The $h_c(1^1P_1)$ State of Charmonium

Kamal K. Seth
Northwestern University, Evanston, IL 60201, USA

(on behalf of the CLEO Collaboration)

QWG 2007 DESY Oct. 17–20, 2007

Introduction

ullet The spin-independent potential for qar q onia is well-represented as

$$V(r) = \frac{4}{3}\alpha_S \frac{1}{r} + kr$$

The Coulombic, 1/r, part is of course a Lorentz vector. The confinement, kr, part is generally **assumed** to be Lorentz scalar.

- The spin-dependent potential is not so well modeled. A Breit-Fermi reduction of the Coulombic part leads to a spin-orbit $\vec{L} \cdot \vec{S}$, a tensor, T_{12} , and a spin-spin $\vec{s_1} \cdot \vec{s_2}$ part, which is in the lowest order a contact or a delta function interaction, finite for L=0, and zero for $L\neq 0$. No long-range spin-dependent part arises from the scalar confinement potential.
- As we know from textbooks, in the quark model, the ground state masses of hadrons depend only on quark masses and the hyperfine $\vec{s}_1 \cdot \vec{s}_2$ interaction. The hyperfine interaction is all-important. It gives rise to the splitting of spin—singlet and spin—triplet, or

$$\Delta M_{hf}(nL) \equiv M(n^3L - n^1L)$$

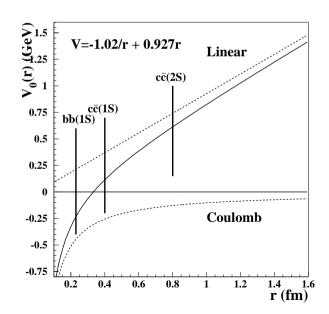
Introduction, cont'd

According to the potential model described above

$$\Delta M_{hf}(1S,2S,...) = ext{finite}, \quad \Delta M_{hf}(1P,2P,...) = 0$$

Of course, we do not know how the hyperfine interaction, and the consequent ΔM_{hf} changes with quark mass, or for radial excitations (different n), or the radius of the meson, as the potential changes from being dominated by the Coulombic or confinement parts.

- We also do not know if the simple prediction $\Delta M_{hf}(L \neq 0) = 0$, based on the rather adhoc assumptions, is true.
- ullet To answer these questions, we need to measure as many different ΔM_{hf} , singlettriplet splittings, as possible. Since the triplet quarkonium states are generally well-studied, the job amounts to identifying the spin-singlet states.



Spin Singlets—What is Known

The bound charmonium singlets are $\eta_c(1^1S_0)$, $\eta'_c(2^1S_0)$, and $h_c(1^1P_1)$.

 \bullet $\eta_c(1^1S_0)$ was firmly identified at SLAC about 30 years ago, and we know that

$$\Delta M_{hf}(1S) \equiv M(J/\psi) - M(\eta_c) = 117.1 \pm 1.2 \; {
m MeV}$$

ullet In 2004, after many false starts $\eta_c'(2^1S_0)$ was identified by Belle, CLEO, and BaBar, and PDG07 lists its average mass as 3637 ± 4 MeV, so that

$$\Delta M_{hf}(2S) \equiv M(\psi') - M(\eta'_c) = 49 \pm 4 \; \mathrm{MeV}$$

Some claims to the contrary, the factor 2.4 smaller 2S hyperfine splitting came as a surprise. Of course, **post**dictions abound.

The unavoidable lesson is that hyperfine splittings can present surprises.

• This makes it imperative to find $h_c(^1P_1)$ and measure its mass with precision. This has now been done.

The Search for $h_c(1^1P_1)$

• The $p\bar{p}$ measurements by the Fermilab experiments E760/E835 have determined the masses of the triplet P states χ_{cJ} with great precision, so that their centroid is

$$\langle M(\chi_{cJ}) \rangle = (5M(\chi_{c2}) + 3M(\chi_{c1}) + M(\chi_{c0}))/9 = 3525.4 \pm 0.1 \text{ MeV}$$

• If we assume that

$$M(^{3}P) = \langle M(\chi_{cJ}) \rangle$$
, as determined above,

the prediction that $\Delta M_{hf}(1P) = 0$ would **imply** $M(h_c) = 3525.4$ MeV.

