Charm Physics at CLEO-c

Peter Onyisi

CLEO Collaboration

KEKTC6, 6 Feb 2007

Cornell University Laboratory for Elementary-Particle Physics

- CLEO-c probes the **strong force**: how are charm quarks bound in mesons?
 - How do we obtain the "low-energy" degrees of freedom of QCD?
 - Need to understand strong force to extract weak interactions of quarks from observables
- The charm quark is:
 - *heavy*, so the same theory can be used as for bottom quarks;
 - *lighter* than the *b*, so effects of non-infinite mass are larger.
- CLEO-c probes both *heavy-light* (D^0 [$c\bar{u}$], D^+ [$c\bar{d}$], D_s^+ [$c\bar{s}$]) and *heavy-heavy* [$c\bar{c}$] mesons
- This talk: just a flavor of the broad range of CLEO-c physics!

CESR-c Accelerator

- CESR is a 768 m circumference symmetric e^+e^- storage ring
- Provides collisions for CLEO and beams for the Cornell High Energy Synchrotron Source
- Originally designed for $E_{cm} = 16$ GeV, ran mostly at Υ resonances
- Now provides collisions down to $E_{cm} = 3.7 \text{ GeV}$

CLEO-c Experiment

- General-purpose symmetric detector
- Particle ID (dE/dx, Ring Imaging Cherenkov) excellent in our momentum region

- Tracking: $\delta p/p = 0.6\%$ at 1 GeV
- Csl calorimeter: δE/E ~ 5% at 100 MeV

Ring-Imaging Cherenkov detector

(日) (周) (三) (三)

3

Heavy-Light Mesons

 $e^+e^- \rightarrow c \,\overline{c} \rightarrow D^0 \,\overline{D}^0$ $\overline{D}^0 \to K^+ \pi^-, D^0 \to K^- e^+ \overline{\nu}$

< **-1** → <

3

Reconstruction — 3.77 GeV

 e^+ D^0 e^-

- Open charm threshold: only $D^0\overline{D}^0$, D^+D^- possible
- Fully reconstruct 10–15% of *D* decays in clean hadronic "tagging" modes
 - Reduces combinatoric background, constrains recoil momentum
 - Tags provide a *D* sample of a known size for absolute branching fraction measurements

Reconstruction — 4.17 GeV

- 4.17 GeV data is used for its large sample of $D_s D_s^*$ events
- A D_s[±] tag implies D_s[∓] on the other side; γ (or π⁰) from the D_s^{*} → D_s transition is also present
- Tagging efficiency for D_s is ~ 6%; 200 pb⁻¹: ~ 20,000 tags

QCD in CKM — B mixing

- $B_{d,s}^0$ mixing proceeds through box diagrams
- Interaction is short-distance; quarks need to approach within $\sim 1/m_W$

QCD in CKM — B mixing

- $B_{d,s}^0$ mixing proceeds through box diagrams
- Interaction is short-distance; quarks need to approach within $\sim 1/m_W$
- Rate depends on wave function near zero separation f_B :

$$\Delta m_{d,s} \propto f_{B_{d,s}}^2 |V_{t(d,s)}V_{tb}^*|^2$$

QCD in CKM — B mixing

- $B^0_{d,s}$ mixing proceeds through box diagrams
- Interaction is *short-distance*; quarks need to approach within $\sim 1/m_W$
- Rate depends on wave function near zero separation *f*_B:

$$\Delta m_{d,s} \propto f_{B_{d,s}}^2 |V_{t(d,s)}V_{tb}^*|^2$$

• Analogous quantity appears in D leptonic decays:

• Tests of $f_{D_{(s)}}$, f_{D_s}/f_D , etc. \Rightarrow more confidence in results for B systems

D Leptonic Decays

- Measure f_D and f_{D_s} using leptonic decays
 - Constrain $|V_{cd}|$ and $|V_{cs}|$ by demanding unitarity
- Measurement modes are
 - $D^+
 ightarrow \mu^+ \nu$
 - $D_s^+
 ightarrow \mu^+ \nu$
 - $D_s^+ \rightarrow \tau^+ \nu ~(\tau^+ \rightarrow \pi^+ \nu)$
 - $D_s^+ \rightarrow \tau^+ \gamma \ (\tau^+ \rightarrow e^+ \gamma \bar{\gamma}).$
- Relative branching ratios for $D^+_{(s)} \to \ell^+ \nu$ set by lepton mass
 - $\begin{array}{cccc} & \mathcal{B}_{e} & \mathcal{B}_{\mu} & \mathcal{B}_{\tau} \\ D^{+} & 2.4 \times 10^{-5} & 1 & 2.6 \\ D^{+}_{s} & 2.4 \times 10^{-5} & 1 & 9.7 \end{array}$
 - Combine the D_s^+ results for a single f_{D_s}

