CLEO Bottomonium Results

Helmut Vogel Carnegie Mellon University	(for the CLEO Collaboration) EPS 2007 Manchester, UK
Radiative Decays:	$\begin{split} &\Upsilon(1S) \to \gamma \eta(') \\ &\Upsilon(1S) \to \gamma h^0 h'^0 \\ &\Upsilon(nS) \to \gamma + narrow \ resonance \end{split}$
Fragmentation/Hadronization:	(anti)Deuterons in Υ (nS) decay Particle yields in gluon & quark fragmentation $\chi_{b,J} \rightarrow$ open charm Decay <i>M.E.</i> in Υ (nS) $\rightarrow \pi \pi \Upsilon$ (mS)
Probing for New Physics:	$Y(1S) \rightarrow \text{invisible final state}$

Detector and Data Sample

Radiative Decay: $\Upsilon(1S) \rightarrow \gamma \eta(')$

hep-ex/0704.3063

Motivation:
Simple process in theory (no hadronic FSI)
Extensively studied in J/ψ radiative decay good agreement with theory
Test scaling models (VDM, NRQCD, η_b mixing)

Previous UL ~ 2 x 10^{-5} (CLEO II)

Choose 3 main decay modes for η 4 modes for η' (3x($\eta\pi^+\pi^-$) and $\gamma\rho$).

No signal claimed in any channel;

$$\begin{split} &B(\Upsilon(1S)\to\gamma\,\eta\,)<1.0\,x\,10^{-6}\\ &B(\Upsilon(1S)\to\gamma\,\eta')<1.9\,x\,10^{-6} \end{split}$$

- compatible with ext'd VDM (Intemann 1983)

- compatible with Higher Twist model (Ma 2002)
- strongly disfavors mixing with η_{b} (Chao 1990)

Radiative Decay: $\Upsilon(1S) \rightarrow \gamma h^0 h'^0$

hep-ex/0512003 PRD 75 (2007) 072001

Motivation: comparison with charmonium, glueball search LQCD (Morningstar *et al.*) predicts lightest glueball: J^{PC}=0⁺⁺, M~1.6 GeV, decay to PP' Final states studied: $\gamma \pi^0 \pi^0$, $\gamma \eta \eta$, $\gamma \pi^0 \eta$ 0990706-001 $\pi^0 \pi^0$ (b) (a) ηη Events/(20 MeV/c²) Signature: 1 photon of $E_{\gamma} > 4 \text{ GeV}$ + 4 photons of $E_{\gamma} \sim 0.5$ - 2 GeV **Results:** Observe $f_2(1270)$ signal in $\gamma \pi^0 \pi^0$; 2 $M_{\pi\pi}$ (GeV/c²) establish UL's on other modes. M_{nn} (GeV/c²) $B(Y \rightarrow \gamma f_2(1270)) \times B(f_2(1270) \rightarrow \pi^0 \pi^0) = (3.0 \pm 0.5) \times 10^{-5}$ $B(\Upsilon \to \gamma f_2(1270)) = (10.5 \pm 1.6 \pm 1.9) \times 10^{-5}$ cf. $(10.2 \pm 0.8 \pm 0.7) \times 10^{-5}$ from $\gamma \pi^+ \pi^-$ channel CLEO III PRD 73 (2006) 032001 $B(Y \rightarrow \gamma f_0(1500)) < 1.5 \times 10^{-5} (\pi^0 \pi^0 \text{ mode})$ $B(Y \to \gamma f_0(1500)) \ge B(f_0(1500) \to \eta \eta) < 3.0 \times 10^{-6}$ Tests LQCD; $B(Y \to \gamma f_0(1710)) \ge B(f_0(1710) \to \pi^0 \pi^0) < 1.4 \times 10^{-6}$ QCD factorization model $B(Y \to \gamma f_0(1710)) \ge B(f_0(1710) \to \eta \eta) < 1.8 \times 10^{-6}$ strongly disfavored. $B(Y \to \gamma \pi^0 \eta) < 2.4 \times 10^{-6}$ 4