- Let us go and find it.
- ullet In 1982 Crystal Ball failed in the search for h_c in the reaction

$$\psi(2S) \to \pi^0 h_c, \ h_c \to \gamma \eta_c.$$

• In 1992 Fermilab E760 studied the reaction $p\bar{p} \to h_c \to \pi^0 J/\psi$ and claimed the observation of a signal for h_c . However, higher luminosity runs in 1996 and 2000 failed to confirm this observation.

The Search for $h_c(1^1P_1)$, cont'd

• In 2005, Fermilab E835 searched for h_c in their 1996/2000 data in the reaction $p\bar{p}\to h_c\to\gamma\eta_c$, and reported

$$\Delta M_{hf}(1P) = -0.4 \pm 0.2 \pm 0.2 \text{ MeV}$$

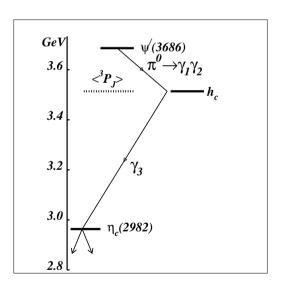
with 13 counts, and a significance of the h_c signal at $\sim 3\sigma$ level.

• In 2005, CLEO reported a 6σ identification of h_c with 3.08 million $\psi(2S)$ in the reaction

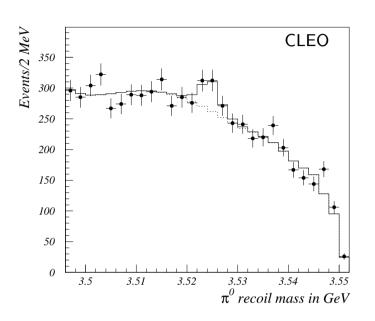
$$\psi(2S) \to \pi^0 h_c, h_c \to \gamma_3 \eta_c, \pi^0 \to \gamma_1 \gamma_2$$

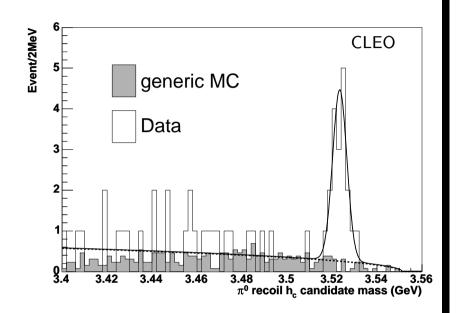
Inclusive analyses were made by loosely constraining either $E(\gamma_3)$ or $M(\eta_c)$. Exclusive analysis was made with no constraints on $E(\gamma_3)$ or $M(\eta_c)$, but by reconstructed η_c in several hadronic decays. Consistent results were obtained.

ullet The present report is the result of a similar analysis of CLEO-c data with **24.5 million** $\psi(2S)$.



The Published CLEO Results (PRL 95, 102003 (2005))





INCLUSIVE, N(evt)=150 \pm 40, 3.8 σ The combined results are

EXCLUSIVE, N(evt)= 17.5 ± 4.5 , 5.2σ

$$\mathcal{B}(\psi'(2S) \to \pi^0 h_c) \times \mathcal{B}(h_c \to \gamma \eta_c) = (4.0 \pm 0.8 \pm 0.7) \ 10^{-4}, \ 6\sigma$$
 $M(h_c) = 3524.4 \pm 0.6 \pm 0.4 \ MeV, \ using \langle M(\chi_{cJ}) \rangle = 3525.4 \pm 0.1 \ MeV$

$$\Delta M_{hf}(1P) = \langle M(\chi_{cJ}) \rangle - M(h_c) = +1.0 \pm 0.6 \pm 0.4 \ MeV$$

- Conclusion: The simple pQCD expectation, $\Delta M_{hf}(1P)=0$, is not strongly violated.
- \bullet The magnitude and sign of ΔM_{hf} are not well determined.

