Hadronic *D* and *D_s* Decays at CLEO-c

Anders Ryd Cornell University for the CLEO collaboration

> Presented at Charm2007 Ithaca, NY Aug. 5-8, 2007

 $e^+e^- \rightarrow c \ \overline{c} \rightarrow D_s D_s^*$

A. Ryd, Cornell U.

Charm2007, Ithaca NY, Aug. 5-8, 2007

Outline

- Absolute Charm Branching Fractions
 - • D^0 and D^+
 - •D_S
- $D^+ \rightarrow K^- \pi^+ \pi^+$ and $D^+ \rightarrow \pi^- \pi^+ \pi^+$ Dalitz Analyses
- •Rare and inclusive modes
- Final states with K_S or K_L
- Cabibbo suppressed D_s decays
- D meson decays to two kaons
- Conclusions

A. Ryd, Cornell U. Charm2007, Ithaca NY, Aug. 5-8, 2007

Absolute Hadronic D⁰ and D⁺ Branching Fractions

Important to establish the branching fraction scale

- Directly impact determination of *e.g.* V_{cb} from exclusive modes
- Need to 'count' the number of produced D mesons

• At cc-threshold we use tagged D candidates

CLEO-c has published results based on 56 pb⁻¹ (PRL 96, 092002)

Today we present results on 281 pb⁻¹

Tag by full reconstruction of one D

A. Ryd, Cornell U.

Charm2007, Ithaca NY, Aug. 5-8, 2007

CLEO-c Hadronic BrFr.

•Use a 'double tag' technique, pioneered by MARK III

$$N_{i} = \epsilon_{i} B_{i} N_{D\overline{D}}$$

$$\overline{N}_{j} = \overline{\epsilon}_{j} B_{j} N_{D\overline{D}} \qquad N_{D\overline{D}} = \frac{N_{i} \overline{N}_{j} \epsilon_{ij}}{N_{ij} \epsilon_{i} \overline{\epsilon}_{j}} \qquad B_{i} = \frac{N_{ij} \epsilon_{j}}{N_{j} \epsilon_{ij}}$$

•The following final states are used D^0 : $K^-\pi^+$, $K^-\pi^+\pi^0$, and $K^-\pi^+\pi^-\pi^+$

 D^+ : $K^-\pi^+\pi^+$, $K_{s}\pi^+$, $K^-\pi^+\pi^+\pi^0$, $K_{s}\pi^+\pi^-\pi^+$, $K_{s}\pi^+\pi^0$, and $K^-K^+\pi^+$

•Determine separately the D and \overline{D} yields

•18 single tag yields

•45 ($=3^2+6^2$) double tag yields

- •In a combined χ^2 fit we extract 9 branching fractions and $D^0\overline{D}^0$ and D^+D^- yields. The fit includes the systematic errors.
- •Many systematics cancel in the $D\overline{D}$ yield (*e.g.* tracking eff., PID eff.).

A. Ryd, Cornell U. Charm2007, Ithaca NY, Aug. 5-8, 2007

Single Tag Yields (281 pb⁻¹)

CP Asymmetries

• Note asymmetry in raw yield for e.g. $D^0 \rightarrow K^- \pi^+$

- Asymmetry caused by interactions in RICH and are well described by the simulation.
- Precision measurements will need very good understanding of the detector.

