

Hadronic Physics and Exotics

Hanna Mahlke Cornell University EPS/HEP2007 July 19-25, 2007 Manchester, England

Insight into what holds hadrons together \Rightarrow access to the strong force

Hadrons come in many different shapes and sizes ⇒ access to different manifestations of the strong force

Hadron spectroscopy and decay as a study ground for QCD

Compare expected system of states (mesons, baryons, glueballs, ...) against observations

Observables: masses, widths, decay dynamics

New observations just as important as comprehensive surveys – and planning for the unexpected, too!

Unless a heavy-system decay, this is non-perturbative QCD.

3-step program to make headway on Route QCD

⁽¹⁾ FIND (2) SOR

Search for the expected Observe the unexpected

Systematically probe properties:

Confirmation Cross-check Anti-checks

Categorize within the framework Perform precision studies

Deviations from expectation? Back to (1)!

Example: A new state is seen

Study production and decay in different and in similar production and decay scenarios

Assign a place in the system of states

Leaving out (2) gets you a ticket!

This talk: Examples from all three categories.

baryons as well. See list of topics at the end.

$(Q\overline{Q})$ States

Study system of states, governed by underlying binding force: strong force. Charmonium and bottomonium very similar. (bb): less relativistic (cc): more data available

? Masses
? Widths
? Production and decay dynamics

Partly discovery, partly precision measurements

This summer – mostly charmonium results.

$\psi(2S)$ width measurements

Survey of four-body decays

Resonant substructure is important for 4π and KK $\pi\pi$, ($\rho\pi\pi$ or K*K π or KK ρ or ...)

Branching fractions and contributions from intermediate resonances determined

Isospin relations: $\rho^+\pi^-\pi^0 = \rho^0\pi^+\pi^- ? \checkmark$ K*K π modes: \checkmark

3.62

				Exp	pect
Mode)	χ_{c0}	χ_{c1}	χ_{c2}	1:2
		B.F. (%)	B.F. (%)	B.F. (%)	
$K^{*0}K$	$\zeta^{0}\pi^{0}$	$0.56{\pm}0.15$	$0.38{\pm}0.11$	$0.59{\pm}0.14$	
$K^{*0}K$	$\zeta^{\pm}\pi^{\mp}$	-	-	$0.90{\pm}0.25$	
$K^{*\pm}I$	$K^{\mp}\pi^{0}$	$0.74{\pm}0.18$	-	$0.57{\pm}0.13$	
$K^{*\pm}\tau$	$\tau^{\mp}K^0$	$0.96{\pm}0.25$	-	$0.90{\pm}0.25$	∢

see talk by D. Cassel at this conference

C-parity cons: X should have $J^{PC} = 1^{--}$, 3^{--} , ... PWA results:

 Need K*(892), K*(1410), ρ(1700), X, non-res. using rho excitations to describe signal doesn't work
 Big destructive interference among X, ρ(1700) and phase space

("hole" in the middle of the Dalitz plot)

- 1- is much better than 3-
- > Pole position of $\chi (1576^{+49}_{-55} + 98) i(409^{+11+32}_{-12-67}) \text{ MeV/c}^2$

$$\blacktriangleright \text{Br} \quad (J/\psi \to X\pi^0, X \to K^+K^-) = (8.5 \pm 0.6^{+2.7}_{-3.6}) \times 10^{-4}$$

Observation of a broad 1- resonance in $J/\psi \to K^+K^-\,\pi^0$

Further check: $K_S K^{+/-} \pi^{-/+}$ Width(X) » width(ρ (1450), ρ (1700)): 4-quark state?

Re-analysis of R data and extraction of charmonium resonance parameters

Resonance properties:

		$\psi(3770)$	$\psi(4040)$	$\psi(4160)$	$\psi(4415)$
	PDG2004	3769.9 ± 2.5	4040 ± 10	4159 ± 20	4415 ± 6
	PDG2006	3771.1 ± 2.4	4039 ± 1.0	4153 ± 3	4421 ± 4
M	CB (Seth)	-	4037 ± 2	4151 ± 4	4425 ± 6
(MeV/c^2)	BES (Seth)	-	4040 ± 1	4155 ± 5	4455 ± 6
	BES (this work)	3771.4 ± 1.8	4038.5 ± 4.6	4191.6 ± 6.0	4415.2 ± 7.5
	PDG2004	23.6 ± 2.7	52 ± 10	78 ± 20	43±15
	PDG2006	23.0 ± 2.7	80 ± 10	103 ± 8	62 ± 20
Γ_{tot}	CB (Seth)	-	85 ± 10	107 ± 10	119 ± 16
(MeV)	BES (Seth)	-	89 ± 6	107 ± 16	118 ± 35
	BES (this work)	25.4 ± 6.5	81.2 ± 14.4	72.7 ± 15.1	X3.3±21.2
	PDG2004	0.26 ± 0.04	0.75 ± 0.15	0.77 ± 0.23	0.47 ± 0.10
	PDG2006	0.24 ± 0.03	0.86 ± 0.08	$0.83 {\pm} 0.07$	$0.58 {\pm} 0.07$
Γ_{ee}	CB (Seth)	-	$0.88 {\pm} 0.11$	$0.83 {\pm} 0.08$	$0.72 {\pm} 0.11$
(keV)	BES (Seth)	-	$0.91 {\pm} 0.13$	0.84 ± 0.13	0.64 ± 0.23
	BES (this work)	$0.18{\pm}0.04$	0.81 ± 0.20	$0.50 {\pm} 0.27$	0.37 ± 0.14
δ (degree)	BES (this work)	0	133 ± 68	301 ± 61	246 ± 86

Substantial difference between fits with or without interference!

4.8

* Charm baryons

 $\sigma(e^+e^- \rightarrow \psi(4415)) \times Br(\psi(4415) \rightarrow DD_2^*(2460)) \times Br(D_2^*(2460) \rightarrow D\pi) = (0.74 \pm 0.17 \pm 0.07) nb$

 $Br(\psi(4415) \rightarrow D(D\pi)_{non D2(2460)})/Br(\psi(4415) \rightarrow DD_{2}^{*}(2460)) < 0.2$

Above DD threshold:

Observed & Predicted States

X(4350) 4.2 $X(3940) \rightarrow D^*D$ in cc J/ ψ_i 4.0 Y(3940) in $B \rightarrow \omega J/\psi$ BaBar: Talk by G. Cibinetto CLEO: PRL 98, 092002 (2007) X(3872) 3.8 M (GeV) 3.6

Y(4260) in ISR and e^+e^-

Many charmonium-like states found, most could not be identified with a charmonium state (or have been ruled out as conventional $c\overline{c}$ state)

in order to claim new cc state, need to "prove" quantum numbers – angular distributions, decay modes, ...

Need systematic approach from several fronts

Belle arXiv:0707.2541v1, subm to PRL

$J/\psi + \pi^+\pi^-$ in Initial State Radiation

550/fb 80 $M = 4008 \pm 40^{+72}_{-28} MeV$ $\Gamma = 226 \pm 44^{+87}_{-79} \text{MeV}$ Solution One Entries/20 Me/ 0 0 ·· Solution Two $M = 4247 \pm 12^{+17}_{-26} MeV$ $\Gamma = 108 \pm 19^{+8}_{-10} \,\mathrm{MeV}$ 5.5 $M(\pi^+\pi^-J/\psi)$ (GeV/c²) Earlier results, single BW fit: Refs see Mass, MeV Width, Me end of talk 4259⁺⁸-10 **BaBar** 88±23 73⁺³⁹-25 CLEO 4284±17 4295 +14 -10 133±26 Belle old 126±18(st) 4263±6(st) Belle new

Quantities of interest: mass, width, coupling

New fit to improve low-side description: two overlapping resonances and constructive / destructive interference

Par	rameters	Solution One	Solution Two
Λ	M(R1)	$4008 \pm$	40_{-28}^{+72}
Γ_{t}	tot(R1)	$226 \pm$	44_{-79}^{+87}
$\mathcal{B} \cdot \Gamma$	$e^{+}e^{-}(R1)$	$5.0 \pm 1.4^{+5.6}_{-0.9}$	$12.4 \pm 2.4^{+11.9}_{-1.1}$
Л	M(R2)	$4247 \pm$	12^{+17}_{-26}
Γ_{f}	tot(R2)	$108 \pm$	19_{-10}^{+8}
$\mathcal{B} \cdot \Gamma$	$e^{+}e^{-}(R2)$	$6.0 \pm 1.2^{+1.7}_{-0.5}$	$20.6 \pm 2.3^{+4.9}_{-1.7}$
$^{\vee}$	ϕ	$12 \pm 29^{+7}_{-66}$	$-111\pm7^{+28}_{-29}$
v			