The New Results For h_c

The CLEO-c data for 24.5 million $\psi(2S)$ has been analyzed for the reaction

$$\psi(2S) \to \pi^0 h_c, \quad h_c \to \gamma \eta_c, \quad \pi^0 \to \gamma \gamma$$

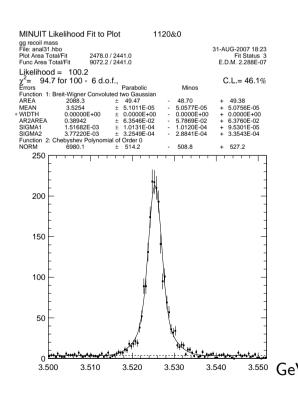
The event selection criteria were the same as in our published paper.

- $N(showers) \ge 3$, $N(tracks) \ge 2$
- CLEO standard criteria for good showers and tracks
- Reject $\pi^+\pi^-$ and $\pi^0\pi^0$ transitions to J/ψ
- For inclusive analysis, accept hard γ (E1 gamma $h_c \to \eta_c$) only with $E_{\gamma}(\text{hard}) = 503 \pm 35 \text{ MeV}.$
- For exclusive analysis, put no restriction on E_{γ} (hard), but reconstruct η_c decays to hadrons.
- Reconstruct $\pi^0 \to \gamma \gamma$, and analyze spectra for recoil against π^0

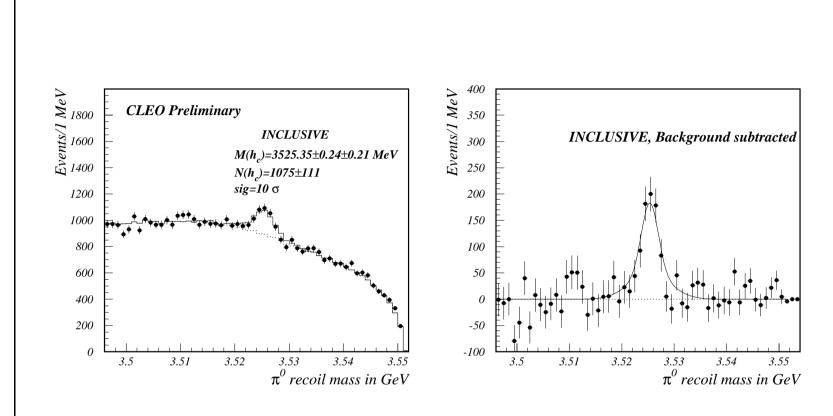
Oct. 18, 2007 DESY **INCLUSIVE ANALYSIS**

Inclusive Analysis

To analyze the inclusive spectrum of π^0 recoils in the $\psi(2S) \to \pi^0 h_c$, $h_c \to \gamma \eta_c$ it is required to model the background and the signal peak.



- Background Shape: To determine the background shape, we use the π^0 recoil spectrum from the data itself, when the requirement $E_{\gamma}=503\pm35$ MeV for the E1 photon is not applied. This recoil spectrum is essentially all background because the product branching fraction for the h_c production and decay is $\sim 10^{-4}$.
- Peak Shape: The experimental resolution function was determined by Monte Carlo simulation of the reaction. Its shape was fitted with a double Gaussian and convoluted with an **assumed** Breit-Wigner width of $\Gamma(h_c)=0.9$ MeV to fit the observed signal in the data.