Single Tag Mode	Efficiency	Data
	(%)	Yield
$D^0 \rightarrow K^- \pi^+$	64.18 ± 0.19	$25,760 \pm 165$
$\overline{D}{}^0 \rightarrow K^+ \pi^-$	64.90 ± 0.19	$26,258 \pm 166$
$D^\circ \to K^- \pi^+ \pi^\circ$	33.46 ± 0.12	$50,276 \pm 258$
$\overline{D}^0 \rightarrow K^+ \pi^- \pi^0$	33.78 ± 0.12	$50,537 \pm 259$
$D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$	45.27 ± 0.16	$39,709 \pm 216$
$\overline{D}^0 \rightarrow K^+ \pi^- \pi^- \pi^+$	45.81 ± 0.16	$39,606 \pm 216$
$D^+ \rightarrow K^- \pi^+ \pi^+$	54.07 ± 0.18	$40,248 \pm 208$
$D^- \rightarrow K^+ \pi^- \pi^-$	54.18 ± 0.18	$40,734 \pm 209$
$D^+ \rightarrow K^- \pi^+ \pi^+ \pi^0$	26.23 ± 0.18	$12,844 \pm 153$
$D^- \rightarrow K^+ \pi^- \pi^- \pi^0$	26.58 ± 0.18	$12,756 \pm 153$
$D^+ \rightarrow K_S^0 \pi^+$	45.59 ± 0.18	$5,789 \pm 82$
$D^- \rightarrow K_S^0 \pi^-$	45.67 ± 0.18	$5,868 \pm 82$
$D^+ \rightarrow K_S^0 \pi^+ \pi^0$	22.87 ± 0.19	$13,275 \pm 157$
$D^- \rightarrow K_S^0 \pi^- \pi^0$	22.73 ± 0.19	$13,126 \pm 155$
$D^+ \rightarrow K_S^0 \pi^+ \pi^+ \pi^-$	31.43 ± 0.24	$8,275 \pm 134$
$D^- \rightarrow K_S^0 \pi^- \pi^- \pi^+$	31.54 ± 0.24	$8,285 \pm 134$
$D^+ \rightarrow K^+ K^- \pi^+$	45.86 ± 0.36	$3,519 \pm 73$
$D^- \rightarrow K^- K^+ \pi^-$	45.57 ± 0.35	$3,501 \pm 73$

Efficiency corrected CP Asymmetry

Mode	CP Asymmetry (%)
$D^0 \rightarrow K^- \pi^+$	$-0.4 \pm 0.5 \pm 0.9$
$D^0 \rightarrow K^- \pi^+ \pi^0$	$0.2 \pm 0.4 \pm 0.8$
$D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$	$0.7 \pm 0.5 \pm 0.9$
$D^+ \rightarrow K^- \pi^+ \pi^+$	$-0.5 \pm 0.4 \pm 0.9$
$D^+ \rightarrow K^- \pi^+ \pi^+ \pi^0$	$1.0 \pm 0.9 \pm 0.9$
$D^+ \rightarrow K_S^0 \pi^+$	$-0.6 \pm 1.0 \pm 0.3$
$D^+ \rightarrow K_S^0 \pi^+ \pi^0$	$0.3 \pm 0.9 \pm 0.3$
$D^+ \rightarrow K_S^0 \pi^+ \pi^+ \pi^-$	$0.1 \pm 1.1 \pm 0.6$
$D^+ \rightarrow K^+ K^- \pi^+$	$-0.1 \pm 1.5 \pm 0.8$

A. Ryd, Cornell U.

Charm2007, Ithaca NY, Aug. 5-8, 2007

Double Tag Yields (281 pb⁻¹)

Very clean signals in fully reconstructed events
The statistical errors on the double tag yields set the scale of errors on the branching fractions

A. Ryd, Cornell U. Charm2007, Ithaca NY, Aug. 5-8, 2007

Tracking Efficiencies

 We find good agreement between data and MC
 We assign a 0.3% uncertainty per charged track plus 0.6% per kaon

