CLEO-c: Recent Results

Dan Cronin-Hennessy University of Minnesota March 12, 2006 Moriond EW

Outline

- Program Overview
 - CLEOIII Result
- ➢ CLEO-c
 - Leptonic
 - Semileptonic
 - Hadronic

Impact of Physics

Weak Annihilation $B \rightarrow I_V(X)$

*Annihilation of valence quarks (leptonic).

*Hadronization of residual "brown muck".

*Estimates of rate suggest small contribution from these these processes. (Order $\sim 1/m_{H}^{3}$)

*However rate can be concentrated at high q².

$$\Gamma_{\rm WA}/\Gamma_{btou}\approx 0.03 \left(\frac{f_B}{0.2~{\rm GeV}}\right)^2 \left(\frac{B_2-B_1}{0.1}\right)$$

First direct experimental limits on a localized WA contribution.

Submitted to PRL

CLEO-c Expected Datasets

► ψ(3770)

- > 1000/pb
 - 2 Million tagged D mesons
 - 100 times MARKIII
- $\sqrt{s} = 4170 \text{ MeV}$
 - > 1000/pb
 - ~0.1 Million tagged Ds mesons
 - Scan completed.
- ▶ ψ(3686)
 - > 30 million ψ(3686)

D⁻Tagging

 \rightarrow Event Shape discrimination no longer a powerful powerful tool in the charm region.

→Backgrounds at ψ (3770): continuum (18 nb), τ pair (3 nb), radiative return (~1.5 nb)

 \rightarrow D meson has large branchings to low multiplicity modes.

 \rightarrow Requiring a reconstructed D provides background suppression.

 \rightarrow D-Tagging removes half the event (only a single D remains).

 \rightarrow Simultaneously provides 4-vector of other D meson.

D-Tagging

Weak Annihilation:
$$D^+ \rightarrow \mu^+ \nu_{\mu}$$

$$\Gamma(D_q^+ \rightarrow | \upsilon) = \frac{1}{8\pi} G_F^2 M_{D_q^+} m_1^2 (1 - \frac{m_1^2}{M_{D_+}^2}) (f_{D_+}^2) |V_{cq}|^2$$

$$\int \int [f_D|^2 |V_{CKM}|^2 \int dM_d = 0.50 \, ps^{-1} \left[\frac{\sqrt{B_{B_d}} f_{B_d}}{200 MeV} \right]^2 \left[\frac{|V_{td}|}{8.8 \times 10^{-3}} \right]^2$$

Improvement in mixing constraints with better f_B Ideally one would measure $B^+ \rightarrow I^+ v$ (rate too low). Realistic alternative: Measure f_D, f_{Ds} .

$$f_{D \ CLEO-c}$$
 and $(f_B/f_D)_{lattice} \rightarrow f_B$
(And f_D/f_{Ds} checks f_B/f_{Bs})

 \rightarrow Require single track on other side: μ

- PID suppresses K
- Calorimeter suppresses π^+
- Require low energy in CC

Use D 4-vector to calculate missing mass (~0 for v).

 $D^+ \rightarrow \mu^+ \nu_{\mu}$

Data (281 pb⁻¹)

630905-009 120 15 100 10 Events / 0.01 GeV² 09 08 08 5 $K_L^0 \pi^+$ -0.05 0 0.05 $\mu^+ \nu$ 20 0.25 0.50 MM^2 (GeV²)

IVIODE	Events
Data	50
$D^+ \rightarrow \pi^+ \pi^0$	1.4
$D^+ \rightarrow K_{long} \pi^+$	0.33
$D^+ \rightarrow \tau^+ \nu_{\tau}$	1.08
Total Bck:	2.81

Monte Carlo (1 fb^{-1})

 $D^+ \rightarrow \tau^+ \nu_{\tau} (\tau \rightarrow \pi \nu)$

Data (281 pb⁻¹)

$$\frac{\Gamma(D^+ \to \tau^+ \nu)}{\Gamma(D^+ \to \mu^+ \nu)} \neq \frac{m_\tau^2 \left(1 - m_\tau^2 / M_D^2\right)^2}{m_\mu^2 \left(1 - m_\mu^2 / M_D^2\right)^2}$$

$$R = \frac{\Gamma_{\text{Measured}}(D^+ \to \tau^+ \nu)}{\Gamma_{\text{SM}}(D^+ \to \tau^+ \nu)}$$

R<1.6 @90%

Anti-cut analysis vetoes CC energy associated with track That is consistent with muon.

Motivation

 →Direct access to CKM elements (V_{cs},V_{cd})
 →High resolution measurement of q² spectrum. Confronts form factor predictions. → Better extraction of V_{xb} from exclusive semileptonic B decays.

 \rightarrow Opportunity for first observations.