Inclusive Analysis: $N(h_c) = 1075 \pm 111$, significance= 10σ $M(h_c) = 3525.35 \pm 0.24$ MeV $\mathcal{B}_1(\psi(2S) \to \pi^0 h_c) \times \mathcal{B}_2(h_c \to \gamma \eta_c) = (3.95 \pm 0.41) \times 10^{-4}$

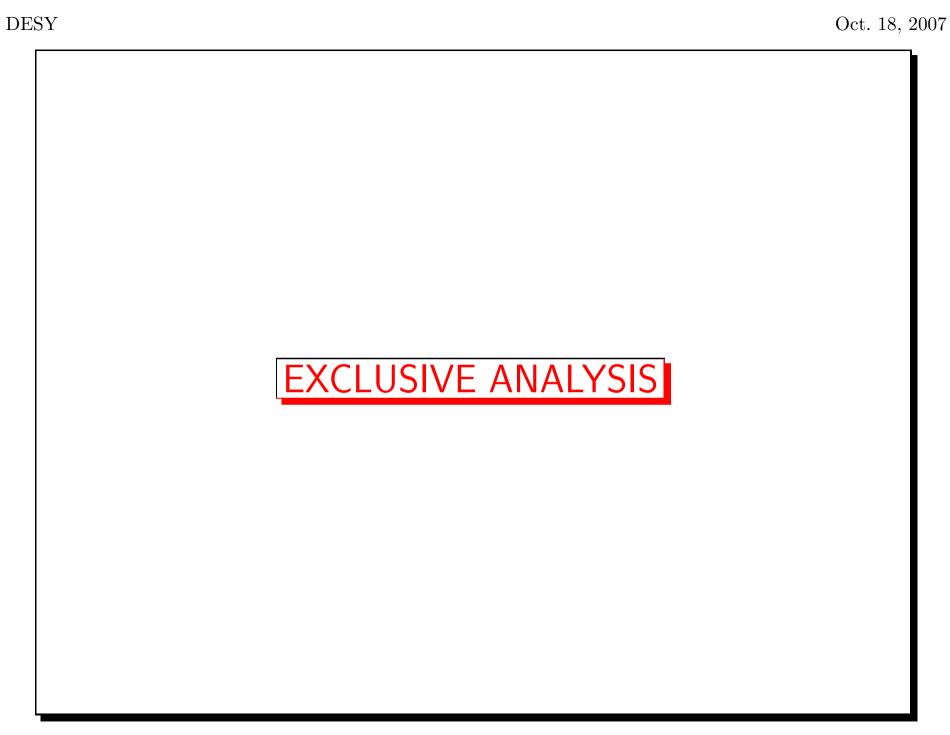
Inclusive Analysis, Summary of Systematic Errors

Systematics in	$M(h_c)$ – MeV	$B_1 \times B_2 \times 10^4$
Background shape	0.10	0.26
π^0 energy scale	0.08	_
Event selection	0.14	0.31
Monte Carlo Input/Output	0.06	_
Signal shape	0.03	0.14
h_c width	0.03	0.27
Binning, fitting range	0.03	0.08
Efficiency	_	0.20
Sum in quadrature	0.21	0.55

Inclusive Analysis Results

CLEO Preliminary

$$24.5 imes 10^6 \ \psi'$$
 $N(h_c)$ 1075 ± 111
Significance 10σ
 $M(h_c)$, MeV $3525.35 \pm 0.24 \pm 0.21$
 $B_1 imes B_2$ $(3.95 \pm 0.41 \pm 0.55) imes 10^{-4}$



Exclusive Analysis

In the exclusive analysis, instead of constraining E_{γ} of the photon candidate from the decay $h_c \to \gamma \eta_c$, 18 η_c hadronic decay channels were reconstructed.

$$\psi' \to \pi^0 h_c, h_c \to \gamma \eta_c, \eta_c \to \text{hadrons}$$

- 2 body: one channel, $p\bar{p}$
- 3 body: 9 channels, $\eta \pi^+ \pi^- (\eta \to \gamma \gamma)$, $\eta \pi^+ \pi^- (\eta \to \pi^+ \pi^- \pi^0)$, $K_S K^+ \pi^-$, $K^+ K^- \pi^0$, $K_S K_S \pi^0$, $\eta K^+ K^- (\eta \to \gamma \gamma)$, $\eta K^+ K^- (\eta \to \pi^+ \pi^- \pi^0)$, $p \bar{p} \pi^0$, $p \bar{p} \eta$
- **4** body: 5 channels, $\pi^+\pi^-\pi^+\pi^-$, $\pi^+\pi^-\pi^0\pi^0$, $K^+K^-\pi^+\pi^-$, $K^+K^-K^+K^-$, $p\bar{p}\pi^+\pi^-$
- 6 body: 3 channels, $\pi^+\pi^-\pi^+\pi^-\pi^+\pi^-$, $\pi^+\pi^-\pi^+\pi^-\pi^0\pi^0$, $K^+K^-\pi^+\pi^-\pi^+\pi^-$