Branching Fractions for 281 pb⁻¹

Parameter	Fitted Value	Fraction	al Error	$\Delta_{\rm FSR}$	= PDG 2004 ■ CLEO-c 281 pb ⁻¹	
		Stat.(%)	Syst.(%)	(%)		
$N_{D^0 \overline{D}^0}$	$(1.031 \pm 0.008 \pm 0.013) \times 10^{6}$	0.8	1.3	+0.1	K [−] π ⁺	
$\mathcal{B}(D^0 \to K^- \pi^+)$	$(3.891 \pm 0.035 \pm 0.059 \pm 0.035)\%$	0.9	1.8	-3.0		
$\mathcal{B}(D^0 \to K^- \pi^+ \pi^0)$	$(14.57 \pm 0.12 \pm 0.38 \pm 0.05)\%$	0.8	2.7	-1.1	Κ ⁻ π ⁺ π ⁰	
$\mathcal{B}(D^0 \to K^- \pi^+ \pi^+ \pi^-)$	$(8.30 \pm 0.07 \pm 0.19 \pm 0.07)\%$	0.9	2.4	-2.5		
N_{D+D-}	$(0.819\pm 0.008\pm 0.010)\times 10^6$	1.0	1.2	+0.1	K ⁻ π ⁺ π ⁻ π ⁺	
$\mathcal{B}(D^+ \to K^- \pi^+ \pi^+)$	$(9.15 \pm 0.10 \pm 0.16 \pm 0.07)\%$	1.1	1.9	-2.4		
$\mathcal{B}(D^+ \to K^- \pi^+ \pi^+ \pi^0)$	$(5.98 \pm 0.08 \pm 0.16 \pm 0.02)\%$	1.3	2.8	-1.0	κππ	
$\mathcal{B}(D^+ \to K^0_S \pi^+)$	$(1.539 \pm 0.022 \pm 0.037 \pm 0.009)\%$	1.4	2.5	-1.8	$K^-\pi^+\pi^+\pi^0$	
$\mathcal{B}(D^+ \rightarrow K^0_S \pi^+ \pi^0)$	$(7.05 \pm 0.09 \pm 0.25 \pm 0.01)\%$	1.3	3.5	-0.4		
$\mathcal{B}(D^+ \rightarrow K^0_S \pi^+ \pi^+ \pi^-)$	$(3.149 \pm 0.046 \pm 0.094 \pm 0.019)\%$	1.5	3.0	-1.9	K ^o sπ⁺ H eH	
$\mathcal{B}(D^+ \to K^+ K^- \pi^+)$	$(0.935\pm0.017\pm0.024\pm0.003)\%$	1.8	2.6	-1.2		
$\mathcal{B}(D^0 \to K^- \pi^+ \pi^0) / \mathcal{B}(K^- \pi^+)$	$3.744 \pm 0.022 \pm 0.093 \pm 0.021$	0.6	2.6	+1.9		1
$\mathcal{B}(D^0 \to K^- \pi^+ \pi^+ \pi^-) / \mathcal{B}(K^- \pi^+)$	$2.133 \pm 0.013 \pm 0.037 \pm 0.002$	0.6	1.7	+0.5	$K^{0} \pi^{+} \pi^{-} \pi^{+}$	
$\mathcal{B}(D^+ \to K^- \pi^+ \pi^+ \pi^0) / \mathcal{B}(K^- \pi^+ \pi^+)$	$0.654 \pm 0.006 \pm 0.018 \pm 0.003$	0.9	2.7	+1.3		
$\mathcal{B}(D^+ \to K^0_S \pi^+) / \mathcal{B}(K^- \pi^+ \pi^+)$	$0.1683 \pm 0.0018 \pm 0.0038 \pm 0.0003$	1.1	2.3	+0.5	K ⁻ K ⁺ π ⁺	
$\mathcal{B}(D^+ \to K^0_S \pi^+ \pi^0) / \mathcal{B}(K^- \pi^+ \pi^+)$	$0.771 \pm 0.007 \pm 0.027 \pm 0.005$	0.9	3.5	+1.9		
$\mathcal{B}(D^+ \to K^0_S \pi^+ \pi^+ \pi^-) / \mathcal{B}(K^- \pi^+ \pi^+)$	$0.3444 \pm 0.0039 \pm 0.0093 \pm 0.0004$	1.1	2.7	+0.4		
$\mathcal{B}(D^+ \to K^+ K^- \pi^+) / \mathcal{B}(K^- \pi^+ \pi^+)$	$0.1022 \pm 0.0015 \pm 0.0022 \pm 0.0004$	1.5	2.2	+1.1	0.4 0.6 0.8 1.0 1.2 1.4	Ι.
					B(CLEO)/B(PDG2004)	

• Statistical errors about 1% - mostly limited by double tag yields • Δ_{FSR} is the effect of not including final state radiation in the MC

A. Ryd, Cornell U. Charm2007, Ithaca NY, Aug. 5-8, 2007

$D^0 \rightarrow K^- \pi^+$ Summary

A. Ryd, Cornell U.

Charm2007, Ithaca NY, Aug. 5-8, 2007

CLEO-c *D_s* **Branching Fractions**

- Use same technique as for the D⁰ and D+ branching fractions
 Pairs of D_s and D_s*
 Used 298 pb⁻¹ of data recorded at (or near) E_{cm}=4170 MeV
- We study the final states:
 -KsK+
 - **→***K*+*K*-π+
 - **-***K*+*K*-*π*+*π*⁰
 - $-K_SK-\pi+\pi+$
 - $-\pi+\pi-\pi+$
 - **~**ηπ+
 - **~**η'π+
 - **-***K*+*π*-*π*+
- A. Ryd, Cornell U.