Radiative Decay: $\Upsilon(nS) \rightarrow \gamma + narrow resonance$

Probes hadronization in

 $\Upsilon \to \gamma \, gg \to \gamma + R$

R = narrow resonance, assumed to decay to $n \ge 4$ tracks

 $z_{\gamma} := E_{\gamma} / E_{\text{beam}}$, $M_R = 2 E_{\text{beam}} \sqrt{(1-z_{\gamma})}$

Select hadronic events with isolated photon. Fit inclusive γ spectra from Y(1,2,3,4S)with bkgd(Chebyshev) + narrow Gaussian.

Find no signal; UL ~ 10^{-4} across most of spectrum for all $\Upsilon(1,2,3,4S)$ (track multiplicity ≥ 4)

Same analysis of continuum data: UL on σ (e⁺e⁻ $\rightarrow \gamma + R$) *vs*. M_R

10

В.Я.

10-

(anti)Deuterons in Y Decay: $Y(nS) \rightarrow \overline{d}X$

First observed by ARGUS (1990): 19 events total (PID: ToF) This experiment (CLEO III): > 300 events

Goal: measure yield in direct decay $Y(nS) \rightarrow ggg (\gamma gg) \rightarrow \overline{d} X$ Subtract contribution from re-annihilation via virtual photon Theory: Coalescence/string model (Gustafson & Hakkinen 1994, extending Gutbrod *et al.* 1976, Sato & Kazaki 1983)

Select *anti*deuterons to avoid beam-gas, beam-wall bkgd PID: *dE/dx* in momentum range 0.45 to 1.45 GeV/c RICH to veto pions and (anti)protons χ_d = normalized deviation from *dE/dx* value expected for

measured track momentum, $\cos\theta$, number of hits

Extract yield for each of 5 momentum bins

(anti)Deuterons in Y Decay: $Y(nS) \rightarrow \overline{d} X$

Results

 $B(\Upsilon(1S) \to \overline{d} X) = (2.86 \pm 0.19 \pm 0.21) \times 10^{-5}$ (total) $B^{dir}(\Upsilon(1S) \to \overline{d} X) = (3.36 \pm 0.23 \pm 0.25) \times 10^{-5}$ (direct) baryon number compensated via pp, pn, np, nn (only ~1% via d) $B(\Upsilon(2S) \to \overline{d} X) = (3.37 \pm 0.50 \pm 0.25) \times 10^{-5}$ (total), after subtraction of $\pi \pi / \gamma \gamma$ cascades to $\Upsilon(1S)$) $B(\Upsilon(4S) \to \overline{d} X) < 1.3 \times 10^{-5}$ (total)

Continuum production of (anti)deuterons: $\sigma(e^+e^- \rightarrow \overline{d} X) < 0.031 \ pb$, at $\sqrt{s} = 10.5 \ GeV$, compared to $\sigma(e^+e^- \rightarrow hadrons) > 3000 \ pb$ Fewer than 1 in $10^5 \ q\overline{q}$ hadronizations produce (anti)deuterons BUT more than 3 in $10^5 \ ggg$, $gg\gamma$ hadronizations do!

hep-ex/0612019 PRD 75 (2007) 012009

Baryon & Meson Yields from ggg, $q\overline{q}$, γgg , and $\gamma q\overline{q}$

hep-ex/0704.2766

Study yields of particle types: Λ , **p**, $\overline{\mathbf{p}}$, ϕ , $\mathbf{f}_2(1270)$ in

-> off-resonance $e^+e^- \rightarrow \gamma + hadrons$ ($\gamma q \overline{q}$ fragmentation)

Measure momentum dependence of production and *p*-integrated yield ratios

Baryon & Meson Yields from ggg, $q\overline{q}$, γgg , and $\gamma q\overline{q}$

Main Results (MANY more in the paper, with detailed figures & tables!) :

