Recent Results in Bottomonium Ties to Charmonium

Richard S. Galik and David Kreinick
Cornell Laboratory for Accelerator-based ScienceS and Education

Bottom compared to Charm

Heavy quark symmetry

$$
\begin{gathered}
\mathrm{m}_{\mathrm{b}} / \mathrm{m}_{\mathrm{c}}=5 \mathrm{GeV} / 1.7 \mathrm{GeV} \approx 3 \\
\left|\mathrm{q}_{\mathrm{b}} / \mathrm{q}_{\mathrm{c}}\right|=\mathrm{e} / 3 / 2 \mathrm{e} / 3=1 / 2 \\
\mathrm{r}_{\mathrm{b}} / \mathrm{r}_{\mathrm{c}} \approx 0.3 \mathrm{fm} / 0.5 \mathrm{fm}=0.6 \\
\beta_{\mathrm{b}}^{2} / \beta_{\mathrm{c}}^{2} \approx \mathrm{~m}_{\mathrm{c}} / \mathrm{m}_{\mathrm{b}} \approx 1 / 3 \\
\alpha_{\mathrm{s}, \mathrm{~b}} / \alpha_{\mathrm{s}, \mathrm{c}} \approx 0.2 / 0.3=2 / 3
\end{gathered}
$$

Cornell potential $\sim(a / r)+b r$
Some implications ... b-bbar will differ in a calculable way ...
More Coulomb-like, less able to probe confinement region, more asymptotically free, more states below threshold, more non-relativistic, smaller M1 rates, higher decay multiplicities, less copiously produced in $\mathrm{e}^{+} \mathrm{e}^{-}$

Bottomonium a different laboratory to study the same physics

Charmonium and Bottomonium

Players of Note

- Direct production in $\mathbf{e}^{+} \mathbf{e}^{-:}$
- CLEO: 6 M r(3S), $9 \mathrm{M} \Upsilon(2 S)$, $21 \mathrm{M} \mathrm{r(1S)}$
- Belle: $11 \mathrm{M} \mathrm{r(3S)} \mathrm{(in} \mathrm{a} \mathrm{few} \mathrm{days'} \mathrm{run!)}$
- Belle and BaBar: 100's of M r(4S)
- ISR Production:

- Belle and BaBar: 10's of M r(1S), r(2S), r(3S)
- Belle and BaBar: 10 's of M $\Upsilon(\mathbf{1 S}), r(2)$

- Hadro-production:
- CDF $\}$ Production Ratios
- D0 $\}$ \{ Polarizations

Polarization in Production

$\mathbf{p} \bar{p}$ production of onia can be modeled with NRQCD
Uses "universal" matrix elements with color-octet pieces, which describe production cross sections adequately
Polarization parametrized by $\alpha=\left(\sigma_{T}-2 \sigma_{\mathrm{L}}\right) /\left(\sigma_{\mathrm{T}}+2 \sigma_{\mathrm{L}}\right)$
Measured by angular distribution in di-lepton (dimuon) decays: dN/d $\cos \theta^{*} \sim\left(1+\alpha \cos ^{2} \theta^{*}\right)$
NRQCD predicts a large transverse polarization at high p_{T} gluon fragmentation becomes dominant mechanism
α should approach unity at high p_{T}
\mathbf{k}_{T}-factorization ("semi-hard") makes opposite prediction
large longitudinal polarizations at high p_{T}
α becomes negative at large p_{T}
Neither formulation works well in charmonium
New results in bottomonium from D0 with 1.3/fb, ~420K rs

Polarization in Production

Neither phenomenology describes $\overline{\mathrm{c}}$ well

D0 observes significant polarization in $\Upsilon(1 S)$ production, inconsistent with NRQCD
$r(2 S)$ is "not inconsistent" with NRQCD
Bottomonium only deepens the puzzle for polarization in onium production

