

CLEO-c: Open Charm

Dan Cronin-Hennessy University of Minnesota May 31, 2006 CIPANP

Program Overview

CLEO-c Results:

<u>Measurement</u>	Theory	Physics
D Leptonic	Lattice (f _D)	V _{tx}
D Semileptonic	Lattice (ff)	V _{xb}
	CKM	V _{cx}
D Hadronic/Semilep	Mixing	$\Delta M, \Delta \Gamma$
		new physics

Impact of Physics

CLEO-c

CLEO-c + Lattice QCD +B factories

D. Cronin-Hennessy, U of M

CLEO-c + Lattice QCD +B factories + ppbar

D⁻Tagging

 \rightarrow Event Shape discrimination no longer a powerful powerful tool in the charm region.

→Backgrounds at ψ (3770): continuum (18 nb), τ pair (3 nb), radiative return (~1.5 nb)

 \rightarrow D meson has large branchings to low multiplicity modes.

- \rightarrow Requiring a reconstructed D provides background suppression.
- \rightarrow D-Tagging removes half the event (only a single D remains).
- \rightarrow Simultaneously provides 4-vector of other D meson.

D-Tagging

 $\Delta E = E_{beam} - E_{candidate}$

D. Cronin-Hennessy, U of M

Weak Annihilation:
$$D^+ \rightarrow \mu^+ \nu_{\mu}$$

$$\Gamma(D_q^+ \to | \upsilon) = \frac{1}{8\pi} G_F^2 M_{D_q^+} m_1^2 (1 - \frac{m_1^2}{M_{D_+}^2}) (f_{D_+}^2 | V_{cq} |^2)$$

$$|\mathbf{f}_{\mathrm{D}}|^{2} |\mathbf{V}_{\mathrm{CKM}}|^{2}$$

$$\Delta M_{d} = 0.50 \, ps^{-1} \left[\frac{\sqrt{B_{B_{d}}} f_{B_{d}}}{200 MeV} \right]^{2} \left[\frac{|V_{td}|}{8.8 \times 10^{-3}} \right]^{2}$$

Improvement in mixing constraints with better f_B Ideally one would measure $B^+ \rightarrow I^+ v$ (rate too low). Realistic alternative: Measure f_D, f_{Ds} .

$$f_{D \ CLEO-c}$$
 and $(f_B/f_D)_{lattice} \rightarrow f_B$
(And f_D/f_{Ds} checks f_B/f_{Bs})

 $^+ \rightarrow \mu^+$

 \rightarrow Require single track on other side: μ

- PID suppresses K
- Calorimeter suppresses π^+
- Require low energy in CC

Use D 4-vector to calculate missing mass (~0 for v).

$$D^+ \rightarrow \tau^+ \nu_{\tau} \ (\tau \rightarrow \pi \nu)$$

Data (281 pb⁻¹)

$$\frac{\Gamma(D^{+} \rightarrow \tau^{+}\nu)}{\Gamma(D^{+} \rightarrow \mu^{+}\nu)} \neq \frac{m_{\tau}^{2}\left(1-m_{\tau}^{2}/M_{D}^{2}\right)^{2}}{m_{\mu}^{2}\left(1-m_{\mu}^{2}/M_{D}^{2}\right)^{2}}$$

$$R = \frac{\Gamma_{Measured}(D^{+} \rightarrow \tau^{+}\nu)}{\Gamma_{SM}(D^{+} \rightarrow \tau^{+}\nu)}$$

$$R < 1.8 @ 90\%$$
Submitted to PRD
Anti-cut analysis vetoes
CC energy associated with track
That is consistent with muon.
D. Cronin-Hencessy, U of M

Motivation

→Direct access to CKM elements (V_{cs}, V_{cd})

 \rightarrow High resolution measurement of q² spectrum.

Confronts form factor predictions. \rightarrow Better

extraction of V_{xb} from exclusive semileptonic B

decays.

 \rightarrow Opportunity for first observations.