- Study of particle yields extended from Y(1S) to Y(2S) and Y(3S)
- Baryon production on Y(2S) (Y(3S)) is 5% (10%) lower than on Y(1S)
- Baryon production per event on any $\Upsilon(nS)$ is > 2x higher than in continuum at similar \sqrt{s}
- Λ yield is strongly (~2x) enhanced in *gluon* over *quark* fragmentation;

by contrast, proton yield is only slightly enhanced

- The JETSET generator, while successful w.r.t. gross features of particle production is in need of tuning at the single-particle yield level

hep-ex/ 0704.2766

$\chi_{b,J} \rightarrow open \; charm$

Decay Matrix Elements in $Y(nS) \rightarrow \pi \pi Y(mS)$

Motivation: Understanding the puzzling behavior of $\pi \pi$ cascade transitions between quarkonium states.

 $M_{\pi\pi}$ spectra differ drastically from phase space AND from each other for different transitions $n \rightarrow m$: high mass peak in 2 \rightarrow 1, double peak in 3 \rightarrow 1 (Babar, Belle: h.m.p. in 4 \rightarrow 1, double peak in 4 \rightarrow 2)

Theory: multipole expansion of the E1 gluon field (Brown & Kahn 1975, Gottfried 1978, Yan 1980, Voloshin & Zakharov 1980)

We perform 2-D analysis of CLEO data $Y(nS) \rightarrow \pi \pi Y(mS) \rightarrow \pi \pi (e^+e^-, \mu^+\mu^-)$ Fit complex constant form factors *A*, *B*, (*C*) of the general M.E.,

 $M = A(\varepsilon'.\varepsilon)(q^2 - 2M_{\pi}^2) + B(\varepsilon'.\varepsilon) E_1 E_2 + C(chromo-magn.)$

hep-ex/0706.2317

Decay Matrix Elements in $Y(nS) \rightarrow \pi \pi Y(mS)$

Results (data/fit)

Fit, no \mathcal{C} , total error		
$\Upsilon(3S) \to \Upsilon(1S)\pi\pi$	$\Re(\mathcal{B}/\mathcal{A})$	-2.52 ± 0.04
	$\mathfrak{S}(\mathcal{B}/\mathcal{A})$	$\pm 1.19 \pm 0.06$
	$ \mathcal{B}/\mathcal{A} $	$2.79~\pm~0.05$
	δ_{BA}	$155(205) \pm 2$
$\Upsilon(2S) \to \Upsilon(1S)\pi\pi$	$\Re(\mathcal{B}/\mathcal{A})$	-0.75 ± 0.15
	$\mathfrak{S}(\mathcal{B}/\mathcal{A})$	$0.00~\pm~0.11$
	$ \mathcal{B}/\mathcal{A} $	$0.75~\pm~0.15$
	δ_{BA}	180 ± 9
$\Upsilon(3S) \to \Upsilon(2S)\pi\pi$	$\Re(\mathcal{B}/\mathcal{A})$	-0.40 ± 0.32
	$\mathfrak{S}(\mathcal{B}/\mathcal{A})$	0.00 ± 1.1
Fit, float \mathcal{C} , total error		
$\Upsilon(3S) \to \Upsilon(1S)\pi\pi$	$ \mathcal{B}/\mathcal{A} $	2.89 ± 0.25
	$ \mathcal{C}/\mathcal{A} $	$0.45~\pm~0.40$

- |*C*/*A*| < 1.09 at 90% C.L. (not very stringent)
- Good fits with C=0 and constant A, B

(but different for different (n,m))

- |B/A| large in $3 \rightarrow 1$,

with significant phase! ??(Voloshin, arXiv:0707.1272)

hep-ex/0706.2317

Search for Invisible Decays of $\Upsilon(1S)$ hep-ex/0612051 PRD 75 (2007) 031104

In SM, $B(Y(1S) \rightarrow Z^0 \rightarrow v\overline{v}) \sim 10^{-5}$ Motivation: (1) Confirm that $\Gamma_{invis}(Y(1S))$ is negligible (which we assumed in earlier measurements of Γ_{tot}) (2) Test recent BSM predictions (*e.g.*, Fayet 2006; McElrath 2005: $B(Y(1S) \rightarrow \chi\chi \rightarrow invisible) = 0.41\%$!)