[^0]
Dipion Transition Matrix Element

Dipion Transition Matrix Element

Brown and Cahn [PRL 35, 1 (1975)] use PCAC and current algebra:

$$
M=A\left(\varepsilon^{\prime} \cdot \varepsilon\right)\left(q^{2}-2 m_{\pi}^{2}\right)+B\left(\varepsilon^{\prime} \cdot \varepsilon\right) E_{1} E_{2}+C\left[\left(\varepsilon^{\prime} \cdot q_{1}\right)\left(\varepsilon \cdot q_{2}\right)+\left(\varepsilon^{\prime} \cdot q_{2}\right)\left(\varepsilon \cdot q_{1}\right)\right]
$$

- CLEO fits 2-D "Dalitz" plot $\left(q^{2}=M_{\pi \pi}{ }^{2} \& M_{r \pi}{ }^{2}\right)$, for the three di-pion transitions among the $\Upsilon(n S)$ states [hep-ex/0706.2317]
- Only the two terms, with complex, constant form factor coefficients

A and B, are needed to give good fits to the data

Initial Υ	Final Υ	$\operatorname{Re}(\mathrm{B} / \mathrm{A})$	Im (B/A)
3S	1S	-2.52 ± 0.04	$\pm 1.19 \pm 0.06$
2 S	1S	-0.75 ± 0.15	0.00 ± 0.11
3S	2 S	-0.40 ± 0.32	0.00 ± 1.10
Includes system. uncert's		$\|\mathrm{C} / \mathrm{A}\|_{\text {3to1 }} \times 1.09$ @ 90\% CL	

Dubynskiy/Voloshin [hep-ph/0707.1272] argue that CLEO parametrization is too naïve, B cannot be constant over the Dalitz plot

Good to revisit with Belle $(Q=b)$ and CLEOc/BES $(Q=c)$ data!

Pseudo-scalar Transitions

In charmonium $\psi(2 \mathrm{~S}) \rightarrow \eta \mathrm{J} / \psi$ is (surprisingly) large $\sim 3 \%$
Kuang [hep-ph10601044 v2] scales $\Gamma \sim\left(\mathrm{p}^{*}\right)^{3} / \mathrm{m}_{Q}{ }^{4}$ to predict

$\gamma \boldsymbol{K}$ Kinetic energy, MeV \rightarrow

$B(r(2 S) \rightarrow \eta r(1 S))=(8.1 \pm 0.8) \times 10^{-4}$
$B(\Upsilon(3 S) \rightarrow \eta r(1 S))=(6.7 \pm 0.7) \times 10^{-4}$

CLEO seeks $\mathrm{r}(2 \mathrm{~S}) \rightarrow \eta \mathrm{r}(1 \mathrm{~S})$ with $r(1 S) \rightarrow \mu \mu$ or ee, and $\eta \rightarrow \gamma$ or $\pi^{+} \pi \pi^{0}$
Sees preliminary $\sim 5 \sigma$ evidence
$B(\Upsilon(2 S) \rightarrow \eta r(1 S))=(2.5 \pm 0.7 \pm 0.5) \times 10^{-4}$

Also seek π^{0}, find no excess over background $\mathrm{B}\left(\mathrm{Y}(2 \mathrm{~S}) \rightarrow \pi^{0} \mathrm{Y}(1 \mathrm{~S})\right)<2.1 \times 10^{-4}$ consistent with expected ratio to η (.16)
Also 3 events in $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ mode

〔 Decays to Invisible Particles

Onia decays to undetectable particles are a window on physics beyond the Standard Model (BSM):

- Dark matter candidate, χ ?

$$
B(\Upsilon(\mathbf{1 S}) \rightarrow \chi \chi)=0.41 \% \text { McElrath [PRD72, } 103508 \text { (2005)] }
$$

- New gauge bosons? Light gravitino? Fayet [PRD74, 054034 (2006)]
- vv via Z^{0} a very small potential background

But how does one "see" such invisible decays?
Tag presence of Υ via $\pi \pi$ transition from higher state!
Require recoil against $\pi \pi$ be Υ
Require detector otherwise empty