2 solutions reproduce the data (same m, Γ), but B(Y(4260) $\rightarrow \pi\pi J/\psi$) × Γ_{ee} a factor of 3.5 apart! ¹⁶

Belle arXiv:0707.2541v1. subm to PRL (cont'd) $J/\psi + \pi^+ \pi^-$ in **Initial State Radiation**

Fit input: assume two overlapping resonances \Rightarrow 2 solutions reproduce the data (same m, Γ) B(Y(4260) $\rightarrow \pi \pi J/\psi$) × Γ_{ee} a factor of 3.5 apart!

G. Cibinetto, talk at this conference

Confirmation of Y(3940) ($B \rightarrow K_{\odot}J/\psi$)

baryons as well. See list of topics at the end.

 χ^2 difference between points and projected fit results corresponds to prob. 60%

Data 384 fb⁻¹

 $\begin{array}{lll} \Xi_{c}(3055)^{+} \\ \text{Mass (MeV/c^{2})} & 3054.2 \pm 1.2 \pm 0.5 \\ \text{Width (MeV/c^{2})} & 17 \pm 6 \pm 11 \\ \text{Yield} & 218 \pm 53 \pm 79 \\ \text{Significance} & 6.4\sigma \end{array}$

Ξ _c (3123)⁺	
Mass (MeV/c ²)	$3122.9 \pm 1.3 \pm 0.3$
Width (MeV/c ²)	$4.4\pm3.4\pm1.7$
Yield	$101\pm34\pm9$
Significance	3.6σ

only observed in $\Sigma_{\rm c}{}^{++}$ K intermediate decays – c and s split up.

Further results: confirmation of $\Xi_c(2980)^+$, $\Xi_c(3077)^{+,0}$ $\Xi_c(2980)^+$ mass and width measurements improved

preliminary

baryons as well. See list of topics at the end.

-- Also see $\phi \rightarrow \gamma f_0(980) \rightarrow \gamma \pi^+ \pi^-$ and $\phi \rightarrow \gamma a_0(980) \rightarrow \gamma \eta \pi^0$ KLOE results

η/η' mixing; gluon content in the η'

$$\begin{array}{lll} & \eta \text{ signal (no bgd)} \\ & B(\varphi \rightarrow \eta'\gamma) / B(\varphi \rightarrow \eta\gamma) = \\ & (4.77 \pm 0.09_{\text{stat.}} \pm 0.19_{\text{syst}}) \times 10^{-3} \\ & Gives \text{ insight into } \eta' \text{ mixing.} \\ & \text{Assuming } \eta' = \text{uds only, no } |gg>: \\ & \varphi_{p} = (41.4 \pm 0.3 \pm 0.7 \pm 0.6)^{\circ} \\ & B(\varphi \rightarrow \eta\gamma) = (1.301 \pm 0.024)\% \text{ from PDG} \\ & B(\varphi \rightarrow \eta'\gamma) = (6.20 \pm 0.09_{\text{stat.}} \pm 0.25_{\text{syst.}}) \times 10^{-5} \\ & B(\varphi \rightarrow \eta'\gamma) = (6.20 \pm 0.09_{\text{stat.}} \pm 0.25_{\text{syst.}}) \times 10^{-5} \\ & H(G\gamma) \\ &$$

$$|\eta' > = X_{\eta'} |q\bar{q} > +Y_{\eta'} |s\bar{s} > +Z_{\eta'} |gluon >$$

Use SU(3) relations between modes involving $\pi^{0}, \omega, \rho, \eta, \eta'$ and measured branching ratios to obtain X,Y,Z(η') $\Rightarrow \phi_{G'} \phi_{P}$

 $Z_{\eta'} = \sin \phi_G$ Mixes gluonium

ʻinto n'

Bands – constraints from input branching fractions (depend on X,Y,Z(η') $\Rightarrow \phi_{G'} \phi_{P}$)

Important as an input to total width measurements!