Technique

→D-Tag event
 →Identify electron
 →Reconstruct the hadronic component
 →Check for consistency with neutrino
 U=E_{miss}-|P_{miss}|

Cabibbo suppressed

Cabibbo favored modes

Results from 57/pb

<u>Motivation:</u> →BR(D→Xlv) →Precision measurement of lepton momentum spectrum. →Compare $\Gamma_{sl}(D^0)/\Gamma_{sl}(D^+)$ →Test HQT with $\Gamma_{sl}(D^0)/\Gamma_{sl}(D_s)$

Technique: →D-Tag →Electron ID →Gold DTags only •K⁻π⁺ and K⁻ π⁺π⁺ →Charge correlation

From 281/pb

 $\mathscr{B}(D^+ \rightarrow Xe^+ v) = (16.13 \pm 0.20 \pm 0.34)\%$ (ΣD^+ exclusive =15.1 %)

 $\mathscr{B}(D^0 \rightarrow Xe^+v) = (6.46 \pm 0.17 \pm 0.12)\%$ (ΣD^0 exclusive =6.1%)

$\Gamma_{\rm sl}(\rm D^+)/\Gamma_{\rm sl}(\rm D^0) = 0.985 \pm 0.028 \pm 0.015$

Submitted to PRL

Exclusive Semileptonic Decays Using Neutrino Reconstruction

Using the reconstructed v and a signal K or π , reconstruct D in the usual way:

$$\Delta E = E_{K} + |\boldsymbol{p}_{\text{miss}}| - E_{\text{beam}}$$
$$M_{\text{bc}} = \sqrt{E^{2}}_{\text{beam}} - (\boldsymbol{p}_{K} + \boldsymbol{p}_{e} + \boldsymbol{p}'_{\text{miss}})^{2}$$

 $M_{\rm bc}$ distributions fitted simultaneously in 5 q^2 bins to obtain $d({\rm BF})/dq^2$. Integrate to get branching fractions and fit to obtain form-factor parameters.

Exclusive Semileptonic Decays Using Neutrino Reconstruction

From 281/pb Preliminary

Yields and Branching Fractions (281pb⁻¹)

D Decay	Yield (Eff. Corr.)	Yield (Uncorr.)	Br. Frac.	
$D^0 \to K^{\pm} e v$	$72076 \pm 663 \pm 1230$	14395 ± 78	$3.56 \pm 0.03 \pm 0.10$ %	
$D^0 o \pi^{\pm} e v$	$6097\pm223\pm139$	1346 ± 28	$0.301 \pm 0.011 \pm 0.010$ %	
$D^{\pm} \rightarrow K^0 e \ V$	$136736 \pm 2054 \pm 2415$	5842 ± 54	$8.70 \pm 0.13 \pm 0.27$ %	
$D^{\pm} \rightarrow \pi^0 e \ v$	$5988\pm385\pm176$	450 ± 17	$0.381 \pm 0.025 \pm 0.015$ %	

Exclusive Semileptonic Decays Form Factors and V_{cx}

From 281/pb, Preliminary

$$f^{+}(q^{2}) = \frac{f^{+}(0)}{\left(1 - q^{2} / m_{pole}^{2}\right)}$$

Simple Pole

Decay Mode	$ V_{cx} f^+(0)$	m _{pole}
$D^0 o \pi^{\pm} e u$	$0.146 \pm 0.004 \pm 0.003$	$1.87 \pm 0.03 \pm 0.01$
$D^0 ightarrow K^{\pm} e v$	$0.736 \pm 0.005 \pm 0.010$	$1.98 \pm 0.03 \pm 0.02$
$D^{\pm} o \pi^0 e u$	$0.152 \pm 0.007 \pm 0.004$	$1.97 \pm 0.07 \pm 0.02$
$D^{\pm} ightarrow K^0 e V$	$0.719 \pm 0.009 \pm 0.012$	$1.97 \pm 0.05 \pm 0.02$

Decay Mode	$ V_{cx} \pm (stat) \pm (syst) \pm (theory)$	PDG (HF) Value
$D^0 o \pi^{\!\pm} e v$	$0.221 \pm 0.013 \pm 0.004 \pm 0.028$	0.224 ± 0.012
$D^0 o K^{\pm} e v$	$1.006 \pm 0.042 \pm 0.013 \pm 0.103$	$0.996 \pm 0.013 \ (0.976 \pm 0.014)$
$D^{\pm} ightarrow \pi^0 e V$	$0.235 \pm 0.016 \pm 0.006 \pm 0.029$	0.224 ± 0.012
$D^{\pm} ightarrow K^0 e v$	$0.984 \pm 0.042 \pm 0.017 \pm 0.101$	$0.996 \pm 0.013 \ (0.976 \pm 0.014)$

Extract |*V_{cx}*| *using f*(0) from LQCD *PRL 94, 011601 (2005)*

Precision comparable to exclusives with tags; much independent information.

Quantum Coherence and D Decays

	Definition	Current knowledge
У	$(\Gamma_2 - \Gamma_1)/2\Gamma = \mathcal{B}(CP+) - \mathcal{B}(CP-) - \Sigma \mathcal{B}_f r_f z_f$	0.008 ± 0.005
X	$(M_2 - M_1)/\Gamma$ sensitive to NP	x' < 0.018
R_{M}	(x ² +y ²)/2	< ~1 x 10 ⁻³
r	<i>K</i> π DCS-to-CF rel. amplitude	0.061 ± 0.001
δ	$K\pi$ DCS-to-CF relative phase	π(weak) + ? (strong)
Z	2cosδ	None
W	2sinδ	None

 Hadronic rates (flavored and CP eigenstates) depend on mixing/DCSD. 					
■ Se 0)	 Semileptonic modes (r = δ = 0) resolve mixing and DCSD. 				
Ra	ate enhand	cem	ent fac	tors, to	
lea	ading orde	er in	x, y an	d r ² :	
		1+		07-	
<u>f</u>	R_M/r^2				
f	1+ <i>r</i> ² (2-				
-	Z^2)				
/-	1	1			
CP+	1+ <i>rz</i>	1	0		
CP-	1- <i>rz</i>	1	2	0	
X	1+ <i>rzy</i>	1	1- <i>y</i>	1+ <i>y</i>	

Technique

Use fitter from CLEO-c D absolute hadronic branching Modes fraction analysis [physics/0503050]. Based on MARK III double tag technique using: $K^{-}\pi^{+}$ f \Box single tags ($n_i \sim N_{DD} \mathcal{B}_i \varepsilon_i$) and double tags ($n_{ii} \sim N_{DD} \mathcal{B}_i \mathcal{B}_i \varepsilon_{ii}$) $K^+\pi^ \Gamma \sim n/\epsilon \qquad B_i \approx \frac{n_{ij}}{n_i} \frac{\varepsilon_j}{\varepsilon_{ii}} \qquad y + rz \approx \frac{1}{4\Gamma_{\bar{c},\bar{r}}} \left(\frac{\Gamma_{CP-,X}}{\Gamma_{CP-,f}} - \frac{\Gamma_{CP+,X}}{\Gamma_{CP+,f}} \right)$ K^-K^+ $281 \text{ pb}^{-1} = 1.0 \text{ x} 10^6 \text{ }C = -1 \text{ }D^0 \text{ pairs.}$ *CP*+ $\pi^{-}\pi^{+}$ Limiting statistics: *CP* tags—our focus is not on B. $K^0_{S}\pi^0\pi^0$ Kinematics analogous to $Y(4S) \rightarrow B\overline{B}$: identify D with $M_{BC} = \sqrt{E_{beam}^2 - |p_D|^2}$ $\sigma(M_{BC}) \sim 1.3 \text{ MeV}, \quad x2 \text{ with } \pi^0$ $K^0_{S}\pi^0$ CP- $\Box \Delta E = E_{beam} - E_D \qquad \sigma(\Delta E) \sim 7 - 10 \text{ MeV}, \text{ x2 with } \pi^0$ *X*−*e*+v *X*+*e*-v Procedure tested with *CP*-correlated MC.

Hadronic DT Yields

	$^{1.89} M_{BC}(k$	(K^+) vs. M_{BC}	$(K^0_{\rm s}\pi^0)$				Statistcal Un	c Only
	1.88		mbc2D_kk_kspi0_h Entries 49		- No-oc expe	ectation	9.7 ± 0.5	Κ ⁰ -π ⁰
	1.87	·	Mean x 1.864 Mean y 1.864 RMS x 0.005436		- Observed	in data	3.0 ± 1.7	5 50
(Ve			RMS y 0.004865			1.2 ± 0.2	7.3 ± 0.4	
Ð)	1.86					1.0 ± 1.0	19.0 ± 4.4	Κ ⁰ _S π ⁰ π ⁰
	1.85				1.1 ± 0.2	2.2 ± 0.2	5.8 ± 0.4	— — — +
	1.84				0.2 ± 1.4	1.6 ± 1.3	14.0 ± 3.7	
			DATA	5.2 ± 0.4	4.5 ± 0.3	5.7 ± 0.4	16.0 ± 0.6	K - K +
	1.83 1.84 1.83 1.84	1.85 1.86 1.87	1.88 1.89	-2.2 ± 1.9	0.1 ± 0.9	1.6 ±1.3	39.6 ± 6.3	
	(GeV)	2.7 ± 0.4	64.7 ± 2.1	30.6 ± 1.4	32.3 ± 1.5	85.0 ± 2.4	K + a -
			2.0 ± 1.4	53.0 ± 7.3	24.3 ± 5.0	37.6 ± 6.2	77.0 ± 8.8	Νλ
		2.5 ± 0.4	622 ± 7	62.3 ± 2.1	25.3 ± 1.3	31.2 ± 1.4	78.3 ± 2.3	K - - +
		2.0 ± 0.4	599 ± 25	70.6 ± 8.4	24.0 ± 4.9	38.7 ± 6.2	90.4 ± 9.5	
		$K^{-}\pi^{+}$	$K^{\!+}\pi^{-}$	<i>K</i> - <i>K</i> +	$\pi^-\pi^+$	Κ ⁰ _S π ⁰ π ⁰	Κ ⁰ _S π ⁰	Yields

Semileptonic modes measured by searching for electron accompanying hadronic tag

Fitter Results

CLEO-c Preliminary

- Fit inputs: 6 ST, 14 hadronic DT, 10 semileptonic DT, efficiencies, crossfeeds, background branching fractions and efficiencies.
- $\chi^2 = 17.0$ for 19 d.o.f. (C.L. = 59%)
- Fitted r^2 unphysical. If constrain to WA, $\cos \delta =$ 1.08 ± 0.66 ± ?.
- Limit on C=+1 contamination:
 - □ Fit each yield to sum of C=-1 & C=+1 contribs.
 - □ Include *CP*+/*CP*+ and *CP*-/*CP* DTs in fit.
 - No significant shifts in fit parameters.
 - $\Box C=+1 \text{ fraction} = 0.06 \pm 0.05 \pm ?.$
- Some branching fracs competitive with PDG.

. = 3976).	Uncertainties are statistical only				
Parameter	Value	PDG or CLEO-c			
$N_{D^0 D^0}$	(1.09 ± 0.04 ± ?)x106	$(1.01 \pm 0.02) \times 10^6$			
У	-0.057 ± 0.066 ± ?	(8±5)x10 ⁻³			
r ²	-0.028 ± 0.069 ± ?	(3.74 ± 0.18)x10 ⁻³ PDG + Belle + FOCUS			
rz	0.130 ± 0.082 ± ?				
R_M	(1.74 ± 1.47 ± ?)x10 ⁻³	< ~1x10 ⁻³			
<i>B</i> (Κ ⁻ π ⁺)	(3.80 ± 0.29 ± ?)%	(3.91 ± 0.12)%			
<i>B</i> (<i>K</i> [−] <i>K</i> ⁺)	(0.357 ± 0.029 ± ?)%	(0.389 ± 0.012)%			
$\mathscr{B}(\pi^-\pi^+)$	(0.125 ± 0.011 ± ?)%	(0.138 ± 0.005)%			
ℬ(<i>K</i> ⁰ Տπ ⁰ π ⁰)	(0.932 ± 0.087 ± ?)%	(0.89 ± 0.41)%			
$\mathscr{B}(K^0{}_{S}\pi^0)$	(1.27 ± 0.09 ± ?)%	(1.55 ± 0.12)%			
$\mathcal{B}(X^{-}e^{+}v)$	_{ssy,} (6.2 _f 1 _N ≠ 0.42 ± ?)%	(6.87 ± 0.28)%			

Summary

CLEO-c:

Update on $D^+ \rightarrow \mu^+ \nu$

Limit on $D^+ \rightarrow \tau^+ \nu$ (preliminary)

Exclusive semileptonic D branchings using D Tags

- two "first observations"

Inclusive semileptonic D branchings

- Ratio for charged to neutral semileptonic widths ~1
 Exclusive semileptonic D branchings using n reconstruction
 - CLEO-c first FF extraction and V_{cx}

Mixing parameter extractions exploiting quantum coherence

- demonstration of approach