Upsilon Decays

Helmut Vogel

Carnegie Mellon University for the CLEO Collaboration

FPCP 2006 Vancouver, BC

upsilon decay (*'up-si-"l&n di-'kA*). 1. decay of a bound *bb* state, 2. decay of an unbound *bb* state to a bound *bb* state.

Motivation for Studying Bound State bb

- Test Lattice QCD Masses, Transition Rates, Γ_{ee} , HF splittings
- Decay Models $\pi\pi$ via E1E1 gluons, ω vs. γ transitions
- QCD & Potential Models α_s , LS coupling, color octet/singlet
- Comparison to charmonium -- radiative decays, *e.g.*, $\gamma \eta$ (')
- Correlation to B physics inclusive η, η'
- Beyond SM tests *e.g.*, LFV via $\mu \tau$

The Renaissance in Υ Physics

CESR, Nov 2001 – Dec 2002: * Dedicated Υ(1S), Υ(2S), Υ(3S) runs * 10-20-fold increase in world supply * State-of-the-art detector, CLEO III

B Factories, since 2000: produce Υ(nS), n=1,2,3 via ISR (but have only recently begun to exploit them)

The CLEO III Detector

Recent and Hot News in Upsilon Decay (incomplete overview)

- Photon Transitions from $\Upsilon(2S)$ and $\Upsilon(3S)$
- Decay of $\Upsilon(1S)$ to Charmonium
- Radiative Decays: $\Upsilon(1S) \rightarrow \gamma h^+ h^-$, $\Upsilon(1S) \rightarrow \gamma \eta(')$
- "Unusual" Hadronic Transitions within the Upsilon System
- Precision Measurement of $B_{\mu\mu}$ and Γ_{ee} of $\Upsilon(1S,2S,3S)$
- "Usual" (but intriguing) Dipion Transitions (CLEO, Belle, BaBar)
- and more-- $B_{\tau\tau}$, study of $\Upsilon(5S)$, $\Upsilon(1S) \rightarrow \gamma X$, ... (sorry, not enough time!)

E1 Photon Transitions: $\Delta n=1$ and $\Delta n=2$

Photon Transitions: Impact of E1 Results

Significant improvement in **precision** (by now systematics dominated)

Test **relativistic corrections** in bb potential models (indeed smaller in bb than in cc)

Verify **spin dependence** of E1 matrix element, $(2J+1)(E_{\gamma})^3$

E1 transitions have **large BR**s -copious **production of P states** (not directly accessible in e+e- collisions)

Photon Transitions: the $1^{3}D_{J}$ State

First new Upsilon state in 20 years First long-lived L=2 meson below open-flavor threshold

Test of LQCD

$\Upsilon(1S)$ Decay to Charmonium: Motivation

(b) Color - Singlet Diagram

Tests models of charmonium production in gluon-rich environments

(cf. copious production of "prompt" J/ ψ at the Tevatron)

Candidate Models:

- * Color-Octet (Braaten & Fleming 1995)
- * Color-Singlet (Li, Xie, & Wang 2000)

predict BR and J/ψ momentum spectrum

$\Upsilon(1S)$ Decay to Charmonium: Results

- $B(\Upsilon(1S) \rightarrow J/\psi + X) = (6.4 \pm 0.4 \pm 0.6) \times 10^{-4}$ favors color-octet. • Momentum spectrum of J/ψ 's is softer than predicted (FSI?)
- Transitions to $\psi(2S)$ and χ_c states are also observed.

Radiative Decays: $\Upsilon(1S) \rightarrow \gamma h^+ h^-$ (h = π , K, p)

The hadron pair is produced in a glue-rich environment --Ideal source of glueballs (if they exist)

Probe two-gluon structure

Expected scaling from J/ψ :

rates suppressed by $((q_b m_c)/(q_c m_b))^2 \approx 1/40$ BF's suppressed by $\approx 1/25$

Fit observed structure with relativistic, spin dependent Breit-Wigner curves

Also studied the $\gamma \pi^0 \pi^0$ final state (no $\gamma \rho$ continuum background)

Radiative Decays, $\Upsilon(1S) \rightarrow \gamma h^+ h^-$: Results

CLEO PRD 73 (2006) 032001

Confirm $f_2(1270)$ in $\pi\pi$ channel Establish J=2 assignment

Observe $f_2'(1525)$ in KK channel; also J=2

BR = $(10.2 \pm 0.8 \pm 0.7) \times 10^{-5}$ (f₂(1270)) BR = $(3.7 \pm 0.8 \pm 0.8) \times 10^{-5}$ (f₂'(1525))

Consistent with scaling from J/ψ

Tensor mesons dominate the observed structure

No signal for $f_1(2200)$, set UL:

 $\mathcal{B}(\Upsilon(1S) \to \gamma f_J(2200)) \times \mathcal{B}(f_J(2200) \to \pi^+\pi^-) < 8 \times 10^{-7},$

 $\mathcal{B}(\Upsilon(1S) \to \gamma f_J(2200)) \times \mathcal{B}(f_J(2200) \to K^+K^-) < 6 \times 10^{-7},$

 $\mathcal{B}(\Upsilon(1S) \to \gamma f_J(2200)) \times \mathcal{B}(f_J(2200) \to p\bar{p}) < 11 \times 10^{-7}.$

FPCP 2006

Radiative Decays: Search for $\Upsilon(1S) \rightarrow \gamma \eta(')$

Motivation:

Theoretically simple process (no hadronic FSI)

Extensively studied in $\mbox{ J/\psi}$ radiative decay - good agreement with theory

