

on behalf of the CLEO Collaboration

- $e^{+} e^{-} \rightarrow$ hadrons allows us to explore the point couplings of a virtual γ with $\mathrm{J}^{P C}=1^{--}$final states
- Similarities of I+|- \& qq production mechanism

$$
R(s)=\sigma_{0}\left(e^{+} e^{-} \rightarrow \text { hadrons }\right) / \sigma_{0}\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}\right)
$$

- Initially used to measure quark charges \& \# flavors
- Later seen to signal the presence of the strong interaction

$$
R(s)=R_{0}\left[1+C_{1} \frac{\alpha_{s}(s)}{\pi}+C_{2}\left(\frac{\alpha_{s}(s)}{\pi}\right)^{2}+C_{3}\left(\frac{\alpha_{s}(s)}{\pi}\right)^{3}+O\left(\alpha_{s}^{4}(s)\right)\right]
$$

with $C_{1}=1, C_{2}=1.525, \& C_{3}=-11.686$
We can measure α_{s} and Λ

- BUT: $R \Rightarrow$ most precise values of α_{s} and Λ, but it is nevertheless still considered a pillar of $e^{+} e^{-}$physics.
© Will present CLEO III R results for $E_{c m}=7-10 \mathrm{GeV}$
B. Heltsley QWG5@DESY, Oct 20, 2007
© But R is also necessary for hadronic vacuum polarization, dispersion integrals (e.g. for g-2), \& ISR modeling
- Needed at all energies, including where there is structure
© Will present R for $E_{c m}=3.97-4.26 \mathrm{MeV}$
© Will also provide exclusive \& inclusive open charm decomposition (2-body \& multi-body)
- Compare to predictions from Eichten et al. [PRD 21, 203, 1980] involve coupling of open $\mathrm{cq} \overline{\bar{c}} \overline{\bar{c}}$ channels to $\bar{c} \bar{c}$ states, so called "coupled channel model." New predictions based on updated masses are now available with more modern theoretical inputs to come soon.
- Compare to postdictions of Dubynskiy \& Voloshin [Mod. Phys. Lett. A21, 2779 (2006)]
- Use CLEO III "continuum" points just below $\Upsilon(4 S), \Upsilon(3 S), r(2 S), \Upsilon(1 S)$ as well as 3 lower energies
© Evaluate energy-dependent efficiencies
oRemove $e^{+} e^{-} \rightarrow e^{+} e^{-}+$hadrons (" $2 \gamma^{\prime \prime}$) bgd
©Reduce \& correct for $\tau^{+} \tau^{-}$production
- Correct for tails of narrow resonances
- Make radiative corrections
o Evaluate systematic errors
©Paper accepted by PRD: D. Besson et al. arXiv:0706.2813 [hep-ex]
B. Heltsley QWG5@DESY, Oct 20, 2007

Suppress backgrounds by cutting loosely around the edges
B. Heltsley QWG5@DESY, Oct 20, 2007

Errors given in \%

Energy (GeV)	10.538	10.330	9.996	9.432	8.380	7.380	6.964	
Luminosity	1.00	1.10	1.10	1.10	0.90	0.90	1.00	Sources
Trigger	0.09	0.09	0.11	0.08	0.12	0.13	0.19	
Radiative	1.00	1.00	1.00	1.00	1.00	1.00	1.00	of
Correction								error
Multiplicity	1.06	1.38	0.99	0.84	0.43	0.38	0.38	sprea
Correction								spread
Event	1.51	1.09	1.31	1.31	1.05	1.02	0.79	around
selection (Incl. bgd)								
Total	2.32	2.30	2.21	2.15	1.76	1.74	1.68	$\sim 2 \%$
Common	1.87	1.67	1.85	1.87	1.62	1.64	1.58	
Uncorrelated	1.37	1.59	1.22	1.05	0.70	0.57	0.55	Mostly common

B. Heltsley QWG5@DESY, Oct 20, 2007

© α_{s} is determined at each energy point

- Naïvely determine Λ using 4-quark flavors
- Using our average value for Λ, we find

$$
\alpha_{s}\left(M_{Z}^{2}\right)=0.126 \pm \underbrace{0.005_{-0.011}^{+0.015}}_{\sim 10 \%}, \quad \Lambda=0.31_{-0.08-0.21}^{+0.09+0.29} \mathrm{GeV}
$$

- Compared with World Averages from Bethke [Prog.Part.Nucl.Phys. 58 (2007) 351]

$$
\alpha_{\mathrm{s}}\left(M_{Z}^{2}\right)=0.1189 \pm 0.0010, \quad \Lambda=0.29 \pm 0.04 \mathrm{GeV}
$$

© Kühn, Steinhauser, \& Teubner (arXiv:0707.2589 [hep-ph]) (see talk 1 hour ago) include quark mass effects \& different matching between 4 \& 5 flavor effective theories

- They find
$\alpha_{s}\left(M_{Z}^{2}\right)=0.110_{-0.012-0.011}^{-0.010+0.010}, \quad \Lambda=0.13_{-0.07-0.07}^{+0.11+0.11} \mathrm{GeV}$
compared to the naive 4-quark method:

$$
\alpha_{s}\left(M_{Z}^{2}\right)=0.126 \pm 0.005_{-0.011}^{+0.015}, \quad \Lambda=0.31_{-0.08-0.21}^{+0.09+0.29} \mathrm{GeV}
$$

which is larger by 0.016 , or $\sim 1 \sigma_{m s m t}$

Cross section as a function of E_{cm} from the 2005 PDG

- No theoretical predictions for

 multi-body.- No evidence of $\bar{D} \bar{\pi} \pi$ in this region - Turns on above 4.3 GeV via $\mathrm{DD}_{2}{ }^{*}$ (Belle, arXiv:0708.3313 [hep-ex]) [see next session]

Eichten et al.

