ± 0.16	1.26 ± 0.14	2.71 ± 0.20	2.95 ± 0.21
$(\mathrm{~b})$	1.39	2.18	2.14	1.65	2.52	2.78

$J=0$ suppression 10-20\% agrees with relativistic predictions [PR D 28, 1132; ibid. 28, 1692]; can lattice calculate such effects?
$\Gamma\left(3 S \rightarrow 1 P_{0}\right)=64 \pm 23 \mathrm{eV}, 9 \times$ prediction: less suppressed than anticipated.

$$
\Upsilon(2 S) \rightarrow\left(\eta, \pi^{0}\right) \Upsilon(1 S)
$$

Using scaling laws $\Gamma \sim\left(p^{*}\right)^{3} / m_{Q}^{4}$, Yan 1980, Kuang 2006 predict

$$
R^{\prime} \equiv \frac{\Gamma[\Upsilon(2 S) \rightarrow \eta \Upsilon(1, S)]}{\Gamma[\psi(2 S) \rightarrow \eta J / \psi(1 S)]}=0.0025, \quad R^{\prime \prime} \equiv \frac{\Gamma[\Upsilon(3 S) \rightarrow \eta \Upsilon(1, S)]}{\Gamma[\psi(2 S) \rightarrow \eta J / \psi(1 S)]}=0.0013,
$$

$$
\mathcal{B}[\Upsilon(2 S, 3 S) \rightarrow \eta \Upsilon(1 S)]=(8.1 \pm 0.8,6.7 \pm 0.7) \times 10^{-4}
$$

Data (CLEO preliminary):

Rate $\simeq 1 / 4$ of Yan/Kuang prediction. $\mathcal{B}\left[\Upsilon(2 S) \rightarrow \pi^{0} \Upsilon(1 S)\right]<1.6 \times 10^{-4}$

$b \bar{b}$ SPIN SINGLETS

No $b \bar{b}$ spin-singlets have been seen yet.
Lattice: predict (i) hyperfine splittings and rates for (ii) allowed M1 transitions; (iii) forbidden M1 transitions; (iv) hadronic transitions (many listed below)
Expect $1 \mathrm{~S}, 2 \mathrm{~S}, 3 \mathrm{~S}$ hyperfine splittings to be approximately $60,30,20 \mathrm{MeV}$; Lowest P-wave singlet state (" h_{b} ") expected to be near $\left\langle M\left(1^{3} P_{J}\right)\right\rangle \simeq 9900 \mathrm{MeV} / c^{2}$
Several searches have been performed or are under way in 1S, 2S, 3S CLEO data
Searches for $\eta_{b}(n S)$
Direct search using allowed (soft) M1 photon in $\Upsilon(1 S) \rightarrow \gamma \eta_{b}(1 S)$: Reconstruct exclusive final states in $\eta_{b}(1 S)$ decays. Likely to be high-multiplicity.
Searches for suppressed M1 photons in $\Upsilon\left(n^{\prime} S\right) \rightarrow \gamma \eta_{b}(n S)\left(n \neq n^{\prime}\right)$
η_{b} searches using sequential processes $\Upsilon(3 S) \rightarrow \pi^{0} h_{b}\left(1^{1} P_{1}\right) \rightarrow \pi^{0} \gamma \eta_{b}(1 S)$,
$\Upsilon(3 S) \rightarrow \gamma \chi_{b 0}^{\prime} \rightarrow \gamma \eta \eta_{b}(1 S)$, and $\Upsilon(3 S) \rightarrow \omega \eta_{b}(1 S)$
Additional searches for h_{b}
$\Upsilon(3 S) \rightarrow \pi^{+} \pi^{-} h_{b}$ [typical upper bound $\mathcal{O}\left(10^{-3}\right)$], possible $h_{b} \rightarrow \gamma \eta_{b}(40 \%)$.

FUTURE PROSPECTS

CLEO has about $800 \mathrm{pb}^{-1}$ at 3770 MeV and hopes to have $650 \mathrm{pb}^{-1}$ at 4170 MeV by end of running in March 2008
24.5 million $\psi(2 S)$ (about 8 times the previous CLEO sample) were collected in summer 2006; analyses of $21 \mathrm{M} \Upsilon(1 S)$, $9 \mathrm{M} \Upsilon(2 S)$, $6 \mathrm{M} \Upsilon(3 S)$ still in progress.