Analysis method:

- tag via $\Upsilon(2S) \rightarrow \pi^+\pi^- \Upsilon(1S) \rightarrow \pi^+\pi^- + "nothing"$

- subtract sidebands in recoil mass spectrum

- suppress background from two-photon events

- simulate irreducible backgrounds from $\Upsilon(1S) \rightarrow l^+ l^-$

$$\begin{array}{ll} \mbox{Result:} & B\left[\Upsilon(1\text{S}) \rightarrow \textit{invisible}\right] = (0.16 \pm 0.13 \pm 0.05) \ \% \\ & B\left[\Upsilon(1\text{S}) \rightarrow \textit{invisible}\right] < 0.39 \ \% \ (90\% \ \text{CL}) \\ & (\textit{cf. Belle:} < 0.25\%, \ \text{PRL } 98 \ (2007) \ 132001) \\ & \Gamma_{\textit{invis}}(\Upsilon(1\text{S})) \ \text{is indeed negligible compared to} \end{array}$$

Summary

Using the CLEO III bottomonium data sample we have studied **particle yields** and **hadronization mechanisms** in great detail and in many different environments --

Radiative Decays:	$\Upsilon(1S) \rightarrow \gamma \eta(')$
	$\Upsilon(1S) \rightarrow \gamma h^0 h'^0$
	$Y(nS) \rightarrow \gamma + narrow resonance$
Hadronic Decays:	(anti)Deuterons in $Y(1S)$ decay
	Particle yields in gluon & quark fragmentation
	$\chi_b ightarrow$ open charm
	Decay <i>M.E.</i> in $\Upsilon(nS) \rightarrow \pi \pi \Upsilon(mS)$

We also set an upper limit on Y(1S) decay into invisible final states.

Backup Slides

$B_{\tau\tau}$ of Y(nS) and Lepton Universality

hep-ex/0607019 PRL 98 (2007) 052002

First Measurement of $B_{\tau\tau}(\Upsilon(3S))$ Updated $B_{\tau\tau}(\Upsilon(1S, 2S))$ results

Completes the series of precision measurements of Γ_{ee} , $B_{\mu\mu}$, and $B_{\tau\tau}$ of all bound $\Upsilon(nS)$ states at CLEO III

Tau pair selection: 2 tracks of opp. charge and $0.1 < |p|/E_{beam} < 0.9$ each. Analyze and simulate all combinations (ee, $\mu\mu$, $e\mu$, eX, μX , XX),

Use $\Upsilon(nS) \rightarrow \mu^+ \mu^-$ data as reference

$B_{\tau\tau}$ of Y(nS) and Lepton Universality

hep-ex/0607019 PRL 98 (2007) 052002

 $\mathsf{B}_{ au au}(\%)$

Y(1S) 1.02±0.02±0.05 2.54±0.04±0.12 (most precise)

Y(2S) 1.04±0.04±0.05 2.11±0.07±0.13 (much improved precision)

Y(3S) 1.05±0.08±0.05 2.52±0.19±0.15 (first time measurement)

 $\mathsf{R}^{\gamma}_{_{\tau\tau}}$

The ratio $R_{\tau\tau}^{\gamma} = (B_{\tau\tau}/B_{\mu\mu})$ (=1 in SM) is sensitive to CP-odd Higgs, A_0 , via γ $\gamma(1S) \rightarrow \gamma \eta_b$, $\eta_b \rightarrow A_0 \rightarrow \tau^+ \tau^-$ (Sanchis-Lozano 2004)

Our result: product BF < 0.27% for $M(\Upsilon(1S)) - M(\eta_b) + G(\eta_b) < O(100 \text{ MeV})$

Non-direct sources of Do's in Y(25)/Y(35) decays:

Decay Matrix Elements in $Y(nS) \rightarrow \pi \pi Y(mS)$

hep-ex/0706.2317

H. Vogel