Quoted form factor lattice QCD results: Aubin et al., PRL **95**, 122002 (2005) [Fermilab-MILC-HPQCD]

 $D^+ o \mu^+
u$

- Find D⁻ tag and muon candidate (< 300 MeV in calorimeter, not a kaon candidate)
- Veto extra tracks and extra calorimeter energy
- Compute missing mass $MM^2 = (p^{\mu}_{CM} p^{\mu}_{D^-} p^{\mu}_{\mu^+})^2$
- Backgrounds: $D^+ \rightarrow \pi^+ \pi^0$ and $\tau^+ \nu \approx 2$ events

$$\begin{split} \mathcal{B}(D^+ \to \mu^+ \nu) &= (4.40 \pm 0.66 \stackrel{+0.09}{_{-0.12}}) \times 10^{-4} \\ f_D &= 222.6 \pm 16.7 \stackrel{+2.8}{_{-2.4}} \text{ MeV} \\ \hline \text{PRL 95 251801 (2005) (281 pb^{-1})} \\ \hline \text{Lattice: } f_D &= 201 \pm 3 \pm 17 \text{ MeV} \end{split}$$

 $D^+_s
ightarrow \mu^+
u$, $au^+
u$ $(au^+
ightarrow \pi^+ ar
u)$

- Find D_s^- tag, transition photon, and additional track candidate
- Veto extra tracks and extra calorimeter energy
- Three types of event based on track:

(i)
$$E_{cal} < 300$$
 MeV: μ -like tracks

(ii) Other:
$$\pi$$
-like tracks

 $D_s^+
ightarrow \mu^+ \gamma, \ au^+ \gamma \ (au^+
ightarrow \pi^+ ar{
u})$

- $\mathcal{B}(\mu^+ \nu)$ from *A*, correct for feedthrough from $\tau^+ \nu$
- $\mathcal{B}(\tau^+\nu)$ from B and C
 - 6.8 bkg events in A + B + C
- No evidence of ev

$D^+_s ightarrow au^+ u \; (au^+ ightarrow e^+ u ar{ u})$

- Find hadronic *D_s* tag and electron candidate
- Veto extra tracks
- Signal candidates have extra calorimeter energy < 400 MeV
- Major backgrounds are semileptonic decays (e.g. Cabibbo-suppressed $D_s^+ \to K_L^0 e^+ v$)

< 🗇 🕨

$$\begin{split} & \frac{\text{Preliminary}}{\mathcal{B}(D_{s}^{+} \rightarrow \tau^{+}\nu) = (6.29 \pm 0.78 \pm 0.52)\%} \\ & [\tau \rightarrow \pi\nu \text{ result: } (7.1 \pm 1.4 \pm 0.3)\%] \\ & \frac{f_{D_{s}} = 278 \pm 17 \pm 12 \text{ MeV}}{\text{Lattice: } f_{D_{s}} = 249 \pm 3 \pm 16 \text{ MeV}} \end{split}$$

Combined Leptonic Results

 $D_s^+\to \mu^+\nu$ and two $D_s^+\to \tau^+\nu$ measurements statistically independent: combine

 f_{D_s} fn f_{D_c}/f_{D_c} Average: CLEO preliminary $f_{D_s} = 280.1 \pm 11.6 \pm 6.0 \text{ MeV}^*$ BaBar hep-ex/0607094(PRL) Lattice: $f_{D_e} = 249 \pm 3 \pm 16$ MeV World overoge before 2006 RES PL8610.183(2006) Lottice PRL95.122002(2005) He-I سعب **HHH** Recall QL (Taiwan H-COLOR H HOH PLR624.31(2005 $f_D = 222.6 \pm 16.7^{+2.3}_{-3.4}$ MeV (UKOCD 094601(2001) 0.074501(1999) Lattice: $f_D = 201 \pm 3 \pm 17$ MeV OCD SR OCD SP oh/0202200 So work Mode 35.93/2006 Quark Mode PLR595.84(2004) $f_{D_e}/f_D = 1.26 \pm 0.11 \pm 0.03^*$ Potential Model Broz.J.Phys.34.297(2004) Isospin Splittings Lattice: $1.24 \pm 0.01 \pm 0.07$ PRD47,3059(1993) 200 250 300 200 300 1.2 fm/fm f. (MeV) for (MeV)

