Hirschegg 2007:

The Structure and Dynamics of Hadrons

Spectroscopy at CLEO

Jim Napolitano
Rensselaer Polytechnic Institute for the CLEO Collaboration

CLEO

What does "hadron spectroscopy" tell us about the "hadron dynamics?"

The pattern of energy levels gives important clues to what are the relevant "degrees of freedom."

This pattern, and matrix elements, tell how a complicated system can be reduced to a "simple" one.

An example from nuclear physics: Dynamics of the samarium isotopes

P. Stoler, et al., Phys.Rev. I 55(I 967) I 334
$\frac{(3) 1.75}{2+1.59}$
1.38

$$
E \propto l(\ell+I)
$$

"Rigid Rotor"

$$
\begin{array}{ll}
\left(2^{+}\right) & 1.182 \\
\hline(3) & 1.165
\end{array}
$$

spacing
(3)

Vibrations of
a spherical (17.75
liquid drop!
Equal

$$
\frac{o^{+}}{\sin _{82}^{144}} \quad \frac{o^{+}}{S_{m}^{146}} \quad \frac{o^{+}}{s_{m}^{148}}
$$

$44^{+} .774$
$0 \quad .741$

About CLEO

Inclusive detection of $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation reaction products using varying energies in the center-of-mass.

1979 thru 2002: $E_{с м} \approx 10 \mathrm{GeV}$ for B's, $\Upsilon(\mathrm{nS})$, charm, ... 2002 thru 2008: $\mathrm{Ecm}_{\mathrm{cm}} \approx 4 \mathrm{GeV}$ for low background charm

A Personal History of CLEO and CESR Karl Berkelman, World Scientific (2004)

Topics for this talk

- $Y($ ID $)$ discovery: Precision test of Lattice QCD
- Discovery of singlet charmonium, the $h_{c}(3520)$
- Rate for $X_{c}{ }^{0} \rightarrow \gamma J / \Psi$: New Lattice QCD results
- Light scalars/tensors: $Y(I S) \rightarrow \gamma \Pi^{0} \Pi^{0}$
- Precise masses for Σ_{c} baryons
- Confirmation and study of Y(4260)
- Search for $\Psi(2 S) \rightarrow \eta_{c} 3 \pi$
- Exclusive $\mathrm{e}^{+} \mathrm{e}^{-}$in the charmonium region
- Coming up:The new $\Psi(2 S)$ sample

Discovery of the $\Upsilon(I D)$ Phys.Rev.D 70(2004)03200I

' P_{I} Charmonium:The $\mathrm{h}_{\mathrm{c}}(3520)$

Napolitano/CLEO

Events / 2 MeV
Exclusive

Exclusive and Inclusive average: $M\left(h_{c}\right)=3524.4 \pm 0.6 \pm 0.4 \mathrm{MeV}$ $\Delta \mathrm{M}_{\mathrm{HF}}(\mathrm{IP})=1.0 \pm 0.6 \pm 0.4 \mathrm{MeV}$ Phys.Rev.D 72(2005)092004

Decay rate: $X_{c}\left({ }^{3} P_{0}\right) \rightarrow \gamma J / \Psi$ Phys.Rev.Lett. 94(2005)232002

Produce $X_{\text {co }}$ from $\Psi(2 S)$ radiative decay

Note:This rate calculated in Lattice QCD

JLab Group: Phys.Rev.D73(2006)074507

Hirschegg 2007

Light scalars or tensors with glue? $Y(I S) \rightarrow \gamma \pi^{0} \pi^{0}:$ hep-ex/05 I 2003

$B\left(\Upsilon \rightarrow \gamma f_{2}\right)=$
$(10.5 \pm 1.6 \pm 2) \times 10^{-5}$
No evidence for exceptional states.

See also $\Upsilon \rightarrow \gamma \Pi^{+} \Pi^{-}$ in Phys.Rev.D
73(2006)03200I

Hirschegg 2007

Precise Masses for \sum_{c} Baryons Phys.Rev.D 71 (2005)051IOI

Confirmation and Study of the $Y(4260)$

PRL 96(2006) I 62003

Napolitano/CLEO

Observed by CLEO both in direct $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation and in ISR at high energy

Phys.Rev.D 74(2006)091 I 04

Search for $\psi(2 S) \rightarrow \eta_{c} 3 \pi$

Phys.Rev.D75(2007)0 I I 102

Test of the "Survival before Annihilation" model:
Artoisenet, et al., Phys.Lett. B628(2005)2 I I

Histogram shows a signal level of I\% which is the model prediction.

Resonances (?) in $\mathrm{e}^{+} \mathrm{e}^{-}$Annihilation

See R. Poling, FPCP 2006 (hep-ex/06060I6) and B. Lang, PhD Thesis, University of Minnesota

The lines just join the points, but...

... From Estia Eichten, QWG 2006

Coupled channels calculation ("updated")

Coming up:The new $\psi(2 S)$ sample

 $25 \mathrm{M} \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Psi(2 \mathrm{~S})$ (new!) are in hand and being analyzed Many analyses are in progress, for example...

Will Lattice QCD give a different answer than the quark model?

Conclusions

Spectroscopy remains a powerful tool for unraveling the relevant degrees of freedom for complicated physical systems.

CLEO has had a long and illustrious history. We continue to take data (mainly producing charmed mesons) and analysis will go on.

It is important to keep an open mind to the possibilities. Surprises often pop up!

Thank you! and...

Tuesday, 3 I July thru Friday 3 August, 2007

Stay tuned for the official announcement (soon).

Blah Blah Blah

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aliquam eu quam. Nulla sed purus in ipsum sagitis eleifen Maecenas eget nulla. Vvamus et turpis a est venenatis eleifiend. Nulla quam magna, consequat vel, molestie ac, Donec molestie tristique sapien. Nullamn viverra, arpu sit amet cursus fringilia, vellt metus venenatis augue, in venenatis pede est tringila nibh. Class aptent tactil sociosqu ad lifora torquent per conubla nostra, per inceptos hymenaeos.

Welcome
Lorem ipsum dolor sit amet, consectetuer adipiscing eili. Aliquam eu quam. Nulia sed purus in ipsum sagitis eieifend. Maecenas eget nulla. Vvamus et turpis a est venenatis elififend. Nulla quam magna, consequat vel, molestie ac, sagitits id, risus. Sed a urna. Ut convallis ullamcorper lorem. venenatis augue, in venenatis pede est fringilla nibh. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos.

News

Lorem ipsum dolor sit amet, consectetuer adipiscing ell. Allouam eu quam. Nulla sed purus in ipsum sagitis elafiend. Maecenas eget nula. Vivamus et turpis a est venenatis elofiend. Nulla quam magna, consequat vel, molestie ac, sagitis id, risus. Sed a urna. Ut convallis ullameorper lorem. Pellentesque tempor facilsis enim. Quisque hendrerit. Donec molestie tristique sapien. Nullam viverra, arcu sit amet cursus fringlla, velli metus
venenatis augue, in venenatis pede est fringlila nibh. Class aptent taciti sociosquad litora torquent per conubia nostra, per inceptos hymenaeos.