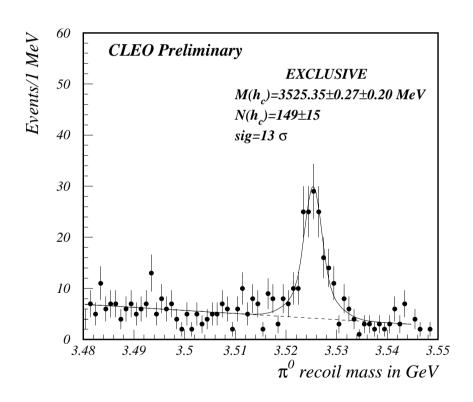
Exclusive Analysis, selection criteria

- The charged π^+/π^- were selected using $\sigma(dE/dx,\pi)<4$.
- The charged K^+/K^- were selected using $\sigma(dE/dx,K) < \sigma(dE/dx,\pi)$, and $\sigma(dE/dx,K) < \sigma(dE/dx,p)$. We also used RICH information, if it was available.
- The protons/antiprotons were selected using $\sigma(dE/dx,p) < \sigma(dE/dx,\pi)$, and $\sigma(dE/dx,p) < \sigma(dE/dx,K)$. We also used RICH information, if it was available.

A four-constraint kinematic fit of the events was done, with $\chi^2(4C) < 15$

The invariant mass of η_c decay candidates was required to be within ± 30 MeV of the nominal η_c mass of 2980 MeV.

Recoiling Mass Against π^0 for sum of all η_c decay channels



Fit to the data was done using a Breit-Wigner with Γ =0.9 MeV convoluted with the experimental resolution function for signal plus a linear background.

 $N(h_c) = 149 \pm 15$, significance= 13σ $M(h_c) = 3525.35 \pm 0.27$ MeV

Exclusive Analysis, Systematic Errors

Systematic errors in exclusive analysis have been obtained using the same procedures which we use in inclusive analysis.

Systematics in	$M(h_c)$ – MeV
π^0 energy scale	0.08
Event Selection	0.13
Monte Carlo Input/Output	0.11
Background shape	0.01
Signal shape	0.01
h_c width	0.01
Binning, fitting range	0.08
Sum in quadrature	0.20

Exclusive Analysis Results

CLEO Preliminary

24.5
$$imes$$
10 $^6~\psi'$

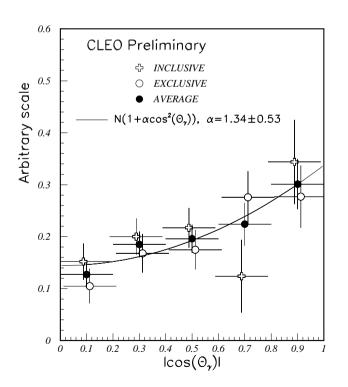
$$N(h_c) 149 \pm 15$$

Significance 13.1σ

 $M(h_c)$, MeV 3525.35 $\pm 0.27 \pm 0.20$

Angular Distributions from Inclusive and Exclusive Analyses

The angular distributions of the E1 photon in both inclusive and exclusive analysis were obtained by fitting separately the h_c peak in the different angular ranges. The exclusive events were removed from the inclusive sample to enable averaging the two results.



Fit to $N(1 + \alpha \cos^2 \theta)$ gave:

$$\alpha_{incl} = 0.87 \pm 0.65$$

$$\alpha_{excl} = 1.89 \pm 0.94$$

$$\alpha_{average}$$
=1.34±0.53

which are consistent with $\alpha = 1$ expected

for an E1 transition from

$$h_c(J^{PC}=1^{+-})$$
 to $\eta_c(J^{PC}=0^{--})$.