 $\eta \rightarrow \pi^+ \pi^- \pi^0$ decay dynamics

A good understanding of $\eta \rightarrow 3\pi$ dynamics can <u>in principle</u> lead to a very accurate determination of quark masses:

arXiv:0707.2355v1

 $\Gamma(\eta \rightarrow 3\pi) \propto |A|^{2}$ Amplitude(s,t,u) $\propto \frac{1}{Q^{2}} \times M(s,t,u)$ $Q^{2} = \frac{m_{s}^{2} - \hat{m}^{2}}{m_{d}^{2} - m_{u}^{2}}, \quad M(s,t,u) \stackrel{(*)}{=} \frac{3s - 4m_{\pi}^{2}}{m_{\eta}^{2} - m_{\pi}^{2}}$ Fit parameters: $|A(X,Y)|^{2} = 1 + aY + bY^{2} + cX + dX^{2} + eXY + fY^{3}$ Fit = 0

with X=fct(π^+ - π^-), Y=fct(π^0)

Measured matrix element:

N_{obs}=(1.377±0.001)×10⁶

Fit result: $a = -1.090 \pm 0.005 (stat)_{-0.019}^{+0.008} (syst)$ $b = 0.124 \pm 0.006 (stat) \pm 0.010 (syst)$ $d = 0.057 \pm 0.006 (stat)_{-0.016}^{+0.007} (syst)$ $f = 0.14 \pm 0.01 (stat) \pm 0.02 (syst)$

 $c = 0.002 \pm 0.003(stat) \pm 0.001(syst)$ $e = -0.006 \pm 0.007(stat)_{-0.003}^{+0.005}(syst)$

LOCA: b = a²/4

 \Rightarrow Indicates need for higher order corrections compared to (*)

Experimentally sensitive to higher-order terms in matrix element expansion

G. Lamanna, talk at this conference

 $K^{+-} \rightarrow \pi^{+}\pi^{-}e^{+-}v$ (Ke4) results

Five independent kinematic variables, expansion in form factors with spin-dependent coefficients, model-independent determination of coefficients and phase shift btw L=0 and L=1, δ .

 $\delta \Rightarrow \textbf{a}_0 \text{ and } \textbf{a}_2 \text{ via theory}$

 677500 K⁺ and K⁻ Ke4 decays (preliminary results on partial statistics)

Ke4 Form factors measured with a precision within 5% to 15%

A new level of sensitivity

G. Lamanna, talk at this conference

0.4

This talk: mostly mesons, but many new results on baryons as well. See list of topics at the end.

Conclusion

Many measurements on hadron spectroscopy and decay are arriving

- Examples shown of new phenomena, systematic surveys, and precision studies
- Especially overwhelming the amount of new unclassified states: Organize!!

Many thanks to my colleagues on BaBar, Belle, BES, CLEO, KLOE, NA48, ...

Many more results

Bottomonium:

- CLEO bottomonium results: talk by H. Vogel at this conference
- CDF h_b search: talk by A. Gessler at this conference

Charmonium:

- psi(2S) to gamma+light survey: BES, PRL99, 011802 (2007)
- psi(2S) multibody survey: CLEO: PRL 95, 062001 (2005)
- psi(3770) non-DDbar: CLEO, PRL 96, 032003 (2006), PRD 73, 012002 (2006) BES, C. Jiangchuan, talk at this conference
- J/psi to light: BES, Phys. Rev. Lett. 97 (2006) 142002: gamma pipi PWA Y(4260):
- BaBar: PRL 95, 142001 (2005), CLEO: PRD 74, 091104(R), Belle "old" prelim: hep-ex/0612006

X(3872):

- X(3872) mass: BaBar, G. Cibinetto, talk at this conference
- D0 mass: CLEO, PRL 98, 092002 (2007)

Charm mesons:

- BaBar: T. Schroeder, talk at this conference
- Belle: B0bar -> D**+ pi-; (observation of D_0*) hep-ex/0611054 (acc by PRD)

Open charm production:

- Belle: e+e- -> D(*)D* cross-section (at sqrt(s) from threshold to ~5 GeV), PRL98, 092001 (2007) Baryons:
- Belle, $\Lambda_c(2880)$ J^P and $\Lambda_c(2940) \rightarrow \Sigma_c \pi$; PRL 98, 262001 (2007)
- Belle, Observation of $\Xi_c(2980)$, $\Xi_c(3077)$; PRL 97, 162001 (2006)
- BaBar: T. Schroeder, talk at this conference
- D0: Λ_b lifetime, Ξ_b discovery: E. De La Cruz Burelo, talk at this conference Light scalars:
- KLOE: $a_0 \rightarrow eta pi^0$, $f_0 \rightarrow pi^0 pi^0$ shown at winter conferences Light resonances:
- E. Fadeeva, talk at this conference

NA48

• Radiative decays: M. Piccini, talk at this conference

Pentaquarks Summary

• Complete HERA I data was analysed with the following results from H1 & ZEUS:

Charmonium States $2^{1}s_{0}^{2}$

mass recently remeasured,

only one decay mode seen

3.0

η_c(1S)

3.2

3.4

 $M(K\varsigma K\pi)$ (GeV)

width a moving target,

M1 rates not measured,

<u>χ_{cJ}</u>: masses, width, dominant decay modes reasonably well measured. Beginning to study substructure.

h

 $\begin{array}{c} 35000 \\ \text{ig} \\ 25000 \\ \text{v} \\ 25000 \\ \text{v} \\ 15000 \\ \text{o} \\ 10000 \\ \text{o} \\ 70 80 100 \\ \text{E}_{\gamma} (\text{MeV}) \end{array}$

1620204-07

<u>h_c</u>: Newest member of the family, seen in $\psi(2S) \rightarrow \pi^0 h_c \rightarrow \gamma \eta_c$ and in pp production, product BR measured. That's it!

 χ_c

 $\underline{n_c(1S)}$: mass and width known to MeV's, most urgent project: M1 transition rate J/ $\psi \rightarrow \gamma \eta_c$

70

60

50

40

3.6

CLEO III Data

 $\eta_{c}(2S)$

3.8

<u>ψ(2S), J/ψ</u>: accessible in e⁺e⁻. Masses, total width, dominant decay modes well measured. Studying BR's in the range of <0.01%, and substructure.

PRL99, 011802 (2007)

$\psi(2S) \rightarrow \gamma + \text{light hadrons}$

B

 $\psi(2S)$ to light hadrons, PDG07:

 $\gamma \pi^0$ $\gamma \eta'$ (958) $\gamma f_{2}(1270)$ $\gamma f_0(1710)$ $\gamma f_0(1710) \rightarrow \gamma \pi \pi$ $\gamma f_0(1710) \rightarrow \gamma K \overline{K}$ $\gamma \gamma$ $\gamma \eta$ All limits $\gamma \eta \pi^+ \pi^ \gamma \eta$ (1405) or meas'ts $\gamma \eta$ (1405) $\rightarrow \gamma K \overline{K} \pi$ at 10^{-4..5} $\gamma \eta$ (1405) $\rightarrow \eta \pi^+ \pi^ \gamma \eta (1475)$ $\gamma \eta (1475) \rightarrow K \overline{K} \pi$ $\gamma \eta (1475) \rightarrow \eta \pi^+ \pi^- /$