Charm2007, Ithaca NY, Aug. 5-8, 2007

Page: 12

Single Tag Yields (298 pb⁻¹)

A. Ryd, Cornell U.

Charm2007, Ithaca NY, Aug. 5-8, 2007

All double tags

We have 976±33 double tags
This sets the scale of statistical error ~3.5%

A. Ryd, Cornell U. Charm2007, Ithaca NY, Aug. 5-8, 2007

D_s Hadronic Branching Fractions

A. Ryd, Cornell U. Charm2007, Ithaca NY, Aug. 5-8, 2007

What about $D_s \rightarrow \phi \pi$?

- - $D_s \rightarrow \phi \pi$ interferes with $D_s \rightarrow f_0 \pi$
- $B(D_s \rightarrow \phi \pi)$ is not well defined and CLEO-c are not quoting it.
- We calculate a partial br. fr. in a
 - m_{KK} window around the ϕ mass
- A detailed Dalitz study needed to separate out the D_s fit fractions

$m(K^-K^+)$ range	Partial branching fraction $(\%)$
$ m(K^-K^+) - m_{\phi} < 5 \text{ MeV}$	$1.75 \pm 0.08 \pm 0.06$
$ m(K^-K^+) - m_{\phi} < 10 \text{ MeV}$	$2.07 \pm 0.10 \pm 0.05$
$ m(K^-K^+) - m_{\phi} < 15 \text{ MeV}$	$2.22 \pm 0.11 \pm 0.06$
$ m(K^-K^+) - m_{\phi} < 20 \text{ MeV}$	$2.32 \pm 0.11 \pm 0.06$

For reference: $D_s \rightarrow \phi \pi^+$ PDG06: (4.4±0.6)%

Inclusive η , η' , and ϕ **Production** in *D* and *D_s* **Decays** at CLEO-c

- Tag one D or D_s and look at rest of event
 - 281 pb⁻¹ for D⁰ and D+
 195 pb⁻¹ for D_s
- As expected, we see that the production of η , η' , and ϕ is larger in D_s decays than in D decays.
- Important branching fractions for studying B_s decays.

В	ղ (%)	PDG
D^0	$9.5 \pm 0.4 \pm 0.8$	<13%
D^+	$6.3 \pm 0.5 \pm 0.5$	<13%
D_{s}^{+}	$23.5 \pm 3.1 \pm 2.0$	-

В	η´ (%)	PDG
D^{0}	$2.48 \pm 0.17 \pm 0.21$	-
D^+	$1.04 \pm 0.16 \pm 0.09$	-
D_{s}^{+}	$8.7 \pm 1.9 \pm 1.1$	-

В	φ (%)	PDG
D^{0}	$1.05 \pm 0.08 \pm 0.07$	1.7 ± 0.8
$D^{\scriptscriptstyle +}$	$1.03 \pm 0.10 \pm 0.07$	<1.8
D_{s}^{+}	$16.1 \pm 1.2 \pm 1.1$	-

PRD 74 (2006) 112005

A. Ryd, Cornell U.

Charm2007, Ithaca NY, Aug. 5-8, 2007

$D^+ \rightarrow K^+ \pi^0$

• CLEO-c studied this doubly Cabibbo suppressed decay • Normalize to $D^+ \rightarrow K^-\pi^+\pi^+$

M_{BC} Distribution

$B(D^+ \rightarrow K^+ \pi^0) = (2.24 \pm 0.36 \pm 0.15 \pm 0.08) \times 10^{-4}$

A. Ryd, Cornell U. Charm2007, Ithaca NY, Aug. 5-8, 2007

$D \rightarrow K_{\rm S} \pi$ and $D \rightarrow K_{\rm L} \pi$

• It is often assumed that $\Gamma(D \rightarrow K_S X) = \Gamma(D \rightarrow K_L X)$, but this is not strictly true due to interference effects.

A. Ryd, Cornell U. Charm2007, Ithaca NY, Aug. 5-8, 2007

Measuring $D^0 \rightarrow K_L \pi^0 P_{relininary}$

- CLEO-c is uniquely positioned to measure $D^0 \rightarrow K_L \pi^0$
- In tagged events, look at recoil against π^0 and veto $K_{\rm S}$

• Correcting for Quantum Correlations
•
$$B(D^0 \rightarrow K_L^0 \pi^0) = (0.940 \pm 0.046 \pm 0.032)\%$$