E. Eichten, International Workshop on Heavy Quarkonium (BNL 2006) and private communication

- Most noticeable difference in $D^{*} \bar{D}^{*}$ channel.
© Reasonable qualitative agreement.
© Model of Dubynskiy \& Voloshin [Mod. Phys. Lett. A21, 2779 (2006)]
© Express exclusive channels in terms of dimensionless R_{k}
- Parametrize R_{k} in terms of expected threshold behavior \& relative production rates in the presence of a $\psi(4040)$

©Fit to CLEO data: one large deviation near D*D* threshold OThis model needs interference with a new narrow

Mode

$$
\begin{aligned}
& \mathrm{Y}(4260) \rightarrow X \\
& \mathrm{Y}(4260) \rightarrow \pi^{+} \pi^{-} \mathrm{J} / \psi \\
& \text { <4.0 } \\
& \text { Upper limits } \\
& \text { @90\%CL }
\end{aligned}
$$

$D^{*} \bar{D}^{*} \pi$
<8.2
$D_{S}{ }^{+} D_{S}-$
$D_{s}{ }^{*}+D_{s}{ }^{-}$
$D_{s}{ }^{*+} D_{s}{ }^{*-}$

© Precise R measured for $E_{c m}=6.96-10.54 \mathrm{GeV}$

- Region of no structure as expected
- Most precise; removes any doubts about old Mark I points
- Determines $\alpha_{s}\left(M_{z}{ }^{2}\right)$ with $\sim 10 \%$ uncertainty
- Consistent with world average w/other methods
- Determination also depends, at $\sim 10 \%$ level, on method of tying together 4 \& 5 flavor regimes
© Exclusive \& inclusive charm for $\mathrm{E}_{C M}=3.97-4.26 \mathrm{GeV}$
- Region of many thresholds \& much structure!
- We have exclusively deconstructed its composition
- This deconstruction is useful input for model builders
- Precision of R is improved at these 13 points
- Multi-body production of open charm measured for $1^{\text {st }}$ time - Yes D*D π but no DD π below 4.3 GeV . Model post-dictions?
© Should lead to a better understanding of QCD

Backup Slides

o Require good quality tracks \& showers oLoose event cuts: very high eff for signal
$\left.\begin{array}{ccc}\hline\left|Z_{\text {vertex }}\right| & <6.0 \mathrm{~cm} & \text { Suppress beam gas } \\ E_{\text {vis }} / 2 E_{\text {beam }} & >0.5 \\ \left|P_{\mathrm{z}}^{\text {miss }} / E_{\text {vis }}\right| & <0.3\end{array}\right\}$ Suppress 2γ \& beam gas bgd

B. Heltsley QWG5@DESY, Oct 20, 2007

Modes	Branching Fraction
D^{0} decay mode	
$K^{-} \pi^{+}$	$3.91 \pm 0.12 \%$
$K^{-} \pi^{+} \pi^{0}$	$14.94 \pm 0.56 \%$
$K^{-} \pi^{+} \pi^{+} \pi^{-}$	$8.29 \pm 0.36 \%$
D^{+}decay mode	
$K^{-} \pi^{+} \pi^{+}$	$9.52 \pm 0.37 \%$
$K^{-} \pi^{+} \pi^{+} \pi^{0}$	$6.04 \pm 0.28 \%$
$K_{s} \pi^{+}$	$1.55 \pm 0.08 \%$
$K_{s} \pi^{+} \pi^{0}$	$7.17 \pm 0.43 \%$
$K_{s} \pi^{+} \pi^{-} \pi^{+}$	$3.2 \pm 0.19 \%$
$K^{+} K^{-} \pi^{+}$	$0.97 \pm 0.06 \%$

Modes	Branching Fraction
$\phi \pi^{+}, 10 \mathrm{MeV}$ cut on the Invariant $\phi \rightarrow K^{+} K^{-}$Mass $[16]$	1.98 ± 0.15
$K^{* 0} K^{+}, K^{* 0} \rightarrow K^{-} \pi^{-}[1]$	2.2 ± 0.6
$\eta \pi^{+}, \eta \rightarrow \gamma \gamma[1,16]$	0.58 ± 0.07
$\eta \rho^{+}, \eta \rightarrow \gamma \gamma, \rho^{+} \rightarrow \pi^{+} \pi^{0}[1]$	4.3 ± 1.2
$\eta^{\prime} \pi^{+}, \eta \rightarrow \pi^{\prime} \pi^{-} \eta, \eta \rightarrow \gamma \gamma[1,16]$	0.7 ± 0.01
$\eta^{\prime} \rho^{+}, \eta^{\prime} \rightarrow \pi^{+} \pi^{-} \eta, \eta \rightarrow \gamma \gamma, \rho^{+} \rightarrow \pi^{+} \pi^{0}[1]$	1.8 ± 0.5
$\phi \rho^{+}, \phi \rightarrow K^{+} K^{-}, \rho^{+} \rightarrow \pi^{+} \pi^{0}[1]$	3.4 ± 1.2
$K_{s} K^{+}, K_{s} \rightarrow \pi^{+} \pi^{-}[1,16]$	1.0 ± 0.07

Reconstruct $D^{0} \rightarrow K^{-} \pi^{+}$

Discrepancy between exclusive rate and total