* Preliminary

(日) (同) (三) (三)

QCD in CKM — Semileptonic Decays

- Rate depends on a form factor f₊(q² = (p^μ_{W[±]})²) times a CKM matrix element |V_{Qq}|.
- Γ from experiment and $f_+(q^2)$ from theory $\Rightarrow |V_{Qq}|$
 - Need precision $f_+(q^2)!$

Exclusive D Semileptonic Decays

- Only electrons used ($\pi
 ightarrow \mu$ fake rate too high)
- Results for:
 - $D^0 \rightarrow K^-_0 e^+ \gamma$
 - $D^+
 ightarrow \overline{K}^0 e^+ \gamma$
 - $D^0
 ightarrow \pi^- e^+ \nu$
 - $D^+
 ightarrow \pi^0 e^+ \nu$
- Two methods:
 - Reconstruct hadronic D tag + hadron + lepton, see if missing four-momentum is consistent with neutrino ("tagged analysis")
 - Use detector hermeticity to reconstruct neutrino four-momentum with no tag, then combine with hadron and lepton to make a D candidate ("ν reconstruction")
- Tagged analysis has better systematics
- ν reconstruction has better statistics

D Semileptonics: Reconstruction

281 pb⁻¹ Preliminary

Results not statistically independent!

Peter Onyisi

Charm Physics at CLEO-c

D Semileptonics: Absolute Branching Fractions

PDG 2006 fits include CLEO-c 56 pb⁻¹ results

D Semileptonics: Form Factors

Fits shown are to Modified Pole Model: $f_+(q^2) = rac{f_+(0)}{(1-q^2/m_{nole}^2)(1-lpha q^2/m_{nole}^2)}$

Lattice: PRL 94, 011601 (2005)

Belle: PRL 97, 061804 (2006)

CLEO-c: 281 pb⁻¹ Preliminary

Charm Physics at CLEO-c

QCD in CKM — ϕ_3/γ Extraction

- Interference between $b
 ightarrow c(\bar{u}s)$ and $b
 ightarrow u(\bar{c}s)$ involves φ_3/γ
- "Dalitz Method" uses $D \rightarrow K_S \pi^+ \pi^-$ (Giri *et. al.* PRD **68**, 054018 (2003))
- Need to know interference between D^0 and \overline{D}^0 amplitudes for same final state
 - Phase δ_D comes from intermediate resonances: nonpeturbative QCD!
 - δ_D depends on daughter momenta (Dalitz variables)
- r_B , δ_B from *B*-factories. How to get δ_D ?
 - At B-factories, mesons tagged as definitely D⁰ or D
 ⁰("flavor tag"); phase information lost, δ_D from Dalitz plot modeling
 - At CLEO-c, can interfere D^0 and $\overline{D}^0 \Rightarrow \delta_D$ directly from data

CP Tagging at CLEO-c

- The ψ(3770) has CP = +; daughter D⁰ mesons have opposite CP to each other (P-wave decay)
- Tag modes like $D^0 \to K_S \pi^0$ (CP = -) or $\pi^+\pi^-$ (CP = +) fix CP content of the other side decay:

$$D^0_{CP=\pm}=rac{D^0\mp\overline{D}^0}{\sqrt{2}}$$

• Tag modes like $K^-\pi^+$ determine if the other side is D^0 or \overline{D}^0

Decay:	D^0	\overline{D}^0	CP = +	CP = -
Measures	$ f_{D} ^{2}$	$ f_{\overline{D}} ^2$	$\frac{\frac{1}{2}(f_D ^2 + f_{\overline{D}} ^2)}{- f_D f_{\overline{D}} \cos\delta_D}$	$\frac{\frac{1}{2}(f_D ^2 + f_{\overline{D}} ^2)}{+ f_D f_{\overline{D}} \cos\delta_D}$

$D^0 o K_S \pi^+ \pi^-$ Dalitz Plot (MC)

Dalitz plots for toy MC with $K^*\pi$, $K_S \rho$, $K_S f_0$ components

Clear difference in flavor-tagged (top) and *CP*-tagged (bottom) plots

$D^0 o K_S \pi^+ \pi^-$ Dalitz Plot (MC)

Can compute (average) strong phase difference in each bin *i*:

$$\langle \cos \delta \rangle_i = \frac{1}{2} \times \frac{M_i^- - M_i^+}{M_i^- + M_i^+} \times \frac{K_i + K_{-i}}{\sqrt{K_i K_{-i}}}$$

from various efficiency-corrected yields.