• $B(D^0 \rightarrow K_S^0 \pi^0) = (1.212 \pm 0.016 \pm 0.039)\%$
 $\frac{\Gamma(D^0 \rightarrow K_S) - \Gamma(D^0 \rightarrow K_L)}{\Gamma(D^0 \rightarrow K_S) + \Gamma(D^0 \rightarrow K_L)} = 0.122 \pm 0.024 \pm 0.030$ In agreement with theory (factorization)

A. Ryd, Cornell U. Charm2007, Ithaca NY, Aug. 5-8, 2007

Preliminary $D^+ \rightarrow K_L \pi^+ vs. D^+ \rightarrow K_S \pi^+$

Look for recoil mass against pion in tagged events
 Veto pions from K_s decays

$$R(D^{+}) = \frac{\Gamma(D^{+} \to K_{S}) - \Gamma(D^{+} \to K_{L})}{\Gamma(D^{+} \to K_{S}) + \Gamma(D^{+} \to K_{L})} = 0.030 \pm 0.023 \pm 0.025$$

Dao-Neng Gao arXiv:hep-ph/0610389v2 Predicts: $R(D^+)=0.035$ to 0.044

Can also learn about δ , see talk by J. Rosner,

A. Ryd, Cornell U. Charm2007, Ithaca NY, Aug. 5-8, 2007

D_s→Two Pseudoscalars

Study D_s two-body final states with two pseudoscalars

- Will have either: K^+ or π^+ , and
- •one of: η, η', π⁰, *K*⁰_S
- This analysis studied the following modes:
 single-Cabibbo-suppressed modes:

 $D_{s} \rightarrow K^{+}\eta$, $D_{s} \rightarrow K^{+}\eta'$, $D_{s} \rightarrow K^{+}\pi^{0}$, and $D_{s} \rightarrow \pi^{+}K^{0}S$

π0

b ה

 $\frac{u}{d}$ π^+ $\frac{u}{u}$ $-\pi^0$

 $\frac{u}{2}\pi^+$

The isospin forbidden mode

 $D_{\rm S} \rightarrow \pi^+ \pi^0$

W

$$^{0} = \frac{1}{\sqrt{2}} (d \,\overline{d} - u \,\overline{u})$$

Measure as ratios to the Cabibbo favored modes:

$$D_{s} \rightarrow \pi^{+}$$
η
 $D_{s} \rightarrow \pi^{+}$ η'
 $D_{s} \rightarrow K^{+}K^{0}$ s

Extract yields in invariant mass after cutting on the recoil mass

A. Ryd, Cornell U.

S

Charm2007, Ithaca NY, Aug. 5-8, 2007

 π

$D_s \rightarrow PP$ Results

Invariant Mass (GeV)

 $D_s^+ \rightarrow \pi^+ \pi^0$ 50 40 30 20 10 1.90 1.92 1.94 1.96 1.98 2.00 2.02 2.04 Invariant Mass (GeV) Mode $\mathcal{B}_{\rm S}/\mathcal{B}_{\rm F}(10^{-2}$ $\mathcal{B}(D_s^+ \to K^+\eta) / \mathcal{B}(D_s^+ \to \pi^+\eta)$ $8.9 \pm 1.5 \pm 0.4$ $\begin{array}{c} \mathcal{B}(D_s^+ \to K^+ \eta') \ / \ \mathcal{B}(D_s^+ \to \pi^+ \eta') \\ \mathcal{B}(D_s^+ \to \pi^+ K_S^0) \ / \ \mathcal{B}(D_s^+ \to K^+ K_S^0) \end{array}$ $4.2 \pm 1.3 \pm 0.3$ $8.2 \pm 0.9 \pm 0.2$ $\mathcal{B}(D_s^+ \to K^+ \pi^0) / \mathcal{B}(D_s^+ \to K^+ K_S^0)$ $5.0 \pm 1.2 \pm 0.6$ $\mathcal{B}(D_s^+ \to \pi^+ \pi^0) / \mathcal{B}(D_s^+ \to K^+ K_S^0)$ < 4.1 (90% CL) First observation of the Cabibbo suppressed decays Ratio in agreement with naïve expectation $|V_{cd}/V_{cs}|^2 \sim 0.05$ Submitted to PRL (arXiv:0708.0139)

A. Ryd, Cornell U.

Charm2007, Ithaca NY, Aug. 5-8, 2007

$D_s \rightarrow PP \ CP \ Asymmetries$

• We have also looked for a CP asymmetry between the rate for D_S^+ and D_S^- decays:

Mode	$(\mathcal{B}_+ - \mathcal{B})/(\mathcal{B}_+ + \mathcal{B})(\%)$
$\overline{\mathcal{A}(D_s^+ \to K^+ \eta)}$	-20 ± 18
$\mathcal{A}(D_s^+ \to K^+ \eta')$	$-17~\pm~37$
$\mathcal{A}(D_s^+ \to \pi^+ K_S^0)$	$27~\pm~11$
$\mathcal{A}(D_s^+ \to K^+ \pi^0)$	2 ± 29

No statistically significant asymmetry observed

A. Ryd, Cornell U. Charm2007, Ithaca NY, Aug. 5-8, 2007

D→KK modes

- CLEO-c has studied two-body Cabibbo suppressed decays of D mesons to kaon pairs:
 - $D^0 \rightarrow K^+K^-$
 - $D^0 \rightarrow K_S K_S$
 - $D^+ \rightarrow K^+ K_S$

• In addition the $D^0 \rightarrow K_S K_S$ mode is strongly suppressed:

These amplitudes interfere destructively

A. Ryd, Cornell U. Charm2007, Ithaca NY, Aug. 5-8, 2007

Reconstruct final states as 'single tags'

- We measure these modes with respect to the normalization modes ($D^0 \rightarrow K^-\pi^+$ and $D^+ \rightarrow K^-\pi^+\pi^+$)
- The $D^0 \rightarrow K_S K_S$ mode has backgrounds from $D^0 \rightarrow K_S \pi \pi$
 - Subtracted using K_s sidebands

A. Ryd, Cornell U. Charm2007, Ithaca NY, Aug. 5-8, 2007

D→KK Results

Preliminary

• Our results, the errors are statistics, exp. systematics, PDG branching fractions

Conclusion

- CLEO-c has measured the D⁰, D⁺, and D_s absolute branching fractions
 - The D⁰ and D+ branching fractions are systematics limited
 - The D_s branching fractions not yet systematics limited.
- Results on a number of other modes were presented, including modes with K_L and Cabibbo suppressed D and D_s decays
- •CLEO-c will record more data at the $\psi(3770)$ and at $E_{cm}=4170$ MeV
 - We are far along to reach the goal of \sim 750 pb⁻¹ at the $\psi(3770)$
 - We plan to double the sample at E_{cm} =4170 MeV for a total of about 600 pb⁻¹
- Look forward to many more CLEO-c results

A. Ryd, Cornell U. Charm2007, Ithaca NY, Aug. 5-8, 2007

Backup Slides

A. Ryd, Cornell U. Charm2007, Ithaca NY, Aug. 5-8, 2007

Quantum Correlations

The two D^0 mesons are correlated: C=-1

PRD 73 034024 (2006) Asner and Sun

	f	l +	<i>CP</i> +	CP -	$\mathbf{x} = \frac{\Delta \mathbf{m}}{\Delta \mathbf{m}}$
f	$R_{M}(1+r^{2}(2-z^{2}))$		Correction to	BR	$ \begin{array}{ccc} $
f	1+ <i>r</i> ² (2- <i>z</i> ²)		as compared incoherent de	to ecav	$y = \frac{\Delta T}{2\Gamma}$
l-	1	1			$R_M = (x^2 + y^2)/2$
<i>CP</i> +	1+ <i>rz</i>	1	0		$r oldsymbol{ ho}^{i\delta} - rac{\langle \overline{D}^0 K^- \pi^+ angle}{\pi}$
СР -	1- <i>rz</i>	1	2	0	$\Delta E^{-} = - \frac{1}{\langle D^{0} K^{-} \pi^{+} \rangle}$
X	1+rzy	1	1-у	1+y	$z=2\cos\delta$

• For CP vs CP eigenstates the correlation is a large effect

• *E.g* the decay $D^0 \rightarrow K_S \pi^0$ where the other *D* decays generically (single tag)

$$N(D^0 \to K_S^0 \pi^0) = 2N_{D^0 \overline{D^0}} B(D^0 \to K_S^0 \pi^0)(1+y)$$

• Where the other *D* is a flavor tag $D \rightarrow f$ $N(D^0 \rightarrow K_S^0 \pi^0) = N_{D^0 \overline{D^0}} B(D^0 \rightarrow K_S^0 \pi^0) (1 - 2r_f \cos \delta_f)$

A. Ryd, Cornell U. Charm2007, Ithaca NY, Aug. 5-8, 2007