Technique

→D-Tag event
 →Identify electron
 →Reconstruct the hadronic component
 →Check for consistency with neutrino

 U=E_{miss}-|P_{miss}|

Cabibbo suppressed modes

Cabibbo favored modes

D. Cronin-Hennessy, U of M

First Observation

Results from 57/pb

<u>Motivation:</u> →BR(D→XIv) →Precision measurement of lepton momentum spectrum. →Compare $\Gamma_{sl}(D^0)/\Gamma_{sl}(D^+)$ →Test HQT with $\Gamma_{sl}(D^0)/\Gamma_{sl}(D_s)$

Technique: →D-Tag →Electron ID →Gold DTags only •K⁻π⁺ and K⁻ π⁺π⁺ →Charge correlation

From 281/pb - Preliminary

 $\mathscr{B}(D^+ \rightarrow Xe^+ v) = (16.13 \pm 0.20 \pm 0.34)\%$ (ΣD^+ exclusive =15.1 %)

 $\mathscr{B}(D^0 \rightarrow Xe^+\nu) = (6.46 \pm 0.17 \pm 0.12)\%$ (ΣD^0 exclusive =6.1%)

 $\Gamma_{sl}(D^+)/\Gamma_{sl}(D^0) = 0.985 \pm 0.028 \pm 0.015$

Soon: Electron momentum shape comparison

Hadronic D Branching Fractions

Motivation:

 \rightarrow Provide most precise measurement of D hadronic BRs.

- →Many current measurements determined with respect
 - to normalizing modes (e.g. $D \rightarrow K \pi$, $D \rightarrow K \pi \pi$).

 \rightarrow CLEO-c will provide absolute measurements.

 \rightarrow Counting D mesons provides DD production cross sections.

Single tags: $N_i = 2 N_{DD} B_i \varepsilon_i$

Double tags: $N_{ij} = N_{DD} B_i B_j \mathcal{E}_{ij}$

Syst unc cancels.

To first order Bi independent of tag modes and efficiencies.
Simultaneous fit for all BR and cross sections.

•All correlations taken into account.

D0

Mode	N _D (x10 ³)	N _D (x10 ³)	ε _D (%)
Кπ	5.11±0.07	5.15±0.07	65.7±0.3
Κππ ⁰	9.51±0.11	9.47±0.11	33.2±0.1
Κπππ	7.44±0.09	7.43±0.09	44.6±0.2
Кππ	7.56±0.09	7.56±0.09	51.7±0.2
Κπππ ⁰	2.45±0.07	2.39±0.07	27.2±0.2
K _s π	1.10±0.04	1.13±0.04	45.6±0.4
$K_s \pi \pi^0$	2.59±0.07	2.50±0.07	23.4±0.2
Κ _s πππ	1.63±0.06	1.58±0.06	31.4±0.2
ККπ	0.64±0.03	0.61±0.03	42.6±0.5

Fits

Line shapes include ISR, resolution, beam energy spread. Efficiencies include FSR correction.

D. Cronin-Hennessy, U of M

D+

D+--KSPIPIO

185

1.88 1.8 mbc (GeV)

1,88 1.89 mbc(GeV)

167

1.83 1.84 1.85 1.86 1.87 1.88 1.89 mbc(CeV) 1.8 184

Results

D⁰ Modes

Parameter	Fitted Value (%)
$N(D^0\overline{D^0})$	(2.006±0.038±016)x10 ⁵
$\mathcal{B}(D^0 \rightarrow K^-\pi^+)$	(3.91±0.08±0.09) %
$\mathcal{B}(D^0 \rightarrow K^- \pi^+ \pi^0)$	(14.94 ±0.30±0.47) %
$\mathcal{B}(D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-)$	(8.29±0.17±0.32) %

D⁺ Modes

Parameter	Fitted Value (%)
N(D ⁺ D ⁻)	(1.558±0.038±012)x10 ⁵
$\mathcal{B}(D^+ \rightarrow K^- \pi^+ \pi^+)$	(9.52±0.25±0.27) %
$\boldsymbol{\mathcal{B}} \left(\mathrm{D}^{+} \boldsymbol{\rightarrow} \mathrm{K}^{-} \pi^{+} \pi^{0} \right)$	(6.04±0.18±0.22) %
$\mathcal{B}(D^+ \rightarrow K_s \pi^+)$	(1.55±0.05±0.06) %
$\mathcal{B}(D^+ \rightarrow K_s \pi^+ \pi^0)$	(7.17±0.21±0.38) %
$\mathcal{B}(D^+ \rightarrow K_s \pi^+ \pi^+ \pi^-)$	(3.20±0.11±0.16) %
$\mathcal{B}(D^+ \rightarrow K^+ K^- \pi^+)$	(0.97±0.04±0.04) %

 PDG numbers are correlated among modes.

•CLEO-c numbers correlated.

•CLEO-c include FSR correction.

PRL 95 121801 (2005)

Summary

CLEOIII First experimental limit on localized weak in semileptonic B decays. CLEO-c Update on $D^+ \rightarrow \mu^+ \nu$ Limit on $D^+ \rightarrow \tau^+ \nu$ (preliminary) Exclusive semileptonic D branchings (FF soon) - two "first observations" Inclusive semileptonic D branchings (spectrum soon) - Ratio for charged to neutral semileptonic widths ~1 Absolute hadronic branchings shown.