$D^0 \to K_S \pi^+ \pi^-$ Dalitz Plot: Prospects

- Statistics-limited: need as many *CP* tags as possible
 - Can use K⁰_L as well as K⁰_S (reconstruct using missing mass)

•
$$\delta_D$$
 uncertainty in ϕ_3/γ :
~ 10° (current) \Rightarrow ~ 4° (CLEO-c 750 pb⁻¹)

 ϕ_3/γ status:

Belle:
$$(53 + 15 - 18 \pm 3 \pm 9)^{\circ}$$

PRD **73** 112009 (2006)

BaBar: $(92 \pm 41 \pm 11 \pm 12)^{\circ}$ ICHEP 06, hep-ex/0607104

Bondar and Poluektov, EPJ C**47** 347 (2006)

Heavy-Heavy Mesons

▲ @ ▶ < ∃ ▶</p>

э

QCD in Charmonia

- Charm quarks have $m_c \gg \Lambda_{QCD}$ so $c\bar{c}$ states act analogously to positronium, etc.
- Can *predict* properties of charmonium states using models for the forms of the interquark interactions, e.g.

$$V_0 = -\frac{4}{3}\frac{\alpha_s}{r} + br + \frac{32\pi\alpha_s}{9m_c^2}\delta^3(\mathbf{r})\mathbf{S}_c \cdot \mathbf{S}_{\bar{c}} + \frac{1}{m_c^2}\left[\left(\frac{2\alpha_s}{r^3} - \frac{b}{2r}\right)\mathbf{L} \cdot \mathbf{S} + \frac{4\alpha_s}{r^3}T\right] + \dots$$

(Barnes, Godfrey, Swanson NR potential, PRD 72 (2005) 054026)

- (Electromagnetic) radiative transitions probe wave function overlap between different states
- Hadronic transitions (e.g. $\psi(2S) \rightarrow \pi^+\pi^- J/\psi(1S)$) still far from fully understood!

Electromagnetic Transitions: $\psi(2S) \rightarrow \gamma \chi_{cJ}(1P)$

The decays $\psi(2S)\to\gamma\chi_{cJ}(1P)$ can be reconstructed by fitting the inclusive photon spectrum in $\psi(2S)$ decays

• In naive non-relativistic limit, $\Gamma \propto (2J+1)E_{\gamma}^3$ (radial wavefunctions the same for the χ_{cJ})

	B/E_{γ}^3		
	χ_{c0}	Xc1	Xc2
Non-relativistic	1	3	5
Godfrey-Isgur (rel)†	1	3.9	7.9
Data	1	3.5 ± 0.2	8.7 ± 0.7

Better agreement with "relativized" prediction (†Barnes, Godfrey, Swanson PRD **72** (2005) 054026)

- ψ(2S) and J/ψ have different patters of decays to light hadrons ("ρπ puzzle")
- Assume same decay mechanism for $\psi(2S)$ and J/ψ . Is that right?
 - Model: $\psi(2S) \not\rightarrow ggg$; instead the $c\bar{c}$ pair survives soft gluon emission (Artoisenet *et al.*, PL B**628**, 211 (2005))
 - Estimate $\mathcal{B}(\psi(2S) \rightarrow \eta_c \pi^+ \pi^- \pi^0) \sim \mathcal{O}(1\%) (> \mathcal{B}(\psi(2S) \rightarrow \gamma \eta_c)!)$
- Use 6 exclusive η_c decays
- 90% upper limit: $\mathcal{B} < 1.0 \times 10^{-3}$

hep-ex/0611027, submitted to PRD RC

KEKTC6, 6 Feb 2007 29

- The CLEO-c program provides precision measurements that probe meson structure
- Tests of theory promise to improve theory uncertainties for CKM element extraction
 - Experiment ahead of theory at this point
- $\bullet\,$ Expected final dataset \sim 2–3 times what has been presented

Stay tuned!

The End

4

イロト イヨト イヨト イヨト