	$23) \rightarrow 90$	<u> </u>	+ γ	<u>9</u> 9)		000
= 1	$-\pi\pi,\eta,\pi^0$	J/ψ	/ — 2	ΣM1,	E1	=~20%
/ψ: γ ς	gg/ ggg ~(6%)			
βR(ψ($2S) \rightarrow \gamma qq$	a) -	- 1	%		
Ŵh	ere are t	hev	?			
~				,	\ .	
S: si	urvey ot	·γ-	⊦n($(\pi^+\pi^-)$	⁻)+	· m(K⁺ł
-		•		<u> </u>		````
	Mode	N^{Tot}	N^{Bg}	NSig	c(%)	$B(\times 10^{-5})$
_	Mode	1.	1.	11	e(70)	2(~10)
-	$\gamma p \bar{p}$	329	187	142 ± 18	35.3	2.9±0.4±0.4
-	$\gamma p \bar{p}$ $\gamma 2(\pi^+ \pi^-)$	329 1697	187 1114	142 ± 18 583 ± 41	35.3 10.4	$2.9\pm0.4\pm0.4$ $39.6\pm2.8\pm5.0$
-	$\frac{\gamma p \bar{p}}{\gamma 2(\pi^+ \pi^-)}$ $\gamma K_S^0 K^+ \pi^- + c.c.$	329 1697 -	187 1114 -	142 ± 18 583 ± 41 115 ± 16	35.3 10.4 4.83	$2.9\pm0.4\pm0.4$ $39.6\pm2.8\pm5.0$ $25.6\pm3.6\pm3.6$
-	$\frac{\gamma p \bar{p}}{\gamma 2(\pi^+ \pi^-)}$ $\gamma K_S^0 K^+ \pi^- + c.c.$ $\gamma K^+ K^- \pi^+ \pi^-$	329 1697 - 361	187 1114 - 229	142 ± 18 583 ± 41 115 ± 16 132 ± 19	35.3 10.4 4.83 4.94	$2.9\pm0.4\pm0.4$ $39.6\pm2.8\pm5.0$ $25.6\pm3.6\pm3.6$ $19.1\pm2.7\pm4.3$
-	$\frac{\gamma p \bar{p}}{\gamma 2 (\pi^{+} \pi^{-})} \\ \gamma K_{S}^{0} K^{+} \pi^{-} + c.c. \\ \gamma K^{+} K^{-} \pi^{+} \pi^{-} \\ \gamma K^{*0} K^{+} \pi^{-} + c.c.$	329 1697 - 361 -	187 1114 - 229 -	142 ± 18 583 ± 41 115 ± 16 132 ± 19 237 ± 39	35.3 10.4 4.83 4.94 6.86	$2.9\pm0.4\pm0.4$ $39.6\pm2.8\pm5.0$ $25.6\pm3.6\pm3.6$ $19.1\pm2.7\pm4.3$ $37.0\pm6.1\pm7.2$
-	$\frac{\gamma p \bar{p}}{\gamma 2(\pi^{+}\pi^{-})} \\ \gamma K_{S}^{0}K^{+}\pi^{-} + c.c. \\ \gamma K^{+}K^{-}\pi^{+}\pi^{-} \\ \gamma K^{*0}K^{+}\pi^{-} + c.c. \\ \gamma K^{*0}\bar{K}^{*0}$	329 1697 - 361 - 58	187 1114 - 229 - 17	142 ± 18 583 ± 41 115 ± 16 132 ± 19 237 ± 39 41 ± 8	35.3 10.4 4.83 4.94 6.86 2.75	$2.9\pm0.4\pm0.4$ $39.6\pm2.8\pm5.0$ $25.6\pm3.6\pm3.6$ $19.1\pm2.7\pm4.3$ $37.0\pm6.1\pm7.2$ $24.0\pm4.5\pm5.0$
-	$\frac{\gamma p \bar{p}}{\gamma 2(\pi^{+}\pi^{-})} \\ \gamma K_{S}^{0}K^{+}\pi^{-} + c.c. \\ \gamma K^{+}K^{-}\pi^{+}\pi^{-} \\ \gamma K^{*0}K^{+}\pi^{-} + c.c. \\ \gamma K^{*0}\bar{K}^{*0} \\ \gamma \pi^{+}\pi^{-}p \bar{p}$	329 1697 - 361 - 58 55	187 1114 - 229 - 17 38	$142 \pm 18 \\ 583 \pm 41 \\ 115 \pm 16 \\ 132 \pm 19 \\ 237 \pm 39 \\ 41 \pm 8 \\ 17 \pm 7$	35.3 10.4 4.83 4.94 6.86 2.75 4.47	$2.9\pm0.4\pm0.4$ $39.6\pm2.8\pm5.0$ $25.6\pm3.6\pm3.6$ $19.1\pm2.7\pm4.3$ $37.0\pm6.1\pm7.2$ $24.0\pm4.5\pm5.0$ $2.8\pm1.2\pm0.5$
	$\frac{\gamma p \bar{p}}{\gamma 2(\pi^{+}\pi^{-})} \\ \gamma K_{S}^{0}K^{+}\pi^{-} + c.c. \\ \gamma K^{+}K^{-}\pi^{+}\pi^{-} \\ \gamma K^{*0}K^{+}\pi^{-} + c.c. \\ \gamma K^{*0}\bar{K}^{*0} \\ \gamma \pi^{+}\pi^{-}p \bar{p} \\ \gamma K^{+}K^{-}K^{+}K^{-}$	329 1697 - 361 - 58 55 15	187 1114 - 229 - 17 38 8	142 ± 18 583 ± 41 115 ± 16 132 ± 19 237 ± 39 41 ± 8 17 ± 7 < 14	35.3 10.4 4.83 4.94 6.86 2.75 4.47 2.93	$2.9\pm0.4\pm0.4$ $39.6\pm2.8\pm5.0$ $25.6\pm3.6\pm3.6$ $19.1\pm2.7\pm4.3$ $37.0\pm6.1\pm7.2$ $24.0\pm4.5\pm5.0$ $2.8\pm1.2\pm0.5$ < 4.0
	$\frac{\gamma p \bar{p}}{\gamma 2(\pi^{+}\pi^{-})} \\ \gamma K_{S}^{0}K^{+}\pi^{-} + c.c. \\ \gamma K^{+}K^{-}\pi^{+}\pi^{-} \\ \gamma K^{*0}K^{+}\pi^{-} + c.c. \\ \gamma K^{*0}\bar{K}^{*0} \\ \gamma \pi^{+}\pi^{-}p \bar{p} \\ \gamma K^{+}K^{-}K^{+}K^{-} \\ \gamma 3(\pi^{+}\pi^{-}) \\ \end{pmatrix}$	329 1697 - 361 - 58 55 15 118	187 11114 - 229 - 17 38 8 95	$\begin{array}{c} 142 \pm 18 \\ 583 \pm 41 \\ 115 \pm 16 \\ 132 \pm 19 \\ 237 \pm 39 \\ 41 \pm 8 \\ 17 \pm 7 \\ < 14 \\ < 45 \end{array}$	35.3 10.4 4.83 4.94 6.86 2.75 4.47 2.93 1.97	$\frac{2.(\times 10^{\circ})}{2.9 \pm 0.4 \pm 0.4}$ $39.6 \pm 2.8 \pm 5.0$ $25.6 \pm 3.6 \pm 3.6$ $19.1 \pm 2.7 \pm 4.3$ $37.0 \pm 6.1 \pm 7.2$ $24.0 \pm 4.5 \pm 5.0$ $2.8 \pm 1.2 \pm 0.5$ < 4.0 < 17