〔 Decays to Invisible Particles

〔 Decays to Invisible Particles

90\%CL limits:

$$
\begin{aligned}
& \mathrm{B}(\mathrm{Y} \rightarrow \text { "invisible" })_{\text {Belle }}<0.25 \% \\
& \mathrm{~B}(\mathrm{Y} \rightarrow \text { "invisible" })_{\text {cLEO }}<0.39 \%
\end{aligned}
$$

Each limit is an order of magnitude better than previous best
Combined limit about half $\chi \chi$ prediction of 0.41%
Betters gravitino mass limit by $\times 4$ to $\mathrm{m}_{3 / 2}>1.2 \times 10^{-7} \mathrm{eV}$
Such BSM decays also accessible in charmonium! More limited mass range
Smaller predicted branching fraction
See R. McElrath's talk next in this session!

Radiative Decays to Higgs?

Dermisek, Gunion, McElrath propose adding to the MSSM a non-SM-like pseudoscalar higgs a_{0} with $\mathrm{m}_{\mathrm{a} 0}<2 \mathrm{~m}_{\mathrm{b}}$ [hep-ph/0612031] "NMSSM" "natural," avoids fine tuning
evades the LEP limit $M_{h}>100 \mathrm{GeV}$ since $h \rightarrow a_{0} a_{0}$, but $a_{0} \nrightarrow b b$ and LEP sought b jets $a_{0} \rightarrow \tau^{+} \tau$ should predominate if $m_{a 0}>2 m_{\tau}$
Should be visible in $\Upsilon \rightarrow \gamma a_{0}$
Experimentally, CLEO seeks monochromatic γ
Use $\mathrm{r}(2 \mathrm{~S}) \rightarrow \pi \pi \mathrm{r}(1 \mathrm{~S})$ tag to eliminate $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \tau \tau \gamma$ background
Flag presence of τ pair with two 1 -prong τ decays (one lepton), missing energy

ULs improved an order of magnitude or more

Rules out many, but not all NMSSM models

Other Radiative Decays

Among the most common radiative decays in J / ψ is $\gamma \mathrm{f}_{2}(1270)$.
Unlike in the J/ ψ system, few exclusive radiative decays of the r are known, but CLEO has now found this decay for r in two modes.

Radiative Decays to f's

For $\Upsilon \rightarrow \gamma \mathrm{f}_{\mathbf{2}}(\mathbf{1 2 7 0})$ simple scaling from charmonium works:
Expect $\mathrm{B}\left(\psi \rightarrow \gamma \mathrm{f}_{2}\right) / \mathrm{B}\left(\mathrm{r} \rightarrow \gamma \mathrm{f}_{2}\right)=\left(\mathrm{a}_{\mathrm{c}} / \mathrm{q}_{\mathrm{b}}\right)^{2}\left(\mathrm{~m}_{\mathrm{b}} / \mathrm{m}_{\mathrm{c}}\right)^{2}\left(\Gamma_{\mathrm{bb}} / \Gamma_{\mathrm{cc}}\right) \approx 20$ Observe

$$
\begin{aligned}
& \mathrm{B}\left(\mathrm{r} \rightarrow \gamma \mathrm{f}_{2}(1270)\right)=(10.2 \pm 0.8 \pm 0.7) \times 10^{-5} \quad\left(\pi^{+} \pi^{-}\right) \text {PRD73, (232001(2006) } \\
& \mathrm{B}\left(\mathrm{r} \rightarrow \gamma \mathrm{f}_{2}(1270)\right)=(10.5 \pm 1.6 \pm 1.9) \times 10^{-5}\left(\pi^{0} \pi^{0}\right) \text { PRR75, 072001 (2007) } \\
& \mathrm{B}\left(\Upsilon \rightarrow \gamma \mathrm{f}_{2}(1270)\right)=(10.23 \pm 0.97) \times 10^{-5} \quad(\text { combined }) \\
& \mathrm{B}\left(\psi \rightarrow \gamma \mathrm{f}_{2}\right) / \mathrm{B}\left(\Upsilon \rightarrow \gamma \mathrm{f}_{2}\right)=14.0 \pm 1.7
\end{aligned}
$$

