

R Measurements at CLEO

Brian Heltsley

on behalf of the CLEO Collaboration

Why Measure R? Qu

• e^e^ →hadrons allows us to explore the point couplings of a virtual γ with $J^{PC}=1^{--}$ final states

- Similarities of I+I- & qq production mechanism

0

$$R(s) = \sigma_0(e^+e^- \rightarrow \text{hadrons}) / \sigma_0(e^+e^- \rightarrow \mu^+\mu^-)$$

- Initially used to measure quark charges & # flavors

- Later seen to signal the presence of the strong interaction

$$R(s) = R_0 \left[1 + C_1 \frac{\alpha_s(s)}{\pi} + C_2 \left(\frac{\alpha_s(s)}{\pi} \right)^2 + C_3 \left(\frac{\alpha_s(s)}{\pi} \right)^3 + O(\alpha_s^4(s)) \right]$$

with C₁=1, C₂=1.525, & C₃=-11.686 We can measure α_s and Λ
BUT: R⇒ most precise values of α_s and Λ, but it is nevertheless still considered a pillar of e⁺e⁻ physics.
Will present CLEO III R results for E_{cm} = 7-10 GeV

- But R is also necessary for hadronic vacuum polarization, dispersion integrals (e.g. for g-2), & ISR modeling
 - Needed at all energies, including where there is structure
- Will present R for $E_{cm} = 3.97 4.26$ MeV
- Will also provide exclusive & inclusive open charm decomposition (2-body & multi-body)
 - Compare to predictions from Eichten et al. [PRD 21, 203, 1980] involve coupling of open cq \overline{cq} channels to $c\overline{c}$ states, so called "coupled channel model." New predictions based on updated masses are now available with more modern theoretical inputs to come soon.
 - Compare to postdictions of Dubynskiy & Voloshin
 [Mod. Phys. Lett. A21, 2779 (2006)]

\sim **R for E_{cm}=7-10 GeV**

•Use CLEO III "continuum" points just below $\Upsilon(4S)$, $\Upsilon(3S)$, $\Upsilon(2S)$, $\Upsilon(1S)$ as well as 3 lower energies Evaluate energy-dependent efficiencies • Remove $e^+e^- \rightarrow e^+e^- + hadrons$ ("2 γ ") bgd • Reduce & correct for $\tau^+\tau^-$ production Correct for tails of narrow resonances Make radiative corrections Evaluate systematic errors Paper accepted by PRD: D. Besson et al. arXiv:0706.2813 [hep-ex]

Selection Variables

Errors given in %

Energy (GeV)	10.538	10.330	9.996	9.432	8.380	7.380	6.964	
Luminosity	1.00	1.10	1.10	1.10	0.90	0.90	1.00	Courses
Trigger	0.09	0.09	0.11	0.08	0.12	0.13	0.19	Sources
Radiative	1.00	1.00	1.00	1.00	1.00	1.00	1.00	of
Correction								error
Multiplicity	1.06	1.38	0.99	0.84	0.43	0.38	0.38	
Correction								spread
Event	1.51	1.09	1.31	1.31	1.05	1.02	0.79	around
selection (Incl. $% \left({{\left[{{{\rm{Ncl}}} \right]}_{{\rm{Ncl}}}} \right)$	bgd)							
Total	2.32	2.30	2.21	2.15	1.76	1.74	1.68	~2%
Common	1.87	1.67	1.85	1.87	1.62	1.64	1.58	
Uncorrelated	1.37	1.59	1.22	1.05	0.70	0.57	0.55	Mostly common

CLEO R Results

Comparison with other R Measurements

Φ α_s is determined at each energy point
 Naïvely determine Λ using 4-quark flavors
 Using our average value for Λ, we find

$$\alpha_s \left(M_Z^2 \right) = 0.126 \pm 0.005_{-0.011}^{+0.015}, \quad \Lambda = 0.31_{-0.08}^{+0.09} \text{ GeV}$$

~10%
Compared with World Averages from
Bethke [Prog.Part.Nucl.Phys. 58 (2007) 351]
 $\alpha_s \left(M_Z^2 \right) = 0.1189 \pm 0.0010, \quad \Lambda = 0.29 \pm 0.04 \text{ GeV}$

Alternative α_s Extraction

Kühn, Steinhauser, & Teubner (arXiv:0707.2589 [hep-ph]) (see talk 1 hour ago) include quark mass effects & different matching between 4 & 5 flavor effective theories

• They find $\alpha_s(M_Z^2) = 0.110_{-0.012}^{-0.010} + 0.010$, $\Lambda = 0.13_{-0.07}^{+0.11} + 0.11$ GeV

compared to the naïve 4-quark method:

$$\alpha_s \left(M_Z^2 \right) = 0.126 \pm 0.005^{+0.015}_{-0.011}, \quad \Lambda = 0.31^{+0.09}_{-0.08} + 0.029_{-0.021} \text{ GeV}$$

which is larger by 0.016, or ~1 σ_{msmt}

Open Charm Threshold Region

Momentum Spectra

Do NOT recontruct D*; instead use D <u>momentum</u> <u>spectrum</u>.