The corresponding list for the J/ ψ is almost 50 entries long...

Also included $\pi^0+2(\pi^+\pi^-)$ [and K⁺K⁻], rich resonant substructure

Study dependence of production rate on center-of-mass energy

CLEO PRL 98, 092002 (2007)

D⁰ mass measurement

 $M(D^0) = 1864.847 \pm 0.150(\text{stat}) \pm 0.095(\text{syst}) \text{ MeV}$

LQCD D mass calculation

 D^0

D⁺

1869.5 \pm 0.5 OUR AVERAGE

 $1870.0 \pm 0.5 \pm 1.0$

 1869.4 ± 0.6

1869.62± 0.20 OUR FIT Error includes scale factor of 1.1.

317

BARLAG

¹ TRILLING

90C ACCM π^- Cu 230 GeV

81 RVUE e⁺e⁻ 3.77 GeV

η,η' : mixing and gluonium

The η , η' mesons wave function can be decomposed in the strangeness non strangeness base.

$$\begin{aligned} |\eta'\rangle &= X_{\eta'} |q\bar{q}\rangle + Y_{\eta'} |s\bar{s}\rangle + Z_{\eta'} |gluon\rangle \\ \eta\rangle &= \cos(\varphi_p) |q\bar{q}\rangle - \sin(\varphi_p) |s\bar{s}\rangle \\ \eta\rangle &= \cos(\varphi_p) |q\bar{q}\rangle - \sin(\varphi_p) |s\bar{s}\rangle \\ \frac{Br(\phi \rightarrow \eta' \chi)}{Br(\phi \rightarrow \eta \gamma)} &= R_{\phi} = \cot^2 \phi_P \cdot \cos^2 \phi_G \left(1 - \frac{m_s}{\overline{m}} \cdot \tan \frac{\phi_V}{\sin 2\phi_P}\right)^2 \cdot \left(\frac{p_{\eta'}}{p_{\eta}}\right)^3 \end{aligned}$$