Dominant helicity $=0$, as expected from theory

Radiative Decays to η, η^{\prime}

Another prominent radiative decay is $\mathrm{J} / \psi \rightarrow \eta^{\prime}$:

$$
\begin{aligned}
& \mathrm{B}\left(\mathrm{~J} / \psi \rightarrow \gamma \eta^{\prime}\right)=(4.7 \pm 0.3) \times 10^{-3} \\
& \mathrm{~B}\left(\mathrm{~J} / \psi \rightarrow \gamma \eta^{\prime}\right) / \mathrm{B}\left(\mathrm{~J} / \psi \rightarrow \gamma \mathrm{f}_{2}\right)=3.4 \pm 0.4 \\
& \mathrm{~B}\left(\mathrm{~J} / \psi \rightarrow \gamma \eta^{\prime}\right)\left[\mathrm{B}\left(\Upsilon \rightarrow \gamma \mathrm{f}_{2}\right) / \mathrm{B}\left(\mathrm{~J} / \psi \rightarrow \gamma \mathrm{f}_{2}\right)\right]=(3.5 \pm 0.5) \times 10^{-4}
\end{aligned}
$$

naïve scaling
$\mathrm{B}(\mathrm{J} / \psi \rightarrow \gamma \eta)\left[\mathrm{B}\left(\Upsilon \rightarrow \gamma \mathrm{f}_{2}\right) / \mathrm{B}\left(\mathrm{J} / \psi \rightarrow \gamma \mathrm{f}_{2}\right)\right]=(0.7 \pm 0.1) \times 10^{-4}$
But we know the η^{\prime} to be rather unconventional

- Anomalous 5x larger branching ratio compared to η
- 14\% gluonic content? - KLOE [PLB648 267 (2007)]
- Possible charmonium content?

Theoretical approaches include:

- VDM - Intemann [PRD 272755 (1983)]
- Mixing with η_{b} - Chao [Nucl Phys B335 101 (1990)]
- Higher twist contribution - Ma [PRD65 097506 (2002)]

Radiative Decays to η, η^{\prime}

New 90\% CL limits from CLEO

Use 21 M r decays to get:
Naïve
scaling

$$
\begin{array}{ll}
\mathrm{B}\left(\mathrm{r} \rightarrow \eta^{\prime}\right)<1.9 \times 10^{-6} & 350 \times 10^{-6} \\
\mathrm{~B}(\mathrm{r} \rightarrow \gamma)<1.0 \times 10^{-6} & 70 \times 10^{-6}
\end{array}
$$

Significant improvement in limits
Naïve scaling fails by 2 orders of magnitude

Chao's mixing approach not supported for η^{\prime} (factor of 30)
Intemann's VDM predictions $\sim 10^{-7}$
Ma's predictions a bit below these limits

Summary

Bottomonium is a useful complement to charmonium in studying QCD in production, spectroscopy and decay

New results in polarization of Υ in $\overline{\mathrm{pp}}$ production are not well described by NRQCD or k_{T}-factorization
A 2D fitting technique for $\mathrm{r}(\mathrm{nS}) \rightarrow \pi \pi(\mathrm{mS})$ transitions may help clarify a longstanding puzzle
The pseudoscalar hadronic transition $\mathrm{r}(2 \mathrm{~S}) \rightarrow \eta \mathrm{r}(1 \mathrm{~S})$ has finally been seen, about $1 / 3$ as large as scaling from charm predicts
Searches for decays of $\Upsilon(1 S)$ to invisibles have upper limits smaller than the predictions of $\chi \chi$ or gravitino
A search for low mass pseudoscalar higgs a_{0} sees none
The radiative decay $\gamma(1 S) \rightarrow \gamma f_{2}(1270)$ has been seen at about the strength predicted from charmonium, but $\mathrm{r}(1 \mathrm{~S}) \rightarrow \eta \eta^{\prime}$ upper limit is two orders of magnitude smaller than naïve scaling from J / ψ decay

Backup Slides

[^0]: CDF PRL88,161802(2002)