2-body production shows up as peaks &/or Dopplersmeared peaks

Example at right: D⁰→K⁻π⁺ momentum spectrum after D⁰-sideband subtraction

Exclusive Cross Sections

- No theoretical predictions for multi-body.
- No evidence of $D\overline{D}\pi$ in this region
 - Turns on above 4.3 GeV via DD₂*
 (Belle, arXiv:0708.3313 [hep-ex])
 [see next session]

E. Eichten, International Workshop on Heavy Quarkonium (BNL 2006) and private communication

Most noticeable difference in D*D* channel.
Reasonable qualitative agreement.

New Resonance at D*D* Threshold?

Model of Dubynskiy & Voloshin [Mod. Phys. Lett. A21, 2779 (2006)]

Express exclusive channels in terms of dimensionless R_k

• Parametrize R_k in terms of expected threshold behavior & relative production rates in the presence of a ψ (4040)

Fit to CLEO data:
 one large deviation
 near D*D* threshold
 This model needs
 interference with a
 new narrow
 resonance at
 E_{cm}=4015 MeV to
 explain dip in DD

Comparison with Belle

Limits on Y(4260) Decays

Mode	У(4260)→X	
	У(4260) →π ⁺ π ⁻ J	΄/ψ
DD	<4.0	Upper limits
D*D	<45	@90%CL
D*D*	<11	
Ο* Φπ	<15 ←	cc̄g models like D₁D decays
D*D *π	<8.2	
$D_{S}^{+} D_{S}^{-}$	<1.3	
$D_{S}^{**}D_{S}^{-}$	<0.8	
D ₅ *+ D ₅ *-	<9.5	

Inclusive Cross Checks

R for E_{CM}=3.97-4.26 GeV

B. Heltsley QWG5@DESY, Oct 20, 2007

Conclusions

- Precise R measured for E_{cm}=6.96-10.54 GeV
 - Region of no structure as expected
 - Most precise; removes any doubts about old Mark I points
 - Determines $\alpha_s(M_z^2)$ with ~10% uncertainty
 - Consistent with world average w/other methods
 - Determination also depends, at ~10% level, on method of tying together 4 & 5 flavor regimes
- Exclusive & inclusive charm for E_{cM}=3.97-4.26 GeV
 - Region of many thresholds & much structure!
 - We have exclusively deconstructed its composition
 - This deconstruction is useful input for model builders

 In one such model, hints at a narrow resonance near 4015 MeV?
 Qualitative agreement with coupled channel predictions
 - Precision of R is improved at these 13 points
 - Multi-body production of open charm measured for 1st time
 - Yes $D^*D\pi$ but no $DD\pi$ below 4.3 GeV. Model post-dictions?
- Should lead to a better understanding of QCD

Backup Slides

B. Heltsley QWG5@DESY, Oct 20, 2007

D_(s) Modes & Branching Fractions (%)

101	
	M
\sim	

Modes	Branching Fraction
D^0 decay mode	
$K^{-}\pi^{+}$	$3.91\pm0.12\%$
$K^-\pi^+\pi^0$	$14.94 \pm 0.56\%$
$K^{-}\pi^{+}\pi^{+}\pi^{-}$	$8.29\pm0.36\%$
D^+ decay mode	
$K^-\pi^+\pi^+$	$9.52\pm0.37\%$
$K^{-}\pi^{+}\pi^{+}\pi^{0}$	$6.04\pm0.28\%$
$K_s \pi^+$	$1.55\pm0.08\%$
$K_s \pi^+ \pi^0$	$7.17\pm0.43\%$
$K_s \pi^+ \pi^- \pi^+$	$3.2\pm0.19\%$
$K^+K^-\pi^+$	$0.97\pm0.06\%$

Modes	Branching Fraction
$\phi \pi^+$, 10 MeV cut on the Invariant $\phi \to K^+ K^-$ Mass [16]	1.98 ± 0.15
$K^{*0}K^+, K^{*0} \to K^-\pi^-$ [1]	2.2 ± 0.6
$\eta \pi^+, \eta \to \gamma \gamma \ [1, \ 16]$	0.58 ± 0.07
$\eta \rho^+, \eta \to \gamma \gamma, \rho^+ \to \pi^+ \pi^0 \ [1]$	4.3 ± 1.2
$\eta' \pi^+, \eta' \to \pi^+ \pi^- \eta, \eta \to \gamma \gamma \ [1, 16]$	0.7 ± 0.01
$\eta' \rho^+, \eta' \to \pi^+ \pi^- \eta, \eta \to \gamma \gamma, \rho^+ \to \pi^+ \pi^0 $ [1]	1.8 ± 0.5
$\phi \rho^+, \phi \to K^+ K^-, \rho^+ \to \pi^+ \pi^0 \ [1]$	3.4 ± 1.2
$K_s K^+, K_s \to \pi^+ \pi^- [1, 16]$	1.0 ± 0.07

MC Study: $\Delta E vs M_{bc}$ Que at 4160 MeV

Reconstruct $D^0 \rightarrow K^- \pi^+$

Compare 3 methods (no radiative corrections)

B. Heltsley QWG5@DESY, Oct 20, 2007