Belle has taken $2.9 \mathrm{fb}^{-1}$ of data at $\Upsilon(3 S)$ for "invisible" decays of $\Upsilon(1 S)$ [CLEO search] tagged via $\Upsilon(3 S) \rightarrow \pi^{+} \pi^{-} \Upsilon(1 S)$ but potentially valuable for spectroscopy. BaBar is considering a 3 S run. CLEO has $(1.1,1.2,1.2) \mathrm{fb}^{-1}$ at $1 \mathrm{~S}, 2 \mathrm{~S}, 3 \mathrm{~S}$.

Spectroscopy at $\psi(2 S)$ bears further rich promise:

- M2/E1 ratios in $\chi_{c 1,2} \rightarrow \gamma J / \psi \Rightarrow$ charmed quark magnetic moment
- Exclusive χ_{c} decays: potentially fertile ground for hybrids, glueballs
- One (tagged via $\pi^{+} \pi^{-}$) J / ψ decay for every 4-5 $\psi(2 S)$: Simultaneously study exclusive decays of J / ψ and $\psi(2 S)$ to same final states, guard against kinematic reflections.

Hadron spectroscopy is providing both long-awaited states like h_{c} and surprises like low-lying P -wave D_{s} mesons and $c \bar{c}$ states with light-quark admixtures like X(3872).

Many states are more understandable when light-quark degrees of freedom are included. Evidence for molecules, 3S, 2P, 4S or hybrid charmonium, interesting decays of states above flavor threshold.

QCD may not be the only strongly coupled theory with which we have to deal. Electroweak symmetry breaking or quark/lepton structure may require related techniques.

Although lattice QCD probably cannot say much, a big gap in our understanding is how heavy hadrons fragment to multiparticle states. For example, how does η_{b} decay?

Lattice gauge theories will have to cope with interplay of light- and heavy-quark degrees of freedom to satisfactorily describe the variety of phenomena in heavy quark spectra. Progress in unquenched lattice QCD is a good sign that this effort is under way.

$$
\psi^{\prime \prime}(3770) \text { DECAYS }
$$

Cross sections (nb) for charm production at $\psi^{\prime \prime}(3770)$:

Collaboration	$\sigma\left(D^{+} D^{-}\right)$	$\sigma\left(D^{0} D^{0}\right)$	$\sigma(D D)$
BES-II	$2.56 \pm 0.08 \pm 0.26$	$3.58 \pm 0.09 \pm 0.31$	$6.14 \pm 0.12 \pm 0.50$
CLEO	$2.79 \pm 0.07_{-0.04}^{+0.10}$	$3.60 \pm 0.07_{-0.05}^{+0.07}$	$6.39 \pm 0.10_{-0.08}^{+0.17}$
Mark III	2.1 ± 0.3	2.9 ± 0.4	5.0 ± 0.5

$\sigma\left(\psi^{\prime \prime}\right)$ seemed $>\Sigma(D \bar{D})$ [see also BES, PL B641, 145 and PRL 97, 121801]; CLEO [PRL 96, 092002] says $\sigma\left(\psi^{\prime \prime}\right)=\left(6.38 \pm 0.08_{-0.30}^{+0.41}\right) \mathrm{nb} \simeq \sigma(D \bar{D})$.
$\psi^{\prime \prime} \rightarrow X J / \psi:$ CLEO, PRL: $\quad \psi^{\prime \prime} \rightarrow \gamma \chi_{c J}$ partial widths:

$\psi^{\prime \prime}$ mode	$\mathcal{B}(\%)$	Mode	Predicted (keV)			CLEO (PRD
$\pi^{+} \pi^{-} J / \psi$	$0.189 \pm 0.020 \pm 0.020$		(a)	(b)	(c)	$\mathbf{7 4}, 031106)$
$\pi^{0} \pi^{0} J / \psi$	$0.080 \pm 0.025 \pm 0.016$	$\gamma \chi_{c 2}$	3.2	3.9	24 ± 4	<21
$\eta J / \psi$	$0.087 \pm 0.033 \pm 0.022$	$\gamma \chi_{c 1}$	183	59	73 ± 9	75 ± 18
$\pi^{0} J / \psi$	<0.028	$\gamma \chi_{c 0}$	254	225	523 ± 12	172 ± 30

Eichten-Lane-Quigg PR D 69: (a) without, (b) with coupling to open channels; (c): JLR, Ann. Phys. 319, 1 (2005). Non- $D \bar{D}$ modes at most a percent or two: negative exclusive searches [Yelton; PR D 73, 012002; PRL 96, 032003 (2006)]

$\Upsilon(5 S)$ TRANSITIONS (BELLE)

Rates are much greater than anticipated; role of open channels?

