γ/φ_3 Impact from CLEO-c Using CP-Tagged $D \rightarrow K_{S,L}\pi\pi$ Decays

Eric White - University of Illinois Qing He - University of Rochester for the CLEO Collaboration Charm 07

Aug 6, Charm 2007

Path to Measuring γ/φ_3

- Use $B^{\pm} \rightarrow DK^{\pm}$ decays, followed by Dalitz plot analysis of $D \rightarrow K_s \pi^+ \pi^-$.
- Developed by Giri, Grossman, Soffer, Zupan (GGSZ)[1] / Belle [2] -- exploit interference between D⁰ and D
 ⁰ channels

Current γ/φ_3 Measurements

BaBar: $92^{\circ} \pm 41^{\circ}(\text{stat}) \pm 11^{\circ}(\text{syst}) \pm 12^{\circ}(\text{model})$ (211 fb⁻¹)

BaBar Collaboration, B. Aubert et al. hep-ex/0607104

Belle: $53^{\circ} \pm 17^{\circ}(\text{stat}) \pm 3^{\circ}(\text{syst}) \pm 9^{\circ}(\text{model})$ (357 fb⁻¹)

Belle Collaboration, A. Poluektov et al. Phys. Rev. D73 (2006)

Statistical uncertainty will go down to about ~ 6° with projected 2 ab⁻¹ ($r_{B} = 0.16$)

(LHCb projects ~ $3^{\circ}-5^{\circ}$ uncertainty after 5 years...)

 10° model uncertainty will dominate \rightarrow CLEO-c can help lower this number

Measuring c_i with *CP*-tagged $K_S \pi \pi$ Dalitz Plots

Correlated $D\overline{D}$ pairs (C = -1) are produced at CLEO-c We **tag** the $K_s \pi \pi$ sample by reconstructing $D \rightarrow CP \pm$ eigentstates

$$D_{CP\pm} = \frac{D^{\theta} \pm \overline{D^{\theta}}}{\sqrt{2}}$$

$$K_{S,L}\pi\pi$$

$$D \overline{D}$$

$$CP Tag$$

Ψ(3770

Binned Dalitz plot

π² (GeV²/c⁴) 5.2

For CP-tagged Dalitz plots, number of events in Dalitz plot is

$$M \sim |f_D|^2 + |\overline{f_D}|^2 \pm 2|f_D||\overline{f_D}| \cos(\delta_D)$$

Divide the $(K_S \pi \pi)D$ Dalitz plot in to bins, symmetric under interchange of $\pi^+ \leftrightarrow \pi^-$ interchange.

$$\begin{array}{c} \hline \text{Define} \rightarrow c_i = \langle \cos(\delta_D) \rangle_i \\ c_i \text{ can be determined by counting CP-tagged bins} \end{array} \\ c_i = \frac{1}{2} \frac{(\overline{M}_i^- - \overline{M}_i^+)}{(\overline{M}_i^- + \overline{M}_i^+)} \frac{(K_i + K_{\underline{-i}})}{\sqrt{K_i K_{-i}}} \underbrace{0.5}_{\underline{0}} \underbrace{0}_{\underline{0}} \underbrace{0.5 \ 1 \ 1.5 \ 2 \ 2.5 \ m_i^2 (\text{GeV})}_{\underline{m}_i^2 (\text{GeV})} \\ \hline \text{CP}\text{-tagged flavor-tagged} \end{array}$$

Tagged $K_{S}\pi^{+}\pi^{-}$ **Data from CLEO-c**

We use 398 pb⁻¹ of correlated $\Psi(3770) \rightarrow D\overline{D}$ decays Flavor-tagging modes: $D^0 \rightarrow K^-\pi^+$, $K^-\pi^+\pi^0$, $K^-\pi^+\pi^-\pi^+$ (plus charge-conjugate)

What about $K_L \pi \pi$?

- Why not use $K_L \pi \pi$?
- Similar structure, opposite *CP*
- More than doubles overall statistics

Tagged $K_L \pi^+ \pi^-$ Data

Use same flavor and *CP* tag modes as $K_S \pi \pi$, with same basic event selection

*K*_Lπ⁰ vs. *K*_Sππ

Additionally, we use $K_L \pi^0$ as *CP*-even tag for $K_S \pi \pi$ mode

CP-tagged $K_S \pi^+ \pi^-$ Dalitz Plots

CP-tagged $K_L \pi^+ \pi^-$ Dalitz Plots

Flavor-tagged $K_{S,L}\pi^+\pi^-$ Dalitz Plots

Must take this into account before combining c_i measurements for $K_L \pi \pi$ and $K_S \pi \pi$ samples

Eric White, University of Illinois

August 6, Charm 2007

Combining c_i from $K_S \pi \pi$ and $K_L \pi \pi$

Define *r* as the magnitude of DCS/CF ratio

r is small (~ 0.06), but
is the phase known?
$$A(D^0 \rightarrow K_S \pi \pi) = K^{*-}(CF) + K^{*+}(DCS) + f_0 + \rho^0 + \dots$$

$$A(D^{0} \to K_{L}\pi\pi) = K^{*-}(CF(-K^{*+}(DCS) + (1-2re^{i?})f_{0} + (1-2re^{i?})\rho^{0} + \dots$$

Value of c_i is in general <u>different</u> for $K_L \pi \pi$ and $K_S \pi \pi$, but can be related through U-spin symmetry

By varying each unknown phase and recalculating c_i , we can determine a measure of the systematic uncertainty for $K_L \pi \pi$

Eric White, University of Illinois

August 6, Charm 2007

Binned Analysis

Comparing c_i for $K_{S,L}\pi^+\pi^-$

- Obtain $K_L \pi \pi$ model by changing sign of DCS terms $\rightarrow K^{*+}(892), K^{*+}(1410)...$
- Calculate c_i from $K_S \pi \pi$ and $K_L \pi \pi$ models
- Vary phase for each resonance, keep largest difference in c_i

- Systematic uncertainty from $K_L \pi \pi$ is 'small compared to c_i difference
- Good agreement of *c_i* difference in data

Λ

-0.2

Bin Number

Sensitivity to c_i

- We combine $K_L \pi \pi$, $K_S \pi \pi$ Dalitz plots into an improved overall measurement of c_i
- Scale statistical uncertainty up to full 750 pb⁻¹
- Combine with $K_L \pi \pi$ systematic uncertainty to determine overall expected sensitivity from CLEO-c measurement

0.8

 c_i calculated from model

Conclusion

- $K_L \pi \pi, K_S \pi \pi$ samples can be combined
- Good sensitivity to c_i
- Total D_{CP} expected to be ~ 1,530 for 750 pb⁻¹
- Combined BaBar/Belle (2 ab⁻¹) statistical uncertainty $\rightarrow \pm 6^{\circ}$
- CLEO-c can reduce model uncertainty from $\pm 10^{\circ}$ down to $\pm 4^{\circ}$ in γ/φ_3 measurement

Back up

Following modes will also be used to measure c_i and s_i

 $\left. \begin{array}{c} K_{S}\pi\pi \text{ vs. } K_{S}\pi\pi (\sim 480) \\ K_{S}\pi\pi \text{ vs. } K_{L}\pi\pi (\sim 1240) \end{array} \right\} \text{ Expected yields (750 pb^{-1})}$