SUMMARY

We have analyzed the new ψ' data with estimated $\sim 24.5 \times 10^6~\psi'$ events, for $\psi' \to \pi^0 h_c \to (\gamma \gamma)(\gamma \eta_c)$.

CLEO Preliminary, 24.5 $ imes$ 10 6 ψ'		Published, $3{ imes}10^6~\psi'$
Inclusive, $N(h_c)$	1075 ± 111	140 ± 40
Significance	10.0σ	3.8σ
$M(h_c)$, MeV	$3525.35 \pm 0.24 \pm 0.21$	$3524.9 \pm 0.7 \pm 0.4$
$B_1 \times B_2 \times 10^4$	$3.96 \pm 0.41 \pm 0.55$	$3.5{\pm}1.0{\pm}0.7$
Exclusive, $N(h_c)$	149 ± 15	17.5 ± 4.5
Significance	13.1σ	5.2σ
$M(h_c)$, MeV	$3525.35 \pm 0.27 \pm 0.20$	$3523.6 \pm 0.9 \pm 0.5$

Average for 24.5×10⁶ ψ' : $M(h_c)$ (Incl+Excl)=3525.35±0.19±0.15 MeV.

Exclusive sample events were removed from the inclusive events before averaging.

Common contributions to systematics errors were not averaged.

The angular distribution of the photon is determined to be $1 + \alpha \cos^2 \theta$, $\alpha = 1.3 \pm 0.5$, consistent with its E1 nature.

DISCUSSION

• In the lowest order, when the spin-orbit splitting is perturbatively small

$$M(^{3}P) = \langle M(^{3}P_{J}) \rangle = [5M(^{3}P_{2}) + 3M(^{3}P_{1}) + M(^{3}P_{0})]/9 = 3525.4 \pm 0.1 \text{ MeV (PDG)}$$

Our determination of

$$M(h_c) = 3525.35 \pm 0.19 \pm 0.15 \text{ MeV}$$

leads to

$$\Delta M_{hf}(1P) = -0.05 \pm 0.19 \pm 0.16 \; \mathrm{MeV}$$

which is consistent with the lowest order expectation that $\Delta M_{hf}(1P) = 0$.

ullet It has been pointed out (mainly by A. Martin and J. M. Richard) that the $\vec{L}\cdot\vec{S}$ splitting with $M(\chi_{c2})-M(\chi_{c0})=141$ MeV can hardly be considered perturbatively small.

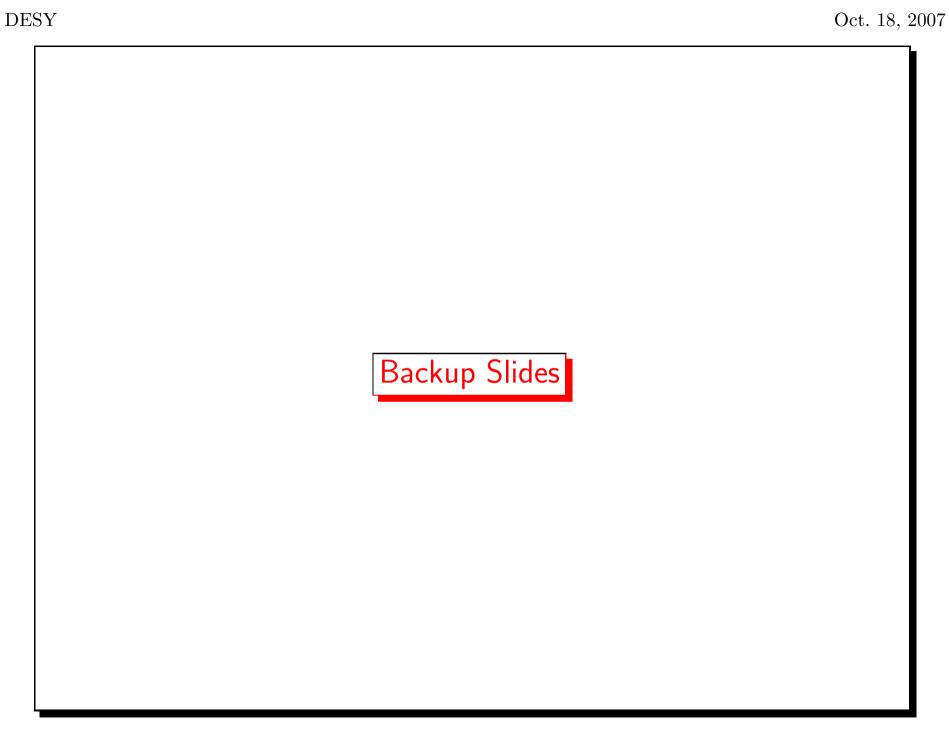
The triplet mass $M(^3P)$ should not be equated with the average obtained above, but should be obtained by turning off the $\vec{L}\cdot\vec{S}$ and tensor parts in the potential model calculations.