Comparing with other decay rates using SU(3) relations:

$$\begin{split} \Gamma(\eta' \to \gamma\gamma)/\Gamma(\pi^0 \to \gamma\gamma) &= \frac{1}{9} \left(\frac{m_{\eta'}}{m_{\pi}}\right)^3 (5\cos\phi_G \sin\varphi_P + \sqrt{2}\frac{f_q}{f_s}\cos\phi_G \cos\varphi_P)^2 \\ \Gamma(\eta' \to \rho\gamma)/\Gamma(\omega \to \pi^0\gamma) &= \frac{C_{NS}}{\cos\varphi_V} \cdot 3 \left(\frac{m_{\eta'}^2 - m_{\rho}^2}{m_{\omega}^2 - m_{\pi}^2}\frac{m_{\omega}}{m_{\eta'}}\right)^3 \cos^2\phi_G \sin^2\varphi_P \quad \text{The gluonium} \\ \Gamma(\eta' \to \omega\gamma)/\Gamma(\omega \to \pi^0\gamma) &= \frac{1}{3} \left(\frac{m_{\eta'}^2 - m_{\omega}^2}{m_{\omega}^2 - m_{\pi}^2}\frac{m_{\omega}}{m_{\eta'}}\right)^3 [C_{NS} \cdot \cos\phi_G \sin\varphi_P \quad \text{coupling is} \\ &+ 2\frac{m_s}{\bar{m}}C_S \cdot \tan\varphi_V \cdot \cos\phi_G \cos\varphi_P]^2 \end{split}$$

Fully reconstruct five final states: $\gamma\gamma + 3\pi^0 + \pi^+\pi^-\pi^0 + \pi^+\pi^-\gamma + e^+e^-\gamma$

 $\begin{array}{l} \text{Constrain } \ell^{+}, \ \ell^{-} \Longrightarrow J/\psi, \\ \text{constrain } J/\psi, \ \eta \ \text{products} \Longrightarrow \psi(2S) \end{array}$

Excellent data/MC agreement

Measurement of ratios allow cancellation of systematics

Follow PDG procedure: sum of the above five modes is ~ 100% \Rightarrow build absolute Br's from ratios

Results and systematics KLOE

Systematic table The result is dependent from the knowledge of the sqrt(s). err./(tot. err) It is calibrated using the resonance curve of the $\phi \rightarrow K_s K_1$. **Calorimeter calibration** 1% 1 % **Calorimeter linearity** $m(\phi) = 1019.483 \pm 0.011 \pm 0.025 \text{ MeV/c}^2$ Vertex position 1 % CMD-2 Phys. Lett. B578, 285 18 % **Azimuthal dependence** ELIMINA **Polar dependence** 8 % Dalitz plot cut + corr. 67 % = (134990 \pm 6_{stat} \pm 30_{svst}) keV **Μ(**π⁰) $M(\pi^0)_{\Pi \land \Gamma}$ = (134976.6 ± 0.6) keV $M(\eta) = (547822 \pm 5_{stat} \pm 69_{syst}) \text{ keV}$ χ^2 KLOE 27 NA48 compatibility: 0.24 σ 63 • Independent measurement with the $\eta \rightarrow \pi^+ \pi^- \pi^0$ decay 15 NA4802 mode in progress: $m_{\eta} = 547.95 \pm 0.15 \text{ MeV/c}^2$ MAMI 95 4.2 (very preliminary fully in agreement with the $\gamma\gamma$ channel) SATURNE 92 5.4 RL 74 0.63

115

549

547

η mass (MeV)

548

KLOE

Cusp: two loops

±

 Including 2-loops diagrams other terms appear in the amplitude

• All the S-wave amplitudes (5 terms) can be expressed as linear combination of a0 and a2

 The isosping breaking effect is taking in to account

• The radiative correction (most relevant near threshold) are still missing

 A deviation from the no rescattering amplitude behaviour appears also above threshold

2004 data set: x4 # events and lower systematic due to trigger (analysis ongoing)