Test models of scaling: - VDM

```
- NRQCD
```

- mixing with η_{b}

```
Previous UL \approx 2x10^{-5} (CLEO II)
```

```
Choose 3 main decay modes for \eta and 4 for \eta' (3x (\eta \pi + \pi - ) and \gamma \rho)
```

No candidates seen in any $\eta\,$ channel

H. Vogel

Radiative Decays: Search for $\Upsilon(1S) \rightarrow \gamma \eta(')$

Hadronic Transitions between Upsilon States

Motivation:

Test of models of gluon (E1E1) emission (e.g., Yan, Gottfried)

Most common process (known for decades): Dipion transition between ${}^{3}S_{1}$ states, e.g., $\Upsilon(mS) \rightarrow \pi\pi \Upsilon(nS)$, m>n (BR \approx 50% in cc, BR \approx 5 - 20 % in bb)

"Unusual" Hadronic Transition #1

$$\chi_{\tt b}{}^{\, {\rm \prime}} \rightarrow \omega \, \Upsilon(1S)$$

observed via

$$\Upsilon$$
(3S) → γ χ_b'
Final state: γ + π⁺π⁻π⁰ + |⁺|⁻

First non-pionic hadronic transition between Upsilon states

$$B(\chi_{b1}' \to \omega \Upsilon(1S)) = 1.6 \%$$

$$B(\chi_{b2}' \to \omega \Upsilon(1S)) = 1.1 \%$$

very large, considering phase space --

and nearly equal. Agrees with prediction by Gottfried, *cf.* also Voloshin hep-ph/0304165

"Unusual" Hadronic Transition #2

 $\chi_{\rm b}^{'}(2P)
ightarrow \pi\pi \, \chi_{\rm b}^{'}(1P)$

observed via cascade,

$$\begin{split} \Upsilon(3S) &\to \gamma \, \chi_{b}^{'}(2P) \\ \chi_{b}^{'}(2P) &\to \pi \pi \, \chi_{b}^{'}(1P) \\ \chi_{b}^{'}(1P) &\to \gamma \, \Upsilon(1S) \\ \Upsilon(1S) &\to I^{+}I^{-} \end{split}$$

Very soft pions, plus substantial background from $\Upsilon(3S) \rightarrow \pi \pi \Upsilon(2S)$!

Four independent analyses

- Charged two-pion (observe both π^{\pm}) Neutral two-pion (observe both π^{0})
- Charged one-pion (observe only 1 π^{\pm}) Neutral one-pion (observe only 1 π^{0})

"Unusual" Hadronic Transition #2: Results

Example: Observe both charged pions

7 Events Observed 1.2 Expected background Size of $\Upsilon(2S)$ is as expected $\varepsilon \approx 4.5\%$

Combining all analyses:

Significance 6 o

First observation of a dipion cascade between non- S states

Partial width

 $\Gamma_{\pi\pi} = (0.83 \pm 0.22 \pm 0.08 \pm 0.19) \text{ keV}$ consistent with $\Gamma_{\pi\pi} \approx 0.4 \text{ keV}$ predicted by Kuang & Yan

CLEO PRD 73 (2006) 012003

Precision Measurement of $B_{\mu\mu}$ of $\Upsilon(1S,2S,3S)$

(a fundamental quantity in many analyses of widths and branching fractions!)

Basic plan ... scan the three resonances and integrate the hadronic cross section!!

Get $\Gamma_{ee} \Gamma_{had} / \Gamma_{tot}$ without knowing $B_{\mu\mu}$ Use $B_{\mu\mu}$ to get Γ_{ee} Use $B_{\mu\mu}$ again to get $\Gamma_{tot} = \Gamma_{ee} / B_{\mu\mu}$

Precision Measurement of Γ_{ee} of $\Upsilon(1S, 2S, 3S)$

Many backgrounds contribute to the observed lineshape!

Precision Measurement of Γ_{ee} of $\Upsilon(1S, 2S, 3S)$

Precision Measurement of Γ_{ee} of Υ (1S,2S,3S)

Comparison of results --

with previous experiments

with LQCD calculations

H. Vogel

Hadronic Transitions (once more): Dipion Cascades between Υ(nS) States

News from CLEO: currently finalizing high statistics measurement of $\Upsilon(3S) \rightarrow \pi\pi \Upsilon(1S, 2S)$ and $\Upsilon(2S) \rightarrow \pi\pi \Upsilon(1S)$. (Almost ready! Plots shown today are for qualitative comparison only.)

News from Belle: observed $\Upsilon(4S) \rightarrow \pi^+\pi^-\Upsilon(1S)$! (BR $\approx 1 \times 10^{-4}$)

News from BaBar: observed $\Upsilon(4S) \rightarrow \pi^+\pi^- \Upsilon(1S)$ ($\Gamma \approx 2 \text{ keV}$) AND $\Upsilon(4S) \rightarrow \pi^+\pi^- \Upsilon(2S)$! ($\Gamma \approx 2 \text{ keV}$)

... and an intriguing picture emerges!

Dipion Cascades from the $\Upsilon(4S)$

H. Vogel

FPCP 2006

Summary

- Renaissance in non-BB Upsilon Physics (CLEO since 2001)
- Test LQCD
- Test basic QCD
- Test scaling between charmonium and bottomium
- Probe qq potential and test decay models
- Explore the puzzle of dipion cascades
- CLEO III has largest dedicated Υ(1S,2S,3S) data sample (produced many papers already; many more in the pipeline)
- Good to see BaBar & Belle also getting into the act! (dedicated Υ(3S) run at KEK?)

Backup Slides

Dipion Cascades: Old News (1994-2000)