DISCUSSION, cont'd

ullet At our request, T. Barnes (priv. comm.) has done so, and obtains $M(^3P)=3516$ MeV, whereas in the same calculation, $\langle M(^3P_J) \rangle=3525$ MeV. This corresponds to the true prediction of the calculation being

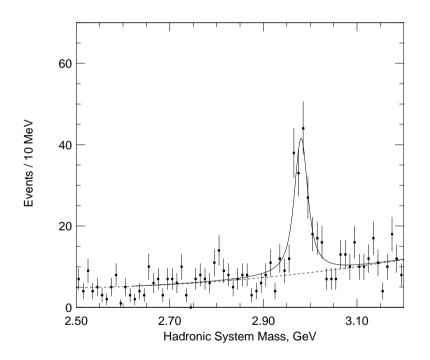
$$\Delta M_{hf}(1P) = -9 \text{ MeV}, \text{ not } = 0$$

- Admittedly, the result from these potential model calculations depend very much on how the hyperfine contact interaction (?) is regularized in order to use it in a Schroedinger equation. Nevertheless, caution should be exercised in interpreting our result as confirming the perturbative prediction, $\Delta M_{hf}(1P)=0$.
- ullet We can only hope that this problem can be resolved one day by lattice calculations of sufficient precision. The presently available lattice results have stated errors $\gtrsim \pm 20$ MeV in all masses.



Exclusive Analysis, Hadronic system mass

CLEO Preliminary

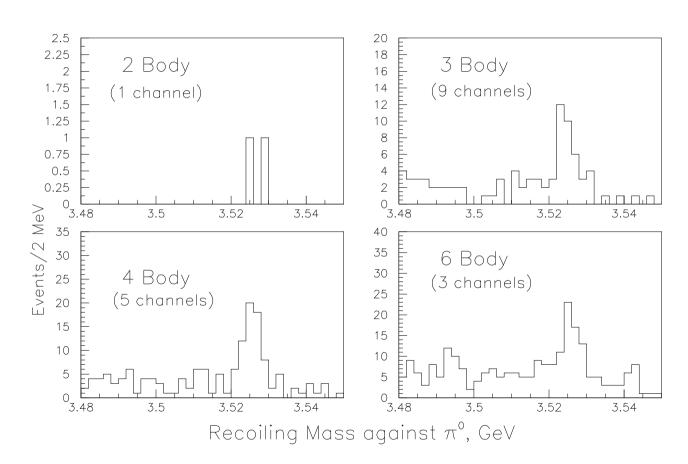


Mass of the hadronic system for sum of 18 exclusive channels for events with recoil mass against π^0 in range of h_c mass of 3525 \pm 5 MeV.

The fit gave $M(\eta_c) = 2981 \pm 2 \text{(stat)}$ MeV.

π^0 Recoil Mass Spectra for Different Multiplicities

CLEO Preliminary



The sum of these spectra is used for the fit for $M(